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Summary 24 

 25 

Allelopathy is a common and important stressor that shapes plant communities and can alter soil 26 

microbiomes, yet little is known about the direct effects of allelochemical addition on bacterial 27 

and fungal communities or the potential for allelochemical-selected microbiomes to mediate plant 28 

performance responses, especially in habitats naturally structured by allelopathy. Here we present 29 

the first community-wide investigation of microbial mediation of allelochemical effects on plant 30 

performance by testing how allelopathy affects soil microbiome structure and how these microbial 31 

changes impact germination and productivity across 13 plant species. The soil microbiome 32 

exhibited significant changes to ‘core’ bacterial and fungal taxa, bacterial composition, abundance 33 

of functionally important bacterial and fungal taxa, and predicted bacterial functional genes after 34 

the addition of the dominant allelochemical native to this habitat. Further, plant performance was 35 

mediated by the allelochemical-selected microbiome, with allelopathic inhibition of plant 36 

productivity moderately mitigated by the microbiome. Through our findings, we present a 37 

potential framework to understand the strength of plant-microbial interactions in the presence of 38 

environmental stressors, in which frequency of the ecological stress is a key predictor of 39 

microbiome-mediation strength.  40 

 41 

Introduction 42 

  43 

Competition via allelopathy is a notable mechanism that structures plant communities (Hierro & 44 

Callaway, 2021; Inderjit et al., 2011). Allelopathy has a broad taxonomic distribution, as a recent 45 

meta-analysis shows that 72% of all plant families are capable of producing bioactive secondary 46 
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metabolites (allelochemicals; (Kalisz et al., 2021)). Allelopathy is also common across ecosystems 47 

including grasslands (da Silva et al., 2017; Ning et al., 2016), shrublands (Hewitt & Menges, 2008; 48 

Mahall & Callaway, 1991), and both temperate and tropical forests (Ooka & Owens, 2018), and is 49 

an important factor in both agricultural and invasion ecology (Bais et al., 2003). Meta-analysis has 50 

also shown that allelopathy reduces mean plant performance by 25% (Z. Zhang et al., 2021). These 51 

declines in plant fitness result from both direct effects of allelochemical inhibition as well as from 52 

indirect effects such as decreasing soil nutrient availability, or through important yet largely 53 

unexplored alterations in the soil microbial communities that interact with surrounding plant roots 54 

(Cipollini et al., 2012; P. Zhang et al., 2019). 55 

Soil microbes play outsized roles in plant health and survival (Berendsen et al., 2012), 56 

and range from negative to positive effects on plant performance depending on environmental 57 

conditions (Hodge & Fitter, 2013; Trivedi et al., 2020). Recent studies indicate that soil 58 

microbiomes can increase plant performance under stressful environmental conditions through 59 

amelioration of abiotic and biotic stressors (David et al., 2020; Liu et al., 2020). Plant response to 60 

abiotic and biotic sources of stress can act as a cue, sometimes described as a ‘cry for help’, that 61 

encourages recruitment of microbial communities and functions that ultimately enhance the plant’s 62 

capacity to combat stress and maintain fitness (Bakker et al., 2018). Abiotic stressors, such as 63 

abnormally high temperature or prolonged drought, can directly alter soil microbial community 64 

composition and shift allocation of plant carbon to mutualistic microbes in soil (Palta & Gregory, 65 

1997). Despite the many potential beneficial microbial responses to this ‘cry for help,’ post-stress 66 

plant microbial interactions can also lead to decreased microbiome multifunctionality and 67 

increased pathogen loads in the rhizosphere (Hinojosa et al., 2019; Santos-Medellín et al., 2017). 68 

Allelopathy can similarly impose stress-induced shifts in microbiome composition, with some 69 
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studies indicating changes in functional capabilities (Lorenzo et al., 2013), and that allelochemicals 70 

may more strongly impact soil bacteria than fungi (Kong et al., 2008).  For example, some soil 71 

microbes have been shown to degrade phenolic allelochemicals (Zhang et al., 2010), but little is 72 

known regarding the recruitment or increased reliance on these potentially beneficial microbes by 73 

plants. It is important to note that given this capacity for certain microbes to degrade 74 

allelochemicals, there are two potential pathways through which the soil microbiome can mediate 75 

plant performance responses to allelopathy: through allelopathy-selected compositional and/or 76 

functional shifts in the microbiome, or through the direct degradation or metabolization of the 77 

allelochemical (Fu & Oriel, 1999). Given the importance of microbiome functionality to plant 78 

health and stress resilience, understanding allelopathic effects on soil microbiomes is a crucial part 79 

of understanding plant community responses. 80 

Our knowledge of microbial mediation of plant allelopathic interactions is notably 81 

limited in systems structured by native allelochemical inhibition. Much of what we know about 82 

the effects of allelopathy on plant-microbial interactions comes from studies of plant invasions. 83 

Allelopathy is very common among invasive species, with 51-67% of invasive plants reported to 84 

have allelopathic capacity (Kalisz et al., 2021; P. Zhang et al., 2019). Allelochemicals from 85 

invasive species have been shown to negatively impact bacterial abundance and community 86 

composition (Cipollini et al., 2012; P. Zhang et al., 2019), change microbial functionality in the 87 

rhizosphere (Qu et al., 2021), and ultimately alter plant-soil feedbacks in agriculture (Hu et al., 88 

2018). It has been proposed and largely supported that naive native plant species are vulnerable to 89 

negative impacts of non-native allelopathic plants because they have not adapted to the novel 90 

chemicals introduced in their system (novel weapons hypothesis; Callaway & Aschehoug, 2000). 91 

The likely corollary to this hypothesis, discussed in Callaway & Hierro (2005) and Mishra et al. 92 
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(2013), is that plants in ecosystems natively structured by dominant allelopathic plants will have 93 

adaptations that minimize inhibition by allelopathy. We predict that plant-microbial interactions 94 

play a key role in this adaptation to allelopathy. For instance, allelopathy may select for soil 95 

microbiomes (through differential shifts in community members and associated functions) that 96 

mitigate or neutralize the inhibition of plant performance by allelochemicals (e.g., via increased 97 

beneficial interactions in stressful environments; (David et al., 2020)). Importantly, the strength of 98 

microbial mediation of allelochemical stress can fall along a continuum and may be dependent on 99 

plant species-microbe specificity (Revillini et al., 2016). 100 

         Given the known importance of soil microbiomes for plant health and the global impacts 101 

of allelopathy (David et al., 2018; Wardle et al., 1998), we conducted a study to determine the 102 

direct effects of allelochemical addition on the soil microbiome, as well as the subsequent effects 103 

on performance of native plants from a habitat naturally structured by allelopathy. We address 104 

three questions: 1) Can allelochemicals alter bacterial and fungal community structure and 105 

function in soil? 2) How does a history of persistent allelochemical-selection on the soil 106 

microbiome impact native plant performance responses? 3) Which allelochemical-altered soil 107 

microbes and microbiome functions underpin these changes in plant performance? We are 108 

interested in the potential for adaptation among native plant and soil microbial communities to 109 

allelopathy, a persistent and long-term stressor in this habitat, as there will have been consistent 110 

selection pressure for plant-microbial associations that are able to weather that stress. We predict 111 

that allelochemical addition to soils will more strongly alter bacterial than fungal communities due 112 

to previously noted bacterial susceptibility to allelochemicals (Lorenzo et al., 2013; Niro et al., 113 

2016), and concomitant potential for greater fungal tolerance to allelochemicals (Barto et al., 114 

2011). Moreover, we expect that changes in microbial abundance as a response to allelopathy and 115 
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relationships with increased plant performance will allow for identification of microbial consortia 116 

that are adapted to mitigate inhibitory effects of native allelopathy in this system. We intend for 117 

this work to function as a template for future research in allelopathic systems by identifying core 118 

sets of allelochemical-selected soil microbiota and attendant microbiome-mediation of allelopathy. 119 

  120 

Materials & Methods 121 

Study system 122 

The Florida Scrub ecosystem has the highest rate of endemism in the southeastern US and hosts 123 

many threatened species (Dobson et al., 1997; Menges et al., 2008). This ecosystem exhibits a 124 

range of habitat types from open sand gaps and shrublands to mixed conifer flatwoods within a 125 

relatively small area (Abrahamson et al., 1984). Many of the rare and endemic plants in this 126 

ecosystem are found in the rosemary scrub habitat, where they occur in open sand gaps between 127 

the dominant, allelopathic shrub Florida rosemary (Ceratiola ericoides Michx.). Florida rosemary 128 

produces a suite of allelochemicals that can affect performance of other scrub species. Notably, 129 

Florida rosemary produces ceratiolin, a flavonoid that quickly decomposes into dihydrocinnamic 130 

acid (HCA) and negatively affects plant germination and root length for many herbaceous Florida 131 

scrub plant species (David et al., 2018; Fischer et al., 1994). Ceratiolin and derivative HCA are 132 

documented as the dominant allelochemicals found in litter and soil of the Florida scrub habitat 133 

(Jordan, 1990), and have been credited with contributing to the patchy structure of the ecosystem 134 

(Hewitt & Menges, 2008; Hunter & Menges, 2002). 135 

Recent studies show that there are distinct soil microbiomes in rosemary scrub compared 136 

to surrounding flatwoods habitat (Hernandez et al., 2021), and that many of the rare, endemic 137 

plants occurring in the rosemary scrub are strongly influenced by interactions with the soil 138 
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microbiome (David et al., 2018, 2020). For this study, we used soils from 10 sites at Archbold 139 

Biological Station (Venus, FL, USA; 27.18° N, 81.35° W) and collected seeds of 13 perennial, 140 

herbaceous plant species from across Archbold (Table S1) that vary across a spectrum of life 141 

history traits. 142 

 143 

Allelochemical treatment of the microbiomes 144 

To capture the abiotic variation in our study system, we chose soils to test allelopathic effects 145 

across a realistic sampling range of two important metrics in the system (Menges et al., 2017). We 146 

collected soils from 10 Florida rosemary scrub patches (i.e., open habitat patches dominated by C. 147 

ericoides that occur at relatively high elevations above the water table; Table S2) with a range of 148 

fire histories -- time since fire and total number of fires experienced within the last 52 years. We 149 

collected ~5 kg of soil from open sand gaps (at least 3 meters from C. ericoides to minimize the 150 

effects of ambient environmental HCA) at each of the 10 sites, and then stored soils for two days 151 

before applying the allelochemical treatment. HCA concentrations have been shown to decrease 152 

rapidly with increasing distance (>2 meters) from the host plant in this ecosystem (Quintana-153 

Ascencio and Menges 2000). The allelochemical addition treatment was performed using 250 ppm 154 

hydrocinnamic acid (3-phenylpropionic acid; HCA) diluted in ultrapure H2O. HCA concentration 155 

was selected based on previous studies from the field that identified natural concentrations of HCA 156 

ranging from 15-418 ppm (Jordan, 1990), and a manipulative study that found 250 ppm HCA 157 

effectively impacted plant performance (David et al., 2018). 1250 mL of soil from each site was 158 

equally split among sterilized aluminum trays (34 cm x 24 cm x 7 cm, n = 20) to receive the control 159 

(ultrapure H2O) or allelochemical addition (HCA+) treatment. Each tray was soaked with 50 mL 160 

(4% volume) using a sterile 2 L pump sprayer of either treatment three days per week in a 161 



 8 

temperature-controlled environment (25oC) for 5 weeks, leading to a total HCA concentration of 162 

150 ppm. 163 

  164 

Soil microbiome extraction, amplification, sequencing, and bioinformatic processing 165 

DNA was extracted from homogenized soil samples after the allelochemical addition treatment 166 

concluded (n = 20; 10 soil sources and 2 allelochemical treatments) using the DNeasy PowerSoil 167 

Pro QIAcube HT Kit (Qiagen, Carlsbad, CA, USA) with an adapted protocol without QIAcube 168 

(see Supplemental Methods for more detail; Revillini et al., 2021). DNA was quantified with a 169 

Qubit 4 fluorometer (Qiagen, Carlsbad, CA, USA), and normalized to 5 ng/µL. Libraries were 170 

prepared for sequencing using a two-step dual indexing protocol (Gohl et al., 2016). PCR was 171 

targeted for archaeal/bacterial (16S) and broad fungal (ITS2) ribosomal DNA (rDNA) using 172 

primer pairs 515F-806R and ITS7o-ITS4, respectively. Index and Illumina flowcell sequences 173 

were added in second-step PCR. All targeted amplicon products were pooled in equimolar 174 

quantities, and sent to the Duke University Microbiome Core Facility (Durham, NC, USA). 175 

Libraries were sequenced on a MiSeq Desktop Sequencer (v3, 300 bp paired end; Illumina, Inc., 176 

San Diego, CA, USA).  177 

Paired-end molecular sequence data was processed using QIIME2 v2021.4 (Bolyen et 178 

al., 2019). Briefly, denoising was performed with the DADA2 algorithm (Callahan et al., 2016), 179 

which removes chimeric sequences and truncates 16S and ITS amplicon forward and reverse 180 

sequences to an equal length. Naive Bayes classifiers were constructed using the Greengenes 181 

database v13.8 (99%) and the UNITE database v7.2 (99%) for archaeal/bacterial and fungal 182 

amplicons, respectively, and then amplicon sequence variants (ASVs) were classified using the 183 

sklearn algorithm (Pedregosa et al., 2011). Multiple sequence alignments were performed using 184 
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mafft v7 (Katoh & Standley, 2013), an unrooted tree was created using FastTree2 (Price et al., 185 

2009), and then the midpoint root method was used to create a rooted tree for phylogeny-based 186 

analyses (e.g., weighted UniFrac). ASVs that were not present in at least two samples were filtered 187 

out, and diversity metrics and dissimilarity matrices were calculated using the QIIME2 commands 188 

diversity core-metrics-phylogenetic (sampling depth = 6,500) and diversity core-metrics (sampling 189 

depth = 9,000) for archaea/bacteria and fungi, respectively. All microbiome data from QIIME2 190 

was read into R v4.1 (R Core Team, 2020) using the qiime2R package v0.99.6 191 

(https://github.com/jbisanz/qiime2R). 192 

  193 

Allelochemical-selected microbiome-plant performance experiment 194 

To determine the magnitude of microbial effects on plant performance in the rosemary scrub and 195 

how these effects depend on the microbiome’s exposure to the dominant allelochemical (HCA) 196 

found in rosemary scrub soils (Fischer et al., 1994), we conducted a 2 * 2 factorial growth room 197 

experiment manipulating microbiome presence (presence vs. absence) and allelochemical 198 

selection on the microbiome (control vs. HCA+) replicated using soil microbiomes collected from 199 

10 rosemary scrub patches (see Supplemental Methods for more detail). We first sterilized half of 200 

the soil from each allelochemical treatment by autoclaving three times (121°C, 2 hr). The 13 201 

rosemary scrub plant species (Table S1) were each grown in sterilized pots (66 mL) inoculated 202 

with soil microbiomes from all 40 factorial combinations of soil source, allelochemical treatment, 203 

and microbiome presence. Each pot was filled with 50 mL of sterilized background rosemary scrub 204 

soil and topped with 10 mL of inoculum from one of the 40 treatment combinations. To ensure 205 

that the majority of soil in each pot had similar abiotic properties, and thus the only manipulation 206 

was the different soil microbiomes present in the inocula, background soil in this experiment was 207 
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collected from a single large open sand gap at Archbold >5 m from Florida rosemary and 208 

autoclaved 4x at 121°C. After seeding directly into inoculum soil, a 2 mL ‘cap’ of sterile, 209 

background soil was added to prevent seed desiccation. The number of seeds sown per pot (Table 210 

S1) reflected previously determined differences in germination rates among these plant species 211 

(David et al., 2020; Revillini et al., 2021), and all pots were thinned to one plant shortly after 212 

germination. Overall, our experiment included 10 microbiome sources in each of the four 213 

allelochemical × microbial treatment combinations, each with three replicates for each of the 13 214 

plant species (except for Liatris ohlingerae, which had 5 microbiome sources due to lack of seed), 215 

totaling 1500 pots. All pots were watered with ~2 mL sterile water daily for one month and 216 

subsequently every other day. Plants were grown under full spectrum lights (~162 µmol/m2/s 217 

PAR), with a 14:10 hr (light:dark) schedule until harvest ~5 months after the start of the experiment 218 

(Table S1). Germination percentages were determined based on species-specific seeding rates per 219 

pot (Table S1). Shoot and root biomass were determined after oven drying at 50℃ until reaching 220 

constant mass. Root-to-shoot biomass ratios were calculated to determine plant allocation 221 

responses. 222 

  223 

Data analysis 224 

To identify a baseline for soil microbiome organization after allelochemical addition, we 225 

calculated the core microbiome for both bacteria and fungi using the core function from the 226 

‘microbiome’ package in R (http://microbiome.github.com/microbiome). The core microbiome 227 

here represents taxa with a >0.1% relative abundance detection threshold that also occur in >60% 228 

of all samples that experienced allelochemical addition (Busby et al., 2017). The allelochemical 229 

effects on bacterial and fungal alpha diversity metrics (ASV richness, Shannon’s H, Pielou’s 230 
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evenness, and Faith’s phylogenetic diversity) were assessed using paired t-tests, with 231 

allelochemical addition as the factor of interest and microbiomes paired by soil source. To 232 

determine allelochemical effects on bacterial (weighted uniFrac) and fungal (Bray-Curtis 233 

dissimilarity) community composition, a PERMANOVA stratified by soil source was performed 234 

using the adonis2 function in R package vegan v2.5-7 (Oksanen et al., 2020). To identify which 235 

microbial taxa responded strongly to allelochemical addition, analysis of differential microbial 236 

relative abundances from allelochemical control (‘reference’ factor level) to samples that 237 

underwent allelochemical addition was performed using the DESeq function in R package DESeq2 238 

v1.32 (Love et al., 2014).  239 

We used the PICRUSt2 algorithm (Douglas et al., 2020) to calculate the predicted 240 

bacterial metagenome based on our 16S reads in order to assess the effect of allelochemical 241 

addition on important functional genes in nutrient release or transfer. We targeted analyses on 242 

genes associated with important carbon (C), nitrogen (N), and phosphorus (P)-cycling functions. 243 

Paired t-tests were performed on individual genes (e.g., nifQ or amoA) or sums of gene sets that 244 

comprise functional pathways for nitrite reduction (nirBDK), phosphonate (organic P) cleavage 245 

and transport (phnCDEJ), as well as phosphate transport (ugpACQ), to identify increases or 246 

decreases in predicted bacterial function after allelochemical addition.  247 

To understand how allelochemical effects on the soil microbiome contributed to plant 248 

performance responses, we constructed linear mixed models. Our models considered how plant 249 

performance responded to the presence or absence of soil microbiomes and whether or not soils 250 

experienced allelochemical addition. All 13 plant species were included in analyses of germination 251 

rates, but two species with the lowest germination rates, Hypericum cumulicola and Paronychia 252 

chartaceae, were excluded from analyses of productivity or biomass allocation due to insufficient 253 
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degrees of freedom. To meet the assumption of homogeneity of variances across species, z-scores 254 

were calculated for all plant response metrics within each plant species prior to analysis. 255 

Germination percentages were arcsine-square root transformed prior to z-score calculations to 256 

improve normality. Using these data, we first ran global models for all plant species combined. 257 

Terms in these models included microbiome presence (presence vs. absence), allelochemical 258 

selection on the microbiome (control vs. HCA+), and their interaction as well as plant species 259 

identity and interactions between plant species and all of the other terms. We also included a 260 

random effect of soil collection site. After finding significant interactions with plant species 261 

identity in the global models, we constructed follow-up general linear models for each of 11 plant 262 

species individually. These models included the same microbiome and allelochemical main effects 263 

and their two-way interaction term. We conducted linear mixed models using the lmer function in 264 

R and model output was determined using Type III sums of squares, which are independent of the 265 

input order of predictor variables.  266 

To identify the relationships between plant performance responses and the microbiome 267 

responses to allelochemical addition each of the five measured plant performance metrics were 268 

regressed on the 23 bacterial and fungal ASVs (aggregated at the lowest taxonomic level and with 269 

‘unidentified’ ASVs removed), and also on five predicted bacterial functional genes that were 270 

observed to change after allelochemical addition (nifQ, amoA, nir, ugp, and phn). Collection site 271 

(patch) and plant species identity were set as random effects. The Benjamini-Hochberg procedure 272 

was used to account for multiple comparisons. 273 

  274 

Results 275 

  276 
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Allelochemical-selected microbiome 277 

We identified 44 core bacterial ASVs and 42 core fungal ASVs in the allelochemical-selected 278 

microbiome. For bacteria, the allelopathic core microbiome was dominated by two taxa in the 279 

Burkholderiaceae -- Burkholderia tuberum (34% of identified ASVs) and Burkholderia byrophila 280 

(29%) -- with the remainder of core microbiome taxa coming from the Solibacteraceae, 281 

Mycobacteriaceae, and Nitrosphaeraceae (Table S3). Notably, four bacterial families in the control 282 

bacterial core microbiome fell below the core thresholds for soils experiencing allelochemical 283 

addition, and taxa in the Burkholderiaceae emerged only with allelochemical addition, becoming 284 

the second most prevalent allelopathic core member (Figure 1). Of the 42 ASVs in the fungal core 285 

microbiome, 19% were from the genus Talaromyces, and the remaining ASVs were fairly equally 286 

distributed across 11 identified genera (Table S3). We observed the appearance of two new genera 287 

in the core fungal microbiome with allelochemical addition, Gelasinospora and Chaetomium, as 288 

well as increases in the prevalence of taxa in the Gibberella and Veronaeopsis (Figure 1).  289 

Allelochemical addition also significantly shifted overall bacterial community 290 

composition (pseudo-F = 2.35, P = 0.002; Figure 2a), but did not significantly affect overall fungal 291 

community composition (pseudo-F = 1.31, P = 0.08). However, differential abundance analysis of 292 

both bacteria and fungi revealed highly-responsive taxa that significantly increased or decreased 293 

in relative abundance after allelochemical addition. Bacterial ASVs in the families 294 

Solibactereaceae (Acidobacteria) and Acetobacteraceae (Alphaproteobacteria) increased with 295 

allelochemical addition, with a 22 log2-fold change (LFC) for both, while abundance of three 296 

ASVs in the Thermogemmatisporaceae decreased by ~20 LFC (Figure 2b). Of the 65 total bacterial 297 

ASVs that shifted after allelochemical addition, the majority (24 and 15 ASVs) were identified as 298 

two species: Burkholderia tuberum and Burkholderia bryophila, respectively.  299 
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Differential abundance analysis showed that 19 fungal ASVs also significantly 300 

responded to allelochemical addition (18 fungal taxa across eight genera plus one ‘unidentified’; 301 

Figure 2c). Changes in abundance of fungal taxa after allelochemical addition were comparable in 302 

strength to LFCs observed in the more allelochemical-responsive bacterial community (-23 to +21 303 

LFC). Two taxa in the genera Gibberella and Paraphaeosphaeria and an unidentified taxon in the 304 

order Eurotiales all increased in abundance by approximately +20 LFC, and the putative plant 305 

pathogen, Pseudopithomyces, had the largest decrease after allelochemical addition (Figure 2c).  306 

Of the 11 bacterial functional genes/gene sets associated with C, N, and P cycling we 307 

examined, five were significantly affected by allelochemical addition; nifQ, amoA, nir, phn, and 308 

ugp (Figure 3). Allelochemical addition increased predicted gene abundances for nitrogen fixation 309 

(nifQ; P = 0.003) and decreased predicted gene abundances for ammonia oxidation (amoA; P = 310 

0.039), nitrite reduction (nirB, nirD, and nirK; P = 0.004), phosphate transport (ugpA, upgC, and 311 

upgQ; P = 0.004), and phosphonate uptake and breakdown (phnC, phnD, phnE, and phnJ; P = 312 

0.022). 313 

  314 

Plant performance responses 315 

Across all plant species, effects of allelochemical addition on productivity were microbially-316 

mediated, where allelochemical-selected microbiomes mitigated negative impacts to total plant 317 

biomass (Table 1). Both shoot and total biomass were significantly reduced by allelochemical 318 

addition (P = 0.019 and P = 0.026, respectively), but in the case of total biomass this was 319 

significantly mitigated by the soil microbiome (P = 0.034; Figure 4a) whereas microbial mitigation 320 

was marginal for shoot mass (P = 0.073; Figure 4a). Plant species varied significantly in their 321 

response to the microbiome treatment across all plant performance metrics that we examined (P ≤ 322 
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0.009), but only for root:shoot ratio was there significant interspecific variation in the degree to 323 

which allelochemical treatment modulated this response (P = 0.016), ranging from a 106% 324 

decrease (for Balduina angustifolia) to a 137% increase (for Liatris tenuifolia) in root biomass 325 

investment when the microbiome was present to mediate allelopathic effects. Surprisingly, 326 

individual plant species models revealed only one species with a significant 327 

allelochemical*microbiome treatment interaction (Figure 4b). In Balduina angustifolia, the 328 

allelochemical*microbiome interaction was significant for three plant performance responses: 329 

both aboveground shoot biomass and total plant biomass were significantly higher when a 330 

microbiome was present to alleviate the effects of allelochemical addition (P < 0.0001; P = 0.027, 331 

respectively), while investment in roots was significantly lower when the microbiome was present 332 

to mediate allelopathic effects (P < 0.0001).  333 

  334 

Relationships between microbiomes and plant performance responses 335 

Of the 23 microbial taxa and four bacterial functions significantly affected by allelochemical 336 

addition, we identified 6 microbial taxa (three bacterial and three fungal) and two bacterial 337 

functions that had significant relationships with at least one of the five measured plant responses: 338 

germination, root biomass, shoot biomass, total biomass, or root:shoot biomass ratio (Figure 5). 339 

The fungal species Exserohilum rostratum, which increased after allelochemical addition, had the 340 

strongest positive relationship with both shoot biomass and total biomass (t = 2.27, P = 0.03; t = 341 

2.12, P = 0.034, respectively), while the bacterial genera Rhodoplanes and Bacillus, which 342 

decreased and increased after allelochemical addition, respectively, had the strongest negative 343 

effects on shoot biomass and root biomass (t = -3.15, P = 0.009; t = -2.14, P = 0.032, respectively). 344 

The two predicted bacterial functions nir and ugp, both of which decreased after allelochemical 345 
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addition, also explained variation in plant performance that was significant, but moderate (Figure 346 

5). Nir genes, which code for nitrite reduction, had slight negative effects on germination (P = 347 

0.012), while ugp genes, which code for organic P solubilization, had slight positive effects on 348 

germination and negative effects on root:shoot biomass ratio (P = 0.024, P = 0.025, respectively).  349 

  350 

Discussion 351 

  352 

Allelopathy strongly affected soil microbiome structure and predicted functions in this study. The 353 

allelopathic chemical derived from the dominant native shrub (C. ericoides) in this system altered 354 

the core microbiome, bacterial composition, and relative abundances of bacterial and fungal taxa. 355 

Allelochemical-treated microbiomes also showed evidence of functionally important changes, 356 

such as notable increases in abundance of putative beneficial bacteria (i.e., Burkholderiales) and 357 

putative fungal pathogens (Figure 2) as well as shifts in predicted bacterial functional genes 358 

including an almost seven-fold increase in the abundance of the nifQ gene, coding for N2-fixation. 359 

We found significant, but weaker effects of allelochemical-altered microbiomes on plant 360 

performance responses (productivity) in the manipulative growth experiment. Similar to previous 361 

studies, the microbiome exhibited a net positive effect on plant productivity, one of the most 362 

important performance metrics for perennial germinants in this habitat (Menges & Kohfeldt, 363 

1995), in the presence of allelopathy (Cipollini et al., 2012; Mishra et al., 2013). Our study 364 

explicitly reveals the link between allelochemical-altered soil microbes and plant performance. 365 

While previous studies have identified allelopathy-induced shifts in microbiomes and/or plant 366 

performance, the vast majority could only infer microbiome-mediation (but also see Hu et al. 367 

2018).  However, the effect sizes we observed tended to be fairly modest, such that when combined 368 
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with the smaller sample sizes within individual species, only one of the 11 species (Balduina 369 

angustifolia) registered a significant effect. Our study predominately investigated the effect of 370 

allelochemical-induced compositional shifts in the microbiome on plant performance (as the 371 

allelochemical was not added to the plants themselves, but was incorporated as a prior treatment 372 

to the inoculum). Microbial mitigation of allelopathic effects may be stronger if microbial 373 

degradation of allelochemicals reduces the direct effect of allelopathy in addition to this indirect 374 

compositional change. We also suspect the lack of novelty of the allelochemical weapon in this 375 

ecosystem has led to previous adaptive responses of these plants that allow them to tolerate 376 

allelochemical-induced shifts in the microbiome (i.e., representing a stable community exhibiting 377 

weak-neutral responses; (Shade et al., 2012)). The novelty of an ecological weapon has a direct 378 

relationship with the frequency of a stressor, where high frequency would present a more common 379 

weapon and low frequency would represent a more novel weapon. We propose that the strength of 380 

microbial mitigation or exacerbation of plant responses to disturbance is negatively related to the 381 

frequency of the ecological stressor in question (Figure 6).  382 

Microbial composition shifted distinctly with allelochemical addition, indicating strong 383 

direct effects of allelochemical addition on soil microbiomes. Soil bacteria were notably more 384 

responsive to allelochemical addition than fungi, as has been found in previous studies (Kong et 385 

al., 2008), and also appear to have shifted towards a structure and functions that would promote 386 

greater plant growth. In particular, we found significant increases in Burkholderia (many putative 387 

N-fixers), as well as Rhidopila globiformis (Acetobactereaceae), a nitrogen-fixer that may 388 

contribute to alternative N2-fixation via the vanadium-dependent nitrogenase pathway (Imhoff et 389 

al., 2018). In contrast, fungi exhibited increases in multiple putative pathogens after allelochemical 390 

addition. These included an increase in prevalence of Gibberella, a known fungal pathogen (Bai 391 
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et al., 2021). Interestingly, there was also an increase in the dark septate endophytic genus 392 

Veronaeopsis, which has been shown to mitigate infectivity of other fungal pathogens (Khastini et 393 

al., 2012). Thus, the increased relative abundance of this taxon may indicate a fungal mechanism 394 

for reducing allelochemical-induced stress to plant roots. These shifts reveal increased dominance 395 

for putative beneficial bacteria and putative pathogenic fungi among their respective soil consortia, 396 

and this apparent positive-negative balance of representative microbial taxa might contribute to 397 

the weakly positive microbial mediation effect of the soil microbiome on plant performance 398 

responses in our manipulative growth experiment (Vandenkoornhuyse et al., 2015). 399 

Functional changes to soil microbiomes after allelochemical addition indicate a range of 400 

responses to allelopathy that also likely contributed to the neutral-to-positive microbial mediation 401 

of plant performance observed here. Multiple bacterial functional genes shifted after 402 

allelochemical addition, with increases in potential N-fixation via the nifQ gene, which donates 403 

molybdenum to nifH for biosynthesis of the FeMo nitrogenase enzyme (Hernandez et al., 2008). 404 

On the other hand, we observed decreases in ammonia oxidation, nitrite reduction, phosphonate 405 

reduction, and phosphate transport that suggest a suppressive effect of allelopathy on bacterial N 406 

and P cycling belowground (Figure 3). While these results are predicted using the PICRUSt2 407 

algorithm, which can underestimate certain gene frequencies (Toole et al., 2021), they still indicate 408 

a functional mechanism – via increased N2-fixation – that may have contributed to the mitigation 409 

of allelopathic stress on plant productivity found in our across plant species analysis (Figure 4). 410 

To build on these findings, we advocate for future research exploring differential responses of 411 

bacterial and fungal functions to allelopathy using targeted methods such as metagenomics or 412 

quantitative stable isotope probing to assess impacts on microbiome functional responses and 413 

subsequent plant-microbial interactions (Hungate et al., 2015). 414 
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Significant relationships between allelochemical-responsive microbial taxa (6 out of 23) 415 

and bacterial functions (2 out of 5) and plant performance may help identify individual microbial 416 

taxa that could be important for the resilience and persistence of the rare, endemic plants in this 417 

system (Figure 5). Interestingly, our results relating plant performance with specific members and 418 

functions of the microbiome revealed that not all taxa or functions considered putatively beneficial 419 

or inhibitory influence host performance as expected.  For instance, the fungal taxon with the 420 

strongest positive effects on shoot and total biomass, Exserohilum rostratum, is a putative plant 421 

pathogen that causes root rot across many plant families (Sharma et al., 2014). Though the majority 422 

of research indicates that this species negatively impacts plant productivity, a recent study found 423 

an E. rostratum variant that was beneficial for plant growth in sunchokes (Khaekhum et al., 2021) 424 

suggesting that this taxon can act as a mutualist under certain conditions.  Negative microbial 425 

relationships with plant performance were also surprising, because many were found for taxa 426 

known to contribute to plant-growth promotion including those in the Burkoholderiaceae and 427 

Rhodoplanes (Adesemoye et al., 2009; Anzuay et al., 2021; Carrión et al., 2018). These 428 

relationships between members of the microbiome and plant performance metrics suggest that: 1) 429 

many allelochemical-responsive microbial taxa and functions may play outsized roles impacting 430 

plant performance, 2) putative functional categorizations of members of the soil microbiome are 431 

likely oversimplified, and 3) functional relationships between individual plants and members of 432 

the soil microbiome should be studied further to identify patterns of context-dependency across 433 

systems experiencing disturbance. 434 

We predicted that the nature of the allelopathy stress in this study system – functioning 435 

as a persistent stressor – would lead to beneficial plant-microbial interaction responses, and our 436 

results supported this prediction. Allelopathy is persistent in the rosemary scrub, leading to 437 
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increased opportunities for plant and microbial adaptation via increased interaction frequency (i.e., 438 

familiarity) compared to infrequent disturbances. We propose that stress frequency is critical in 439 

determining the strength of the plant-microbial interaction response (Figure 6). More specifically, 440 

we expect that microbial mediation of plant response to stress becomes more muted with increased 441 

stress frequency, as the community experiences persistent selection for greater stability (weaker 442 

interactions) in the face of such a common stressor. This is in contrast to effects observed from 443 

novel or infrequent disturbances (e.g., species introductions, fire, drought) on plant-microbial 444 

interactions. For instance, our research was conducted in a fire-dependent system (Menges & 445 

Kohfeldt, 1995), where fire is a naturally occurring disturbance with a return interval of ~16 years 446 

(Menges, 2007). In a previous study testing the ability of soil microbiomes to mediate plant 447 

performance responses to prescribed fire with many of the same plant species used here, we 448 

showed much stronger mediation effects of the post-fire soil microbiome on plant performance 449 

(Revillini et al., 2021). This difference in the strength of microbial-mediation of allelopathic vs. 450 

fire stress within the same ecosystem could be a feature of their local adaptation to the dominant 451 

and persistent allelochemical stress as opposed to relatively infrequent fire disturbance (Figure 6). 452 

To test this prediction, future research should strive to identify the continuum under which plant-453 

microbial interactions respond to stressors along a frequency gradient. Finally, to more broadly 454 

confirm our results regarding plant-microbial interaction responses to allelochemical addition, we 455 

feel it would be valuable to investigate the total effects of the source allelopathic plants 456 

(incorporating roots and the full suite of phytochemicals) on microbial mediation of plant 457 

responses in future experimental manipulations.   458 

Microbial resistance and resilience to stress, resulting legacies in soil, and microbiome-459 

mediation of plant responses to stress are still emerging lines of research in soil ecology (Bakker 460 
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et al., 2018; Kiesewetter & Afkhami, 2021; Philippot et al., 2021), but it is becoming apparent that 461 

the strength and frequency of ecological stressors should be considered a major contributing factor 462 

to the functional relationships between the soil microbiome and aboveground communities. We 463 

have shown that plant-microbial interaction responses to persistent allelopathy stress are subtle 464 

and neutral-to-positive for plant performance. In a system natively structured by allelopathy of a 465 

dominant plant, the effects of allelochemicals in soil can function as a method of chemical warfare 466 

that directly alters the soil microbiome and plant performance, and also have their effects mediated 467 

by the soil microbiome. While previous studies have begun to identify patterns of microbial 468 

resistance and resilience to disturbance in a broad global sense (Rocca et al., 2018; Shade et al., 469 

2012), our research focuses this field by directly testing the link between the stress-selected 470 

microbiome and plant performance responses. This work suggests that the soil microbiome has 471 

great potential to mitigate plant responses to abiotic stress, and emphasizes the importance of 472 

future work identifying functional roles of the soil microbiome that mediate environmental stress. 473 
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 658 

 659 

 660 

Table 1. Significant results from linear mixed models of z-score standardized plant performance 661 

responses. Model predictor terms are column headers, P-values are presented when P ≤ 0.05. ↟ = 662 

P-values presented are from performance responses prior to within plant species standardization. 663 

Response 
Plant 

species↟ Microbiome 
Allelochemical 

(Allelo) 
Microbiome x 

Allelo 
Plant x 

Microbiome 
Plant x 
Allelo 

Plant x 
Microbiome x 

Allelo 

Germination <0.0001 - - - 0.008 - - 
Root 
Biomass <0.0001 - - - 0.0004 - - 
Shoot 
Biomass <0.0001 - 0.02 - < 0.0001 - - 
Total 
Biomass <0.0001 - 0.029 0.034 0.0001 - - 

Root:Shoot <0.0001 - - - 0.005 0.002 0.016 
 664 

Table 2. Individual plant species general linear model results. For each performance response, 665 

only plant species with a significant effect are presented (P ≤ 0.05). Shading in gray indicates a 666 

negative main effect on plant performance, while main effects without shading indicate a positive 667 

main effect. 668 

Response Plant species Microbiome Allelochemical Microbiome x Allelo 

Germination Chapmannia floridana F = 8.32, P = 0.003 F = 3.95, P = 0.046  

 Eryngium cuneifolium F = 5.41, P = 0.019 F = 8.33, P = 0.003  

 Polygonella robusta F = 4.61, P = 0.031   
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Root Biomass Chamaecrista fasciculata F = 27.27, P < 0.0001   

 Eryngium cuneifolium F = 3.84, P = 0.049   

 Lechea cernua  F = 3.85, P = 0.049  

 Pityopsis graminifolia  F = 4.8, P = 0.028  

 Polygonella robusta F = 3.8, P = 0.05   

Shoot Biomass Balduina angustifolia F = 5.42, P = 0.019 F = 13.09, P = 0.0002 F = 19.14, P < 0.0001 

 Chapmannia floridana F = 23.69, P < 0.0001   

 Lechea cernua F = 4.85, P = 0.027   

 Pityopsis graminifolia F = 4.98, P = 0.025   

 Polygonella robusta F = 22.87, P < 0.0001 F = 4.75, P = 0.029  

Total Biomass Balduina angustifolia   F = 4.85, P = 0.027 

 Chamaecrista fasciculata F = 14.68, P = 0.0001   

 Eryngium cuneifolium F = 4.5 P = 0.033   

 Polygonella robusta F = 10.89, P = 0.0009   

Root:Shoot Balduina angustifolia  F = 13.216, P = 0.0002 F = 18.75, P < 0.0001 

 Chamaecrista fasciculata F = 27.9, P < 0.0001   

 Chapmannia floridana F = 12.09, P = 0.0005   

 Eryngium cuneifolium   F = 3.82, P = 0.05 

 Lechea cernua  F = 5.17, P = 0.022  

 Polygonella robusta F = 5.1, P = 0.023   

 669 

 670 
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 671 

Figure 1. Core microbial taxa without allelochemical addition (left) and with the addition of 672 

hydrocinnamic acid (right). Colored by prevalence and organized by relative abundance detection 673 

thresholds for core bacterial families (top) and core fungal genera (bottom). ★ = addition to core 674 

microbiome after allelochemical treatment; ⬤ = removal from control core microbiome after 675 

allelochemical treatment; ↑ = increase in prevalence after allelochemical treatment. 676 

  677 
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 678 

Figure 2. Microbial responses to allelochemical addition in this experiment. (a) Principal 679 

coordinate analysis of bacterial community composition (weighted UniFrac) colored by 680 

allelochemical treatment. Bacterial composition is significantly different after allelochemical 681 

addition (‘Allelo’). Significant log2 fold change (LFC) of bacterial abundance at the family level, 682 

colored by bacterial phylum (b), and of fungal abundance at the genus level, colored by fungal 683 

order (c). Points represent mean LFC and lines represent standard error from DESeq2. 684 

  685 
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 686 

Figure 3. Predicted bacterial functional genes that responded significantly to allelochemical 687 

addition (Allelo). Bars are mean predicted gene abundance with standard error. A nitrogen fixation 688 

gene, nifQ, increased with allelochemical addition (a), and amoA, responsible for ammonia 689 

oxidation, decreased after allelochemical addition (b). Sums of genes responsible for nitrite 690 

reduction (nirB, nirD, nirK) are presented for ‘nir’ (c), sums of genes responsible for the uptake 691 

and breakdown of phosphonates (phnC, phnD, phnE, phnJ) are presented for ‘phn’ (d), and sums 692 

of genes responsible for phosphate transport (ugpA, ugpC, ugpQ) are presented for ‘ugp’ (e). 693 

  694 

 695 
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 696 

 697 

Figure 4. Plant performance responses to allelochemical addition (Allelo) treatments, colored by 698 

microbiome treatment. (a) Plant shoot biomass and total biomass responses for all plant species 699 

combined (n = 11). Overall, total biomass exhibited microbiome-mediated effects of 700 

allelochemical addition. (b) Examples of microbial-mediation of allelochemical effects in 701 

Balduina angustifolia. Shoot and total biomass of B. angustifolia were less inhibited by 702 

allelochemical addition in the presence of a microbiome. The allocation of biomass to roots was 703 

significantly lower when the microbiome was present to mediate allelochemical effects. All data 704 
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were converted to z-scores prior to analysis to standardize results within each plant species and are 705 

presented as standard normal deviates from the mean.  706 

  707 

 708 

 709 

Figure 5. Significant (P < 0.05) linear mixed-effects model (LMM) estimates between three plant 710 

performance responses and relative abundance of microbial taxa and predicted bacterial functions 711 

that responded significantly to allelochemical addition. 712 

 713 
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 714 

Figure 6. Potential framework explaining the relationship between stress frequency and post-715 

disturbance plant-microbial interaction (PMI) responses. We propose that infrequent stressors can 716 

strongly affect belowground communities (as in Revillini et al. 2021), which leads to equally 717 

strong effects on microbial mediation of plant performance (size of PMI), while a frequent stressor 718 

ultimately results in moderate-to-weak microbial mediation of plant performance (this study). Size 719 

of PMI interaction (+/-) is relative to microbial mediation effect under different stress conditions.  720 

 721 

 722 

 723 

 724 

 725 

 726 

 727 

 728 

 729 

 730 
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Supplemental Tables and Figures 731 

 732 

Supplemental Table 1. Significant results from linear mixed models of z-score standardized plant 733 

performance responses. Model predictor terms are column headers, P-values are presented when 734 

P ≤ 0.05. ↟ = P-values presented are from performance responses prior to within plant species 735 

standardization. 736 

Response 

Plant 
species
↟ 

Microbiom
e 

Allelochemical 
(Allelo) 

Microbiom
e 

x Allelo 

Plant x 
Microbiom

e 

Plant 
x 

Allelo 

Plant x 
Microbiom
e x Allelo 

Germination <0.0001 0.149 0.989 0.177 0.008 0.05 0.817 
Root 
Biomass <0.0001 0.205 0.204 0.235 0.0004 0.125 0.311 
Shoot 
Biomass <0.0001 0.876 0.021 0.074 < 0.0001 0.12 0.137 
Total 
Biomass <0.0001 0.2273 0.029 0.034 0.0001 0.55 0.353 
Root:Shoot <0.0001 0.478 0.832 0.608 0.005 0.002 0.016 

 737 

 738 

  739 
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Supplemental Table 2. Individual plant species general linear model results. For each 740 

performance response, only plant species with a significant effect are presented in bold (P ≤ 0.05). 741 

Shading in gray indicates a negative main effect on plant performance, while main effects without 742 

shading indicate a positive main effect. 743 

Response Plant species Microbiome Allelochemical Microbiome x Allelo 
 Germination Chapmannia floridana F = 8.32, P = 0.003 F = 3.95, P = 0.046 F = 0.804, P = 0.369 
  Eryngium cuneifolium F = 5.41, P = 0.019 F = 8.33, P = 0.003 F = 0.107, P = 0.743 
  Polygonella robusta F = 4.61, P = 0.031 F = 0.127, P = 0.721 F = 1.314, P = 0.251 
Root 
Biomass Chamaecrista fasciculata 

F = 27.27, P < 
0.0001 F = 0.026, P = 0.870 F = 0.370, P = 0.542 

  Eryngium cuneifolium F = 3.84, P = 0.049 F = 0.305, P = 0.580 F = 0.642, P = 0.422 
  Lechea cernua F = 1.624, P = 0.202 F = 3.85, P = 0.049 F = 2.873, P = 0.09 
  Pityopsis graminifolia F = 0.292, P = 0.588 F = 4.8, P = 0.028 F = 0.337, P = 0.561 
  Polygonella robusta F = 3.8, P = 0.05 F = 0.152, P = 0.696 F = 0.189, P = 0.663 
Shoot 
Biomass Balduina angustifolia F = 5.42, P = 0.019 F = 13.09, P = 

0.0002 F = 19.14, P < 0.0001 

  Chapmannia floridana 
F = 23.69, P < 

0.0001 F = 0.017, P = 0.895 F = 0.467, P = 0.494 

  Lechea cernua F = 4.85, P = 0.027 F = 0.20, P = 0.885 F = 0.209, P = 0.646 
  Pityopsis graminifolia F = 4.98, P = 0.025 F = 0.732, P = 0.392 F = 0.090, P = 0.764 

  Polygonella robusta 
F = 22.87, P < 

0.0001 F = 4.75, P = 0.029 F = 0.093, P = 0.759 

Total 
Biomass Balduina angustifolia F = 3.06, P = 0.08 F = 1.37, P = 0.24 F = 4.85, P = 0.027 

  Chamaecrista fasciculata 
F = 14.68, P = 

0.0001 F = 0.294, P = 0.587 F = 0.057, P = 0.81 

  Eryngium cuneifolium F = 4.5 P = 0.033 F = 0.015, P = 0.901 F = 0.054, P = 0.815 

  Polygonella robusta 
F = 10.89, P = 

0.0009 F = 1.95, P = 0.161 F = 0.147, P = 0.700 

Root:Shoot Balduina angustifolia F = 0.124, P = 0.724 F = 13.216, P = 
0.0002 F = 18.75, P < 0.0001 

  Chamaecrista fasciculata F = 27.9, P < 0.0001 F = 1.69, P = 0.193 F = 0.488, P = 0.484 

  Chapmannia floridana 
F = 12.09, P = 

0.0005 F = 0.126, P = 0.722 F = 0.243, P = 0.626 

  Eryngium cuneifolium F = 0.348, P = 0.555 F = 0.441, P = 0.506 F = 3.82, P = 0.05 
  Lechea cernua F = 0.584, P = 0.444 F = 5.17, P = 0.022 F = 0.216, P = 0.641 
  Polygonella robusta F = 5.1, P = 0.023 F = 3.30, P = 0.069 F = 0.027, P = 0.866 

 744 
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 745 

Supplemental Figure 1. Principal coordinate analysis of Bray-Curtis dissimilarity for fungal 746 

communities that experienced allelopathy (‘Allelo’) or control treatments. 747 

 748 
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 749 

Supplemental Figure 2. Total biomass (z-score) response of all plant species in the study under 750 

sterile and live soil conditions that experienced allelochemical or control treatments.  751 

 752 
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 753 

Supplemental Figure 3. Root-to-shoot ratio (z-score) response of all plant species in the study 754 

under sterile and live soil conditions that experienced allelochemical or control treatments. 755 


