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ABSTRACT 34 

Forecasting the responses of natural populations to environmental change is a key priority in the 35 

management of ecological systems. This is challenging because the dynamics of multispecies 36 

ecological communities are influenced by many factors. Populations can exhibit complex, nonlinear 37 

responses to environmental change, often over multiple temporal lags. In addition, biotic 38 

interactions, and other sources of multi-species dependence, are major contributors to patterns of 39 

population variation. Theory suggests that near-term ecological forecasts of population abundances 40 

can be improved by modelling these dependencies, but empirical support for this idea is lacking. We 41 

test whether models that learn from multiple species, both to estimate nonlinear environmental 42 

effects and temporal interactions, improve ecological forecasts for a semi-arid rodent community. 43 

Using Dynamic Generalized Additive Models, we analyze monthly captures for nine rodents over 25 44 

years. Model comparisons provide strong evidence that multi-species dependencies improve both 45 

hindcast and forecast performance, as models that captured these effects gave superior predictions 46 

than models that ignored them. We show changes in abundance for some species can have delayed, 47 

nonlinear effects on others, and that lagged effects of temperature and vegetation greenness are 48 

key drivers of change. Our findings highlight that multivariate models are useful not only to improve 49 

near-term ecological forecasts but also to ask targeted questions about community dynamics. 50 
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INTRODUCTION 55 

Predicting the impacts of environmental change on ecosystem function and biodiversity is a global 56 

challenge (Clark et al. 2001, Intergovernmental Science - Policy Platform on Biodiversity and 57 

Ecosystem Services 2019, Fredston et al. 2023). Explicit predictions are needed to guide ecological 58 

management decisions, inform monitoring programs, and perform scenario planning (Lindenmayer 59 

et al. 2012, Tulloch et al. 2020). This has led to a growing emphasis on the importance of near-term 60 

ecological forecasting to encourage greater reliance on ecological time series data, and on suitable 61 

models that can handle the complexities of these data, to generate quantitative forecasts that can 62 

be harnessed to guide management decisions (Dietze et al. 2018, Lewis et al. 2023, Karunarathna et 63 

al. 2024). The applications of ecological forecasting are broad, including the prediction of soil 64 

microbiome compositions (Averill et al. 2021), carbon cycle dynamics (Dietze et al. 2014) and 65 

species’ population dynamics (Ward et al. 2014, White et al. 2019, Johnson-Bice et al. 2021). 66 

 Forecasts for species population dynamics are especially crucial for conservation planning, 67 

stock assessments and other ecological management priorities. However, these forecasts typically 68 

focus on only a single species at a time (Quinn 2003, Simonis et al. 2021, Lewis et al. 2022) or on 69 

aggregate measures such as species richness, biomass or diversity (Algar et al. 2009, Tonkin et al. 70 

2017, Clark et al. 2020). This is problematic because key applications of population dynamics 71 

forecasts, including changes in ecosystem function and biodiversity loss, are rarely single-species 72 

issues (Lindenmayer et al. 2012, Greenville et al. 2016). In addition, because species differ in their 73 

niche requirements, ecosystems containing multiple species of interest may require managers to 74 

balance competing needs not only between human and ecosystem requirements, but also among 75 

different species (e.g., Romañach et al. 2022). Finally, species population dynamics are known to be 76 

related to one another due to both direct interactions between species (e.g., competition) and 77 

because species respond to shared environmental drivers (Volterra 1931, Warton et al. 2015, 78 

Ovaskainen et al. 2017). These associations between the dynamics of different species has resulted 79 
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in extensive research into multivariate population dynamics models (Ives et al. 2003, Ward et al. 80 

2010, Bunin 2017, Ward et al. 2022, Paniw et al. 2023). Leveraging these associations could 81 

potentially result in more accurate forecasts from multispecies models and better-informed scenario 82 

planning, including approaches to predicting the impacts of species extinctions or the potential 83 

spread of invasive species (Ibáñez et al. 2009). 84 

 However, despite the potential advantages of multispecies dynamic models, their 85 

implementation is still rare in ecological applications in general and in population forecasting 86 

specifically. A recent review of 178 near-term ecological forecast applications, with targets ranging 87 

from wildlife population trajectories to fisheries stocks and algal bloom forecasting, found that only 88 

10 (5.6%) used multivariate models to generate and evaluate forecasts (Lewis et al. 2022). This 89 

finding is in line with an earlier review of population dynamics models for informing marine reserve 90 

design, which found that only 1 of 34 studies considered multi-species dynamics (Gerber et al. 2003).  91 

The rarity of multispecies population dynamic forecasting is likely due in part to the 92 

increased computational complexity and statistical knowledge needed to formulate multivariate 93 

population dynamic models that incorporate real world complexities in ecological data (Karp et al. 94 

2023). Forecasting the abundances of multiple species is particularly difficult, for several reasons. 95 

Many biological and physiological processes influence population dynamics (Quinn 2003, Hampton 96 

et al. 2013), and species often exhibit complex responses to external drivers (including non-linear 97 

responses and lags; Cárdenas et al. 2021, Karunarathna et al. 2024). Moreover, temporal 98 

autocorrelation is often prevalent in abundance time series data (due to population processes; Ives 99 

et al. 2010), which can be difficult to address in ecological models. Finally, because monitoring 100 

wildlife is challenging, data complexities (e.g., irregular sampling intervals, observation errors, 101 

missing samples, and overdispersed discrete counts with meaningful lower and/or upper bounds) 102 

bring additional challenges into an already complicated modelling environment (Clark and Wells 103 

2023). In combination, these issues often make population time-series data unsuitable for traditional 104 
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modelling approaches such as regression or simple time series models. Managers may also have 105 

differing needs for forecasts, ranging from predicting the most accurate near-term population sizes 106 

to exploring potential responses to differing management scenarios (Clark et al. 2001, Lindenmayer 107 

et al. 2012, Moustahfid et al. 2021, Lewis et al. 2023). 108 

One area of ecological modelling that has embraced multi-species approaches is Joint 109 

Species Distribution Models (JSDMs), which leverage spatial patterns to predict the distribution of 110 

species in space and time (Clark et al. 2016, Thorson et al. 2016, Norberg et al. 2019, Tobler et al. 111 

2019, Powell‐Romero et al. 2023). While many of these models only consider spatial data, recent 112 

advances have included time-series structures that can learn multispecies dependencies (Ovaskainen 113 

et al. 2017, Abrego et al. 2021, Ruiz-Moreno et al. 2024). While forecasting multispecies population 114 

dynamics remains challenging, these types of models have the potential to provide valuable insights 115 

for forecast applications. Theory and experimental evidence support the idea that learning from 116 

multiple species should improve population forecasts. For example, a recent experimental study 117 

induced changes in the abundance of competitors, resulting in altered species interactions that 118 

impacted the accuracy of single-species forecasts (Dumandan et al. 2024). Other work has shown 119 

that incorporating other species – either by including lagged observations of other species as 120 

predictors in single-species models (Abrego et al. 2021, Daugaard et al. 2022) or by building 121 

temporal JSDMs with multispecies autoregressive terms (Mutshinda et al. 2009, Hampton et al. 122 

2013, Ovaskainen et al. 2017, Ruiz-Moreno et al. 2024) – improves the accuracy of ecological 123 

predictions. But despite these findings, the broader use of multispecies forecasts as an ecological 124 

application remains unexplored. Validation of multispecies forecasts, and comparisons against 125 

forecasts from simpler single species models, have generally been limited to either in-sample 126 

predictive measures (Sandal et al. 2022, Ruiz-Moreno et al. 2024) or one-step ahead correlation 127 

measures (Ovaskainen et al. 2017, Abrego et al. 2021). We are not aware of any studies that 128 

compare single species vs multispecies forecasts beyond a single time step. This is problematic 129 

because most forecast applications typically require predicting multiple time steps into the future to 130 
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assess near-term management needs or responses to likely future scenarios (i.e. loss of important 131 

species, shifts in important drivers). Moreover, most multispecies time series models fail to 132 

incorporate one or more of the many important real-world complexities – observation errors, 133 

missing values, non-linear responses to environmental drivers, and latent temporal dynamics – that 134 

plague real-world forecasting applications (Royle and Nichols 2003, Holmes et al. 2014, Daugaard et 135 

al. 2022, Clark and Wells 2023). This combination of a limited exploration of the utility of 136 

multispecies models for ecological time series applications and the need to incorporate more 137 

complex modeling structures constitutes a major gap in our ability to tackle realistic forecasting 138 

applications. 139 

Here we evaluate whether models that incorporate multi-species relationships can improve 140 

near-term population forecasts using data from a long-term ecological monitoring study where there 141 

is evidence of both direct biotic interactions between species (Heske et al. 1994, Ernest and Brown 142 

2001, Lima et al. 2008, Bledsoe and Ernest 2019, Christensen et al. 2019a) and shared responses to 143 

environmental factors (Christensen et al. 2018). Using the framework of Dynamic Generalized 144 

Additive Models developed by Clark and Wells (2023), we build a series of models that learn species’ 145 

shared environmental responses and temporal dependencies to make inference about 146 

environmental and biotic factors that relate to community dynamics. Our models highlight how 147 

several key challenges can be tackled when modelling the dynamics of multiple species, including 148 

how to estimate environmental effects that change nonlinearly over increasing lags, how to capture 149 

unobserved temporal autocorrelation, and how to estimate lagged temporal dependencies among 150 

species. We then test whether the incorporation of these biotic dependence structures improves 151 

forecasts compared to simpler single-species models over multiple near-term timescales (up to 12 152 

months) using penalized in-sample performance criteria and out-of-sample forecast metrics. Finally, 153 

we  demonstrate how these models can be used to perform perturbation experiments for assessing 154 

community responses to shifts in key species abundances and to changes in environmental drivers 155 

with shared species responses. Because these multi-species dynamic models integrate both species 156 
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interactions and complex environmental dependencies, our study shows that they can provide a 157 

deeper understanding of ecological dynamics while generating more accurate forecasts and 158 

predictions for scenario planning. These models are broadly applicable to time-series data, providing 159 

a versatile tool for conducting time-series based forecasting to meet the wide-ranging needs of both 160 

basic and applied research.  161 

 162 

MATERIALS AND METHODS 163 

We first describe the study system to outline why it is suitable for testing whether multi-species 164 

models lead to better ecological forecasts compared to single-species models. Second, we describe 165 

our full dynamic model, from which we can make inferences about the processes that drive 166 

community dynamics. Third, we describe how we compare this model to simpler models in an 167 

iterative forecasting exercise to ask whether models that include multi-species dependencies (a) 168 

improve in-sample fits to the observed data and (b) provide better out-of-sample near-term 169 

predictions. 170 

 171 

Rodent capture data 172 

Our data come from the Portal Project, a long-term monitoring study of a desert rodent community 173 

(Brown 1998, Ernest et al. 2020) that has been undergoing active forecasting since 2016 (White et al. 174 

2019). The Portal Project is based in the Chihuahuan Desert near Portal, Arizona. The sampling 175 

design includes 24 experimental plots (50m x 50m), each containing a grid of 49 baited traps (Brown 176 

1998, Ernest et al. 2020). The design uses three experimental treatments. In control plots (N = 10), 177 

holes in the fence are large enough to allow free access for all rodents. Full rodent removal plots (N 178 

= 6) have fences with no holes. Kangaroo rat exclosures (N = 8) have fences with holes to allow 179 

passage of all rodents except kangaroo rats (Dipodomys genus). Investigators close holes during 180 
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trapping to ensure all captured rodents are residents. Trapping follows the lunar monthly cycle, but 181 

weather and other disruptions result in missing observations (~5% on average; Dumandan et al. 182 

2023). 183 

The Portal dataset exhibits many of the complexities that confront population forecasting. 184 

These include observation errors due to imperfect detection, missing samples due to weather or 185 

other issues (e.g., global pandemics), and overdispersed discrete counts for many species (20 rodent 186 

species) that include large numbers of zeros and upper bounds set by the number of traps. 187 

Environmental drivers, including temperature and measures of primary production, exhibit lagged 188 

and nonlinear impacts on rodent breeding, activity rates, and population dynamics (Brown and 189 

Ernest 2002). Moreover, the rodent species at Portal are known to compete for resources in 190 

complex ways, and these biotic interactions are postulated to have important consequences for 191 

variation in population dynamics. In other words, the Portal Project exhibits all the complexities that 192 

make the ecological forecasting of species populations particularly difficult, making it an ideal real-193 

world test case for exploring whether multi-species models can provide better near-term predictions 194 

than single species models. 195 

Open-source software exists to access the Portal Project data (Christensen et al. 2019b, 196 

Simonis et al. 2022). We used the portalr package to extract trapping records from the Portal data 197 

(version 3.134.0; downloaded October 2022; https://doi.org/10.5281/zenodo.7255488). Our study 198 

focused on rodent captures from the long-term control plots for the period December 1996 – August 199 

2022. The data has records for 20 rodent species, but some are rarely captured. We excluded 200 

species if they were observed in < 10% of trapping sessions. We did this to focus inferences on 201 

species with the most influence on community dynamics. Each observation was a vector of total 202 

captures on long-term control plots for the nine remaining species (Figure 1). 203 

 204 
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 205 

 206 

Figure 1: Rodent capture data from the Portal Project for the period December 1996 to August 2022. 207 

Counts are total captures across long-term control plots. Blanks are missing values. 208 

 209 

Covariate measurements 210 

Rodent populations at Portal, and the associated number of captures recorded during sampling, 211 

depend on environmental conditions that reflect resource availability and seasonal breeding signals. 212 

We therefore modelled species’ responses to environmental variation using minimum temperature 213 

and the Normalized Difference Vegetation Index (NDVI) as covariates. Hourly air temperature (°C) is 214 

recorded by an automated weather station, while Landsat images are used to calculate NDVI 215 

(accessed from the US Geological Service Earth Resources Observation and Science Center; 216 

https://www.usgs.gov/centers/eros). Measurements for both covariates were converted to monthly 217 

averages. We extracted covariate data from one year before the start of captures (from January 218 

1995) so we could calculate lagged and moving average versions. See Ernest et al. (2020) for details. 219 

https://www.usgs.gov/centers/eros
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 220 

Model description 221 

There were several aspects of the data we needed to consider when designing our model. Total 222 

rodent captures showed both short- and long-term fluctuations (Supplementary Figure S1). Captures 223 

for individual species also undulated over multi-annual cycles and were positively autocorrelated at 224 

lags up to 20 months (Supplementary Figures S2 and S3). To test whether multi-species information 225 

improves model performance, we needed to model these dynamics using a multivariate dependence 226 

structure. Second, we needed to leverage community information to estimate each species’ time-227 

delayed response to variation in vegetation and temperature. Because species’ responses to 228 

environmental change in this system are expected to be nonlinear (Brown and Ernest 2002), we 229 

used splines to model these responses. Rodent captures were modelled as 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 observations of 230 

a latent state model that was composed of a hierarchical GAM component (to capture shared 231 

environmental responses) and a multivariate dynamic vector autoregressive component to capture 232 

multispecies dependence. The full description for this model, which we abbreviate to GAM-VAR, is 233 

shown in Figure 2.   234 

 235 
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Figure 2: Model definition and priors for the GAM-VAR model. Coloured boxes highlight the five 236 

main components of the latent state model (X). 237 

 238 

The GAM component of the model consisted of hierarchical NDVI and minimum 239 

temperature effects. The structural forms of these functions were informed by theory and 240 

exploration of covariate time series (shown in Supplementary Figures S4-5). We used a 12-month 241 

moving average of NDVI (𝑁𝐷𝑉𝐼𝑀𝐴12) because we expected rodents to respond gradually to 242 

vegetation change. Our model assumed linear effects of 𝑁𝐷𝑉𝐼𝑀𝐴12, equivalent to a hierarchical 243 

slopes model. The partial pooling properties of this model allowed us to regularize weakly informed 244 

slopes toward a community average. Responses to temperature were estimated using a hierarchical 245 

distributed lag model in which nonlinear effects of minimum temperature varied smoothly with 246 

increasing lag. These effects were constructed as tensor products of four cubic basis functions for lag 247 

and three thin plate basis functions for minimum temperature. To allow our model to capitalize on 248 

multi-species learning, we included a shared community-level response 𝑓𝑔𝑙𝑜𝑏𝑎𝑙(𝑀𝑖𝑛𝑡𝑒𝑚𝑝, 𝑙𝑎𝑔) and 249 

species-level deviations 𝑓𝑠𝑝𝑒𝑐𝑖𝑒𝑠[𝑖](𝑀𝑖𝑛𝑡𝑒𝑚𝑝, 𝑙𝑎𝑔). The sum of these effects allowed each species to 250 

show a different temperature response from the wider community, but only if there was 251 

information in the data to support such a deviation. We used lags of up to six months in the past.  252 

A vector autoregression (VAR) of order 1 captured lagged multispecies dependence, where 253 

𝐴 was a 9 x 9 matrix of autoregressive coefficients. Diagonal entries of 𝐴 described density-254 

dependence, or the effect of a species’ dynamic process (at time 𝑡) on its own lagged values (at 𝑡 −255 

1). Off-diagonals represented cross-dependencies that could provide useful biological insights into 256 

interspecific interactions. For example, the entry in 𝐴[2,3] described the effect of species 3‘s 257 

dynamic state at time 𝑡 − 1 on the current state estimate for species 2 (at time 𝑡). To encourage 258 

stability and prevent forecast variance from increasing indefinitely, we enforced stationarity 259 

following methods described in Heaps (2023). Briefly, a multistep process was used to map the 260 
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constrained 𝐴 matrix to unconstrained partial autocorrelations 𝑃. Process errors were allowed to be 261 

contemporaneously dependent to capture any unmodelled correlations. Priors for all model 262 

components are shown in Figure 2 and described in detail in the accompanying R code. 263 

 264 

Evaluating whether multi-species dependencies improve prediction performance 265 

We formally tested whether learning from multiple species improved our model’s predictions using 266 

prediction-based model comparisons. To do so, we estimated a series of benchmark models that 267 

acted as natural simplifications of the GAM-VAR by eliminating multi-species components in a 268 

stepwise manner. The first benchmark model used the same HGAM linear predictor as the GAM-269 

VAR but replaced the multi-species VAR(1) dynamics with an AR(1) process. This model (called GAM-270 

AR in subsequent sections) eliminated the covariances and temporal cross-dependencies among 271 

species’ latent states, allowing us to ask whether the multivariate dynamic component was 272 

supported for improving model fit. Next, we further simplified the GAM-AR by removing the 273 

hierarchical environmental response functions from the linear predictor. This forced the model to 274 

learn environmental responses for each species without using information from other species in the 275 

data (GAM-AR no pooling). The final benchmark, referred to as AR, also used independent AR(1) 276 

states but removed the GAM component entirely. Because this model only learned from past 277 

observations, comparisons against it helped us understand how covariates impacted predictions and 278 

inferences. Each candidate model was trained on all observations (through August 2022, N = 319 279 

timepoints). Models were then compared using Pareto-smoothed importance sampling leave-one-280 

out cross-validation (PSIS-LOO), a method that reweights posterior draws to estimate leave-one-out 281 

pointwise prediction accuracy using Estimated Log Predictive Density (ELPD) values (Vehtari et al. 282 

2017). 283 

To adequately evaluate competing forecast models, it is also necessary to perform out-of-284 

sample validation (Harris et al. 2018, Clark et al. 2022, Lewis et al. 2022). This is particularly 285 
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important because LOO-CV is designed to ask how models would generalize to new observations 286 

within the training window. This metric does not evaluate a time series model’s ability to forecast, as 287 

information from future timepoints is used to influence predictions for previous time points. To 288 

evaluate forecasts in a way that respected the temporal nature of our forecasting exercise, we used 289 

exact leave-future-out cross-validation in an iterative expanding window framework. Models were 290 

re-trained on the first 273 time points (~22 years), with the subsequent 12 time points (through 291 

November 2019; selected to avoid a large sampling gap due to the COVID-19 pandemic) used to 292 

evaluate forecasts. This allowed us to gauge how models might perform in a forecast scenario, but it 293 

only provided a single comparison. To further scrutinize models, we retrained models on the first 75, 294 

115, 154, 194, and 233 observations, and evaluated the subsequent 12 observations in each cross-295 

validation fold. All forecast comparisons used an evenly weighted combination of two proper 296 

multivariate scoring rules. We chose the variogram score, which penalizes distributions that do not 297 

adequately capture correlations in test observations, and the energy score, which ignores 298 

correlations but penalizes forecasts if they are not well-calibrated (Scheuerer and Hamill 2015).  299 

 300 

Estimation 301 

We estimated posterior distributions with Hamiltonian Monte Carlo in Stan (Carpenter et al. 2017, 302 

Stan Development Team 2022), specifically the cmdstanr interface (Gabry and Češnovar 2021). 303 

Stan’s algorithms provide state-of-the-art diagnostics for probabilistic models (Betancourt 2017). For 304 

example, Hamiltonian Markov chains diverged when attempting to estimate minimum temperature 305 

deviations for some species in the GAM-VAR. Our data were not informative enough to learn how, 306 

or even if, these species responded to temperature change in ways that differed from the 307 

community response. Stan’s diagnostics guided us to a model that could be reliably estimated, which 308 

included deviation functions for the four most frequently captured species (D. ordii, D. merriami, 309 

Onychomys torridus and C. penicillatus). Posteriors were processed in R 4.3.1 (R Core Team 2023) 310 



14 
 

with the mvgam R package (Clark and Wells 2023). Traceplots, rank normalized split-R̂ and effective 311 

sample sizes interrogated convergence of four parallel chains. Each chain was run for 500 warmup 312 

and 1600 sampling iterations. R code to replicate all analyses and produce Figures is included in the 313 

Supplementary materials and will be permanently archived on Zenodo on acceptance. 314 

 315 

RESULTS 316 

Modeling relationships among species improves prediction performance 317 

Our data included total captures for nine rodent species over 319 time points. All models showed 318 

adequate convergence and posterior exploration, and randomized quantile residuals showed no 319 

obvious evidence of unmodelled temporal or systematic variation (Supplementary Figures S6 – S7). 320 

However, in-sample performances differed, with models that leveraged multi-species information 321 

producing higher ELPD scores compared to simpler models (Table 1). This was the case for all 322 

stepwise comparisons apart from one: although the GAM-AR, which used partial pooling to learn 323 

species’ environmental responses, was favoured over the simpler GAM-AR no pooling, overlapping 324 

ELPD standard errors suggested there was still large uncertainty about the magnitude of this 325 

difference (Table 1). 326 

 327 

Table 1: Approximate Pareto-smoothed importance sampling leave-one-out cross-validation (PSIS-328 

LOO) was used to compute the Estimated Log Predictive Density (ELPD) of competing models. A 329 

higher ELPD indicates a model is expected to generalize better to new data within the training 330 

window. 331 

Model ELPD difference SE of ELPD difference 

GAM-VAR 0.0 0.0 
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GAM-AR -15.5 8.3 

GAM-AR no pooling -22.1 7.0 

AR -74.3 12.6 

 332 

We also found that forecast performance differed among models, with more complex multi-species 333 

models again tending to score higher for forecast performance than simpler models. Forecasts from 334 

the multi-species GAM-VAR were the most accurate when considering all validation points in 335 

aggregate and for 4 / 6 cross-validation folds (Figure 3; Supplementary Figure S8). The GAM-AR and 336 

GAM-AR no pooling models gave similar predictions and effectively tied for second in forecast 337 

performance, giving the most accurate forecasts in 2 / 6 cross-validation folds (Figure 3). The 338 

simplest AR model gave the worst forecasts.  339 

The multi-species GAM-VAR model estimated large, positive autoregressive coefficients for 340 

most species (diagonal entries in Supplementary Figure S9). It also relied strongly on information 341 

from multiple species by estimating many non-zero cross-dependence effects (off-diagonal entries in 342 

Supplementary Figure S9) and process error correlations (Supplementary Figure S10), which 343 

provided structure that the model leveraged to accurately simulate historical dynamics. The model 344 

recovered multiple notable transitions observed in the time-series including a major shift in 345 

community composition around 2000 following the establishment of Bailey's pocket mouse C. 346 

baileyi, and a second restructuring that happened following a drought in 2008 – 09 (Supplementary 347 

Figure S11). It was these multispecies effects that enabled the GAM-VAR to produce more accurate 348 

forecasts compared to the benchmarks. For example, Ord’s kangaroo rat (D. ordii) and silky pocket 349 

mouse (P. flavus) had negative cross-dependencies in the GAM-VAR, providing structure that the 350 

model used to make predictions (Figure 4). The benchmarks, which ignored this structure, produced 351 

smoother, less synchronous trends and wider uncertainties (Supplementary Figure S12). In the 352 
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following sections, we use simulations to briefly interpret each of the multi-species effects that 353 

allowed the GAM-VAR to outperform simpler models. 354 

 355 

Figure 3: Cross-validation forecast performances for three of the competing models (we do not show 356 

metrics for the GAM-AR no pooling model as they were not clearly distinguishable from the GAM-357 

AR metrics). Y-axis shows the log of the weighted variogram score, a scoring rule that penalizes 358 

multivariate forecasts if they are not well calibrated and do not capture inter-series correlations in 359 

observed data (lower scores are preferred). 12-step ahead predictions were evaluated over a 360 

sequence of six evenly spaced origins. Points show individual forecast scores, with lower scores 361 

indicating a better forecast. Lines show Loess smoothed trend lines. Missing points indicate that 362 

sampling did not occur at the time point for that horizon. 363 

 364 
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 365 

Figure 4: Posterior latent state estimates (top panel) and posterior predictions (bottom two panels) 366 

from the GAM-VAR model for Ord’s kangaroo rat (Dipodomys ordii; in red) and silky pocket mouse 367 

(Perognathus flavus; in blue) for the training and testing periods (demarked by the vertical dashed 368 

line). State estimates were scaled to unit variance for comparisons. Ribbon shading shows posterior 369 

empirical quantiles (90th, 60th, 40th and 20th). Dark lines show posterior medians. Points show 370 

observations. 371 

 372 

Modeling relationships among species provides unique insights into community dynamics 373 
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Our cross-validation metrics strongly favoured the GAM-VAR and suggested that the multivariate 374 

dynamic component was a particularly important driver of increased performance. Estimates of 375 

process error were larger for the benchmarks than the GAM-VAR for nearly all species 376 

(Supplementary Figure S13), suggesting this model used additional information from multi-species 377 

cross-dependencies to produce better predictions. But interpreting this cross-dependence is difficult 378 

because VAR effects provide only a marginal view into the complex network of conditional 379 

associations. We used impulse response functions (Lütkepohl 1990) to better understand the model. 380 

These functions involve simulating an ‘impulse’ in captures for one species and then evaluating how 381 

predicted captures for other species changed over the next six months (Figure 5). Following a 382 

simulated impulse of three extra captures for Merriam’s kangaroo rat (D. merriami), the model 383 

expected some initial increases (due to the correlated process errors) followed by declines in 384 

captures for most of the other species (Figure 5). The shapes of these declines varied by species. 385 

Captures for the two pocket mouse species (C. baileyi and C. penicillatus) showed more immediate 386 

declines, while the two grasshopper mouse species (O. leucogaster and O. torridus) declined more 387 

gradually (Figure 5). In contrast, the other kangaroo rat species (D. ordii) was expected to increase 388 

following a D. merriami pulse (Figure 5). Different effects were expected when changing the focal 389 

species (Supplementary Figure S14) 390 
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 391 

Figure 5: Expected responses to a simulated pulse in captures of Merriam’s kangaroo rat (D. 392 

merriami). Ribbon plots show how mean captures (𝜇, on the log scale) are expected to change over 393 

the next six months if three additional D. merriami individuals are captured. Ribbons show posterior 394 

empirical quantiles (90th, 60th, 40th and 20th). Dark red lines show posterior medians. 395 

 396 

Positive NDVI associations and hierarchical minimum temperature effects 397 

We found broad support for positive 𝑁𝐷𝑉𝐼𝑀𝐴12 associations (Figure 6). Conditional simulations, 398 

which asked how rodents might respond if moved from a relatively dry/brown vegetation state to a 399 

relatively moist/green vegetation state, gave higher probability to increased captures in the 400 

moist/green scenario for all species. But uncertainties about this effect varied. Greatest increases 401 

were expected for Ord's kangaroo rat (D. ordii), Western harvest mouse (R. megalotis) and cactus 402 

mouse (Peromyscus eremicus). The model was less confident about the direction of effect for 403 

Northern grasshopper mouse (O. leucogaster) and for one of the most dominant species in the 404 
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study, Meriam’s kangaroo rat (D. merriami). For these species, the model expected increases in 405 

~70% of simulations and decreases in ~30% (Figure 6). While primary conclusions were generally 406 

similar when using the GAM-AR no pooling model, which did not leverage multi-species learning, 407 

the estimates of these contrasts were much more variable (Figure S15). 408 

 409 

 410 

Figure 6: Posterior NDVI contrasts from the hierarchical slopes component of the GAM-VAR model. 411 

Histograms illustrate how much the expected number of captures, 𝑒𝑥𝑝(𝜇), would change if the z-412 

scored NDVI 12-month moving average (𝑁𝐷𝑉𝐼𝑀𝐴12) changed from a relatively low value (-0.50) to a 413 

relatively high value (0.50). Numbers in each plot indicate the proportion of probability mass at or 414 

below zero (in blue) vs above zero (in red). 415 

 416 

Interpreting minimum temperature distributed lag effects also required simulation. We visualized 417 

1,000 simulated functions for each species using temperatures from 1997 (Figure S15). There was 418 
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large uncertainty in function shapes for all species except desert pocket mouse (C. penicillatus). 419 

Captures for this species were expected to increase from May to October and decrease sharply in 420 

winter. For seven of the other eight species, the model generally expected more captures in spring 421 

(March – May) and fewer in late summer / autumn (July – October). But the shapes of these 422 

responses varied. The two kangaroo rats (D. merriami and D. ordii) had smoother shapes that 423 

decreased gradually from mid-summer to mid-winter. But the model expected D. ordii captures to 424 

peak slightly later (May as opposed to March for D. merriami). The Southern grasshopper mouse (O. 425 

torridus) was the only species that was expected to show higher captures in late autumn / early 426 

winter (Figure S16). The five species that relied solely on the global function (O. leucogaster, C. 427 

baileyi, P. eremicus, P. flavus and R. megalotis) were expected to show tighter spring peaks and 428 

autumn troughs. When simulating from the GAM-AR no pooling model, the lack of multi-species 429 

learning was immediately obvious. There was not enough information to learn nonlinear distributed 430 

lag functions for these five species, with the model instead estimating flat functions centred on zero 431 

for all five species (Figure S17). 432 

 433 

DISCUSSION 434 

Understanding and predicting change in species abundances requires models that capture realistic 435 

biotic structure and address data complexities to produce near-term ecological forecasts (Hampton 436 

et al. 2013, Holmes et al. 2014). Our results show that incorporating relationships between species 437 

to estimate their lagged dependence, and to learn their potentially non-linear associations with 438 

environmental drivers, yields more accurate in-sample and out-of-sample predictions. In addition to 439 

improved quantitative forecasts, incorporating these multi-species complexities provides insights 440 

into the dynamics of the system that could be important for scenario planning and other qualitative 441 

forecasting approaches. For example, our dynamic VAR process uncovered biotic structure 442 

representing a cascading network of relationships within the community. Captures for all species 443 
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increased with higher NDVI and responded nonlinearly to temperature change, but the shapes and 444 

magnitudes of these responses differed across species. Our results show that models that describe 445 

biological complexity, both through nonlinear covariate functions and multi-species dependence, are 446 

useful both for generating more accurate near-term forecasts and for asking targeted questions 447 

about drivers of ecological change (Ives et al. 2003, Greenville et al. 2016, Ovaskainen et al. 2017, 448 

Pedersen et al. 2019). 449 

 450 

Leveraging relationships between species for ecological forecasting 451 

Interactions and dependencies among multiple species are hypothesized to play pivotal roles in the 452 

assembly of ecological communities and to broader ecosystem functions (Dobzhansky 1950, 453 

Mutshinda et al. 2009, Mayfield and Stouffer 2017, Fecchio et al. 2019). This study shows why 454 

models that target multi-species effects in both their environmental responses and their biotic 455 

dependencies should also be strongly considered when studying community dynamics. Our 456 

approach to constructing hierarchical dynamic GAMs and evaluating forecasts using multivariate 457 

proper scoring rules offers a way to quantitatively assess multispecies forecasts and scrutinize their 458 

value in real-world ecological forecasting applications. We also demonstrate how inferences from 459 

these models provide deeper insights into why they may or may not perform better. For example, 460 

the GAM-VAR’s process variance estimates were smaller than those from the benchmarks because it 461 

used more information from the data. By learning about the relationships between species the 462 

model could better capture both shared responses to environmental factors (e.g., a wet year in the 463 

desert is good for most species) and direct temporal effects (e.g., competition for seeds). These 464 

relationships between species can allow forecasts for less common species to borrow strength from 465 

more common species, yielding better hindcasts and forecasts compared to simpler single-species 466 

models. But like other multivariate autoregressive models (Ives et al. 2003, Holmes et al. 2014, 467 

Hannaford et al. 2023) the VAR parameters of the GAM-VAR should not be interpreted as a species 468 
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interaction matrix, because these relationships can result from multiple sources (i.e., shared 469 

environmental responses and direct interactions). While the parameters are not interpretable as 470 

direct interactions, this approach does make it possible to gain a more detailed understanding of 471 

population dynamics. Conducting simulations from this type of model allows exploring which species 472 

have the strongest cascading effects, what changes might we expect if management increases or 473 

decreases abundance for target species, and how these effects relate to regime transitions.  474 

Our hierarchical modelling approach also makes it possible to partition variance among 475 

observation error, environmental responses, and multispecies dependence to guide future efforts to 476 

improve ecological forecasting. In our study, forecasts were dominated by uncertainty in the 477 

dynamic process model, but using a vector autoregressive process allowed us to dissect this 478 

uncertainty in meaningful ways (Lütkepohl 1990, Ives et al. 2003). Simulated responses to sudden 479 

impulses in captures were often delayed and nonlinear. Despite the restriction to a VAR of lag of one 480 

month, these responses resulted in cascading changes that lasted up to six months. Our model’s 481 

ability to simulate and dissect community change in this way offers a useful avenue for ecologists to 482 

better understand, and expand on, theoretical predictions from both classical and more recent 483 

empirical studies that have described strong interspecific interactions in ecological systems (Volterra 484 

1931, Ebersole 1977, Mayfield and Stouffer 2017, Dumandan et al. 2024). 485 

 486 

Learning hierarchical nonlinear effects from community data 487 

Our model captured linear, nonlinear, and lagged responses to environmental and climatic 488 

covariates that were informed by data from all species at once. We found positive linear associations 489 

between capture rates and a 12-month moving average of NDVI. This response was expected 490 

because the rodents at Portal depend on plants for food and other resources (Brown and Ernest 491 

2002, Ernest et al. 2020) and NDVI measures vegetation greenness in the landscape. Within this 492 

overarching community pattern there were interesting patterns of variation in these responses 493 
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among species. The strongest positive association was shown by Ord's kangaroo rat (D. ordii), a 494 

species that field evidence suggests consumes and harvests grasses (Kerley et al. 1997). In contrast, 495 

Merriam’s kangaroo rat (D. merriami) showed weaker associations with NDVI. This species has been 496 

predicted to increase in prevalence in the study region with more severe droughts, in part due to a 497 

preference for more open foraging habitat with less vegetation (Cárdenas et al. 2021). 498 

 Distributed lag functions determine the best combination of lags for environment covariates 499 

but are not commonly used in ecology (but see Ogle et al. 2015, Wells et al. 2016, Karunarathna et 500 

al. 2024). Our study shows how these effects can be learned hierarchically and provides useful 501 

insights into delayed responses to temperature change for rodents at Portal. Most species showed 502 

higher captures when minimum temperatures were low 3 – 4 months prior, suggesting increases 503 

begin during mid to late spring when resources such as seeds become available. But others, such as 504 

Merriam’s kangaroo rat and Southern grasshopper mouse, showed increases during cooler months 505 

in autumn and winter. Asynchronous phenology, where species show different reproductive timing, 506 

is sometimes expected in competitive communities (Carter and Rudolf 2022). Analysis of individual 507 

reproductive status in different biotic contexts suggests that some species shift their reproductive 508 

timing in the presence of strong competitors in the Portal system (Dumandan et al. 2023). Do these 509 

competitive forces play a role in seasonal capture variation over the long-term? Comparing 510 

temperature responses on control vs experimental plots would be one interesting way to tackle this 511 

question. 512 

Interestingly, despite the relatively large number of observations our data contained for 513 

each species, estimates of environmental responses were still more precise and informative when 514 

using hierarchical models (which use partial pooling) as opposed to a no-pooling model that only 515 

considers species’ effects in isolation. While hierarchical intercepts and slopes are commonly used in 516 

ecological models, there has been less emphasis on hierarchical nonlinear functions (but see 517 

Pedersen et al. 2019). Open access to new software that makes it easy to construct and estimate 518 
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these types of functions, such as the mvgam R package that we used here (Clark and Wells 2023), 519 

should improve their uptake in ecological forecasting exercises. 520 

But despite the power of hierarchical environmental effects to improve predictions, we 521 

cannot interpret environmental response estimates as directly causal for several reasons. First, we 522 

know NDVI is not a perfect measure of changes in seed production. Second, it is likely that changes 523 

to NDVI and minimum temperature are both related to other unmeasured environmental drivers 524 

that may also influence rodent abundance. Major storms, the El Niño Southern Oscillation and other 525 

factors that influence moisture levels can all influence temperature and vegetation change (Sun and 526 

Kafatos 2007). These other drivers could act as unmeasured confounds, biasing estimates in a causal 527 

inference framework (McElreath 2020). 528 

 529 

Future directions 530 

Two additional steps would be useful to fully assess the value of multi-species models for ecological 531 

forecasting, both in this system and more broadly as an ecological application. First, a more diverse 532 

suite of candidate models could be estimated to determine how forecasts could be combined into 533 

an ensemble to provide the best predictions in situations where prediction accuracy is the primary 534 

goal (Clark et al. 2022, Powell‐Romero et al. 2023). This could be especially useful for detecting 535 

changes in the system. For example, GAM-VAR gave better forecasts in most cross-validation tests, 536 

but its performance was slightly worse than the simpler GAM-AR when the training window stopped 537 

just prior to a major restructuring of rodent abundances that was taking place in response to a 538 

drought. Second, determining which models are best for true forecasting requires evaluating 539 

forecasts in the presence of uncertainty in future covariate values. In this study we were hindcasting 540 

and therefore used the actual observed environmental measurements for the period reserved for 541 

model evaluation. Fortunately, the system is undergoing active forecasting involving a suite of 542 

simpler models and leveraging actual forecasts for environmental covariates (White et al. 2019, 543 
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Simonis et al. 2022). A natural next step for this work is to compare the performance of the GAM-544 

VAR model to simpler models both using hindcasting with observed covariates and when making 545 

true forecasts relying on predictions instead of observations for NDVI and minimum temperature. 546 

The Portal Project also provides a unique opportunity to disentangle the combined influence 547 

of shared environmental responses and direct species interactions in driving observed relationships 548 

between species. The site includes a long-term experimental manipulation where kangaroo rats 549 

(Dipodomys species) are excluded from some plots. Recent work shows that single species 550 

forecasting models for C. baileyi do not transfer well between the control plots and this 551 

experimental manipulation, likely due to the different competitive environment experienced in the 552 

absence of the behaviorially dominant kangaroo rats (Dumandan et al. 2023). Multi-species models 553 

like the GAM-VAR have the potential to transfer better in situations where one or more species are 554 

removed from the system by accurately predicting the response of the other species to this removal. 555 

Therefore, a key next step in evaluating the potential strengths of our models is to determine if they 556 

can more effectively transfer to make accurate predictions on the plots with the experimentally 557 

manipulated species composition. More broadly, we hope that the ability to estimate multi-species 558 

dependence and species-level variation in nonlinear environmental responses result in more 559 

accurate forecasts, inspire new questions, and lead to an improved understanding of the factors that 560 

govern ecological community dynamics. 561 
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 572 

SUPPORTING INFORMATION CAPTIONS 573 

Figure S1: Total rodent captures from the Portal Project for the period December 1996 to August 574 

2022. Counts represent total captures for nine species across long-term control plots, sampled at 575 

each cycle of the lunar moon. Blanks represent missing values. 576 

Figure S2: Autocorrelation functions of rodent capture time series in the Portal Project. Dashed lines 577 

show values beyond which the autocorrelations are considered significantly different from zero.  578 

Figure S3: Histograms of rodent capture time series in the Portal Project. Counts represent total 579 

captures across long-term control plots, sampled at each cycle of the lunar moon.  580 

Figure S4: Seasonal and Trend decomposition using Loess smoothing (STL) applied to observed 581 

minimum temperature time series for the period December 1996 – August 2022. The top panel 582 

shows the raw time series. The middle plot shows the estimated long-term trend (calculated using a 583 

Loess regression to the de-seasoned time series). The bottom plot shows the time-varying estimate 584 

of seasonality (calculated using a Loess regression that smooths across years). STL components were 585 

estimated using the msts() function in the forecast R package (Hyndman and Khandakar 2008).  586 

Figure S5: Top panel: observed Normalized Difference Vegetation Index (NDVI) time series for the 587 

period December 1996 – August 2022, with obvious seasonal fluctuations. Bottom panel: a 12-588 

month moving average that represents smooth, gradual changes in NDVI at the study site. 589 

Figure S6: Autocorrelation functions of randomized quantile residuals from the GAM-VAR model. 590 

Ribbon shading shows posterior empirical quantiles (90th, 60th, 40th and 20th). Dark red lines show 591 

posterior medians. Dashed lines show values beyond which the autocorrelations would be 592 

considered significantly different from zero in a Frequentist paradigm. 593 

Figure S7: Normal quantile-quantile plots of randomized quantile residuals from the GAM-VAR 594 

model. Ribbon shading shows posterior empirical quantiles (90th, 60th, 40th and 20th). Dark lines show 595 

posterior medians. 596 
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Figure S8: Posterior predictions from the GAM-VAR model for the training and testing periods 597 

(demarked by the vertical dashed line). Latent state estimates were scaled to unit variance for 598 

comparisons. Ribbon shading shows posterior empirical quantiles (90th, 60th, 40th and 20th). Dark 599 

lines show posterior medians. Points show observations. 600 

Figure S9: Posterior distributions of vector autoregressive coefficients (matrix 𝐴). Off-diagonals 601 

represent cross-dependencies. For example, the entry in 𝐴[1,2] captures the effect of DO’s state at 602 

time 𝑡 − 1 on the current state estimate for DM (at time 𝑡). Diagonals (with grey shading) represent 603 

autoregressive coefficients (the effect of a species’ state at time 𝑡 − 1on its own state at time 𝑡). 604 

Colours indicate the proportion of probability mass at or below zero (in blue) vs above zero (in red). 605 

DO, Dipodomys merriami; DO, Dipodomys ordii; OL, Onychomys leucogaster; OT, Onychomys 606 

torridus; PB, Chaetodipus baileyi; PE, Peromyscus eremicus; PF, Perognathus flavus; PP, Chaetodipus 607 

penicillatus; RM, Reithrodontomys megalotis. 608 

Figure S10: Posterior distributions for process error correlations (matrix 𝐶). Colours indicate the 609 

proportion of probability mass at or below zero (in blue) vs above zero (in red). DO, Dipodomys 610 

merriami; DO, Dipodomys ordii; OL, Onychomys leucogaster; OT, Onychomys torridus; PB, 611 

Chaetodipus baileyi; PE, Peromyscus eremicus; PF, Perognathus flavus; PP, Chaetodipus penicillatus; 612 

RM, Reithrodontomys megalotis. 613 

Figure S11: Simulated rodent communities. Using the GAM-VAR model’s posterior predictive 614 

distribution, we simulated communities of 200 individuals at different timepoints to investigate how 615 

well the model captured known community transitions. Colours represent different species 616 

Figure S12: Posterior trend estimates from three competing models for Ord’s kangaroo rat 617 

(Dipodomys ordii; in red) and silky pocket mouse (Perognathus flavus; in blue). Trends were scaled to 618 

unit variance for comparisons. Ribbon shading shows posterior empirical quantiles (90th, 60th, 40th 619 

and 20th). Dark lines show posterior medians. 620 

Figure S13: Posterior estimates of trend standard deviations from the three competing models. 621 

Estimates are the square root of diagonal parameters from the trend covariance matrix (𝛴𝑉𝐴𝑅) for 622 

the GAM-VAR (black), GAM-AR (red) and AR (blue). 623 

Figure S14: Expected responses to a pulse in captures of the desert pocket mouse (Chaetodipus 624 

penicillatus). Ribbon plots show how mean captures (μ, on the log scale) are expected to change 625 

over the next six months if three additional C. penicillatus individuals are captured. Ribbon shading 626 

shows posterior empirical quantiles (90th, 60th, 40th and 20th). Dark red lines show posterior 627 

medians. 628 
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Figure S15: Conditional distributed lag minimum temperature functions from the hierarchical 629 

smooth component of the GAM-VAR model, using temperatures observed in 1997. All other effects 630 

were ignored. Functions for O. leucogaster, C. baileyi, P. eremicus, P. flavus and R. megalotis were 631 

drawn solely from the global function. Functions for other species were the sum of the global 632 

function and a species-specific deviation function. Estimates were scaled to unit variance for 633 

comparisons. Ribbons show posterior empirical quantiles (90th, 60th, 40th and 20th). Dark red lines 634 

show posterior medians. 635 

Figure S16: Conditional distributed lag minimum temperature functions from the independent 636 

smooth component of the GAM-AR no pooling model, using temperatures observed in 1997. All 637 

other effects were ignored. Functions for O. leucogaster, C. baileyi, P. eremicus, P. flavus and R. 638 

megalotis were drawn solely from the global function. Functions for other species were the sum of 639 

the global function and a species-specific deviation function. Estimates were scaled to unit variance 640 

for comparisons. Ribbons show posterior empirical quantiles (90th, 60th, 40th and 20th). Dark red lines 641 

show posterior medians. 642 
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