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ABSTRACT 35 

Forecasting the responses of natural populations to environmental change is a key priority in the 36 

management of ecological systems. This is challenging because the dynamics of multispecies 37 

ecological communities are influenced by many factors. Populations can exhibit complex, nonlinear 38 

responses to environmental change, often over multiple temporal lags. In addition, biotic 39 

interactions, and other sources of multi-species dependence, are major contributors to patterns of 40 

population variation. Theory suggests that near-term ecological forecasts of population abundances 41 

can be improved by modelling these dependencies, but empirical support for this idea is lacking. We 42 

test whether models that learn from multiple species, both to estimate nonlinear environmental 43 

effects and temporal interactions, improve ecological forecasts for a semi-arid rodent community. 44 

Using Dynamic Generalized Additive Models, we analyze monthly captures for nine rodents over 25 45 

years. Model comparisons provide strong evidence that multi-species dependencies improve 46 

performance, as models that captured these effects gave superior predictions than models that 47 

ignored them. We show changes in abundance for some species can have delayed, nonlinear effects 48 

on others, and that lagged effects of temperature and vegetation greenness are key drivers of 49 

change. Our findings highlight that multivariate models are useful not only to improve near-term 50 

ecological forecasts but also to ask targeted questions about community dynamics. 51 
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INTRODUCTION 56 

Predicting the impacts of environmental change on ecosystem function and biodiversity is a global 57 

challenge (Clark et al. 2001, Intergovernmental Science - Policy Platform on Biodiversity and 58 

Ecosystem Services 2019, Fredston et al. 2023). Explicit predictions are needed to guide ecological 59 

management decisions, inform monitoring programs, and perform scenario planning (Lindenmayer 60 

et al. 2012, Tulloch et al. 2020). This has led to a growing emphasis on the importance of near-term 61 

ecological forecasting to encourage greater reliance on ecological time series data, and on suitable 62 

models that can handle the complexities of these data, to generate quantitative forecasts that can 63 

be harnessed to guide management decisions (Dietze et al. 2018, Lewis et al. 2023, Karunarathna et 64 

al. 2024). The applications of ecological forecasting are broad, including the prediction of soil 65 

microbiome compositions (Averill et al. 2021), carbon cycle dynamics (Dietze et al. 2014) and 66 

species’ population dynamics (Ward et al. 2014, White et al. 2019, Johnson-Bice et al. 2021). 67 

 Forecasts for species population dynamics are especially crucial for conservation planning, 68 

stock assessments and other ecological management priorities. However, these forecasts typically 69 

focus on only a single species at a time (Quinn 2003, Simonis et al. 2021, Lewis et al. 2022) or on 70 

aggregate measures such as species richness, biomass or diversity (Algar et al. 2009, Tonkin et al. 71 

2017, Clark et al. 2020). This is problematic because key applications of population dynamics 72 

forecasts, including changes in ecosystem function and biodiversity loss, are rarely single-species 73 

issues (Lindenmayer et al. 2012, Greenville et al. 2016). In addition, because species differ in their 74 

niche requirements, ecosystems containing multiple species of interest may require managers to 75 

balance competing needs not only between human and ecosystem requirements, but also among 76 

different species (e.g., Romañach et al. 2022). Finally, species population dynamics are known to be 77 

related to one another due to both direct interactions between species (e.g., competition) and 78 

because species respond to shared environmental drivers (Volterra 1931, Warton et al. 2015, 79 

Ovaskainen et al. 2017). These associations between the dynamics of different species has resulted 80 
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in extensive research into multivariate population dynamics models (Ives et al. 2003, Ward et al. 81 

2010, Bunin 2017, Ward et al. 2022, Paniw et al. 2023). Leveraging these associations could 82 

potentially result in more accurate forecasts from multispecies models and better-informed scenario 83 

planning, including approaches to predicting the impacts of species extinctions or the potential 84 

spread of invasive species (Ibáñez et al. 2009). 85 

 However, despite the potential advantages of multispecies dynamic models, their 86 

implementation is still rare in ecological applications in general and in population forecasting 87 

specifically. A recent review on near-term ecological forecasts found that only XX% used 88 

multispecies models to generate and evaluate forecasts (Lewis et al. 2022), in line with an earlier 89 

review of population dynamics models for informing marine reserve design which found that only 1 90 

of 34 studies considered multi-species dynamics (Gerber et al. 2003). One area of ecological 91 

modelling that has embraced multi-species approaches is Joint Species Distribution Models (JSDMs), 92 

which leverage spatial patterns to predict the distribution of species in space and time (Clark et al. 93 

2016, Thorson et al. 2016, Norberg et al. 2019, Tobler et al. 2019, Powell‐Romero et al. 2023). While 94 

many of these models only consider spatial data, recent advances have included time-series 95 

structures in the form of multivariate autoregressive components (Ovaskainen et al. 2017, Abrego et 96 

al. 2021).  97 

The rarity of multispecies population dynamic forecasting is likely due in part to the 98 

increased computational complexity and statistical knowledge needed to formulate multivariate 99 

population dynamic models that incorporate real world complexities in ecological data (Karp et al. 100 

2023). Forecasting the abundances of multiple species is particularly difficult, for several reasons. 101 

Many biological and physiological processes influence population dynamics (Quinn 2003, Hampton 102 

et al. 2013), and species often exhibit complex responses to external drivers (including non-linear 103 

responses and lags; Cárdenas et al. 2021, Karunarathna et al. 2024). Moreover, temporal 104 

autocorrelation is often prevalent in abundance time series data (due to population processes; Ives 105 
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et al. 2010), which can be difficult to address in ecological models. Finally, because monitoring 106 

wildlife is challenging, data complexities (e.g., irregular sampling intervals, observation errors, 107 

missing samples, and overdispersed discrete counts with meaningful lower and/or upper bounds) 108 

bring additional challenges into an already complicated modelling environment (Clark and Wells 109 

2023). In combination, these issues often make population time-series data unsuitable for traditional 110 

modelling approaches such as regression or simple time series models. Managers may also have 111 

differing needs for forecasts, ranging from predicting the most accurate near-term population sizes 112 

to exploring potential responses to differing management scenarios (Clark et al. 2001, Lindenmayer 113 

et al. 2012, Moustahfid et al. 2021, Lewis et al. 2023). 114 

While forecasting multispecies population dynamics is challenging, recent work suggests 115 

that it has the potential to provide valuable insights for forecast applications. Incorporating other 116 

species – either by including lagged observations of other species as predictors in single-species 117 

models (Abrego et al. 2021, Daugaard et al. 2022) or by building temporal JSDMs with multispecies 118 

autoregressive terms (Hampton et al. 2013, Ovaskainen et al. 2017) can result in improved 119 

predictions compared to single-species models. Experimentally induced changes in the abundance of 120 

competitors also show that altered species interactions can impact the accuracy of single-species 121 

forecasts (Dumandan et al. 2024). While suggestive that multi-species modelling is important, none 122 

of these existing approaches incorporates the full suite of important real world complexities – data 123 

issues, non-linear responses to environmental drivers, temporal autocorrelation –  that are 124 

necessary for many ecological forecast applications. Consequently, validation of multispecies 125 

forecasts, and comparisons against forecasts from simpler single species models, are rare and have 126 

generally been limited to either in-sample predictive measures (Sandal et al. 2022) or one-step 127 

ahead correlation measures (Ovaskainen et al. 2017, Abrego et al. 2021). Most forecast applications 128 

typically require predicting multiple time steps into the future to assess near-term management 129 

needs or responses to likely future scenarios (i.e. loss of important species, shifts in important 130 

drivers). The combination of a limited exploration of the utility of multispecies models for ecological 131 
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time series applications and the need to incorporate more complex modeling structures constitutes 132 

a major gap in our ability to tackle realistic forecasting applications. 133 

Here we evaluate whether models that incorporate multi-species relationships can improve 134 

near-term population forecasts using data from a long-term ecological monitoring study where there 135 

is evidence of both direct biotic interactions between species (Heske et al. 1994, Ernest and Brown 136 

2001, Lima et al. 2008, Bledsoe and Ernest 2019, Christensen et al. 2019a) and shared responses to 137 

environmental factors (Christensen et al. 2018). Using the framework of Dynamic Generalized 138 

Additive Models developed by Clark and Wells (2023), we build a series of models that learn species’ 139 

shared environmental responses and temporal interactions to make inference about environmental 140 

and biotic factors that relate to community dynamics. Our models highlight how several key 141 

challenges can be tackled when modelling the dynamics of multiple species, including how to 142 

estimate environmental effects that change nonlinearly over increasing lags, how to capture 143 

temporal autocorrelation, and how to estimate lagged temporal dependencies among species. We 144 

then test whether the incorporation of these biotic dependence structures improves forecasts over 145 

multiple near-term timescales (up to 12 months) using penalized in-sample performance criteria and 146 

out-of-sample forecast metrics. We also demonstrate how these models can be used to perform 147 

perturbation experiments for assessing community responses to shifts in key species abundances 148 

and to changes in environmental drivers with shared species responses. Because these multi-species 149 

dynamic models integrate both species interactions and complex environmental dependencies, we 150 

show that they can provide a deeper understanding of ecological dynamics while generating more 151 

accurate forecasts and predictions for scenario planning. These models are broadly applicable to 152 

time-series data, providing a versatile tool for conducting time-series based forecasting to meet the 153 

wide-ranging needs of both basic and applied research.  154 

 155 

MATERIALS AND METHODS 156 
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We first describe the study system to outline why it is suitable for testing whether multi-species 157 

models lead to better ecological forecasts compared to single-species models. Second, we describe 158 

our full dynamic model, from which we can make inferences about the processes that drive 159 

community dynamics. Third, we describe how we compare this model to simpler models in an 160 

iterative forecasting exercise to ask whether models that include multi-species dependencies (a) 161 

improve in-sample fits to the observed data and (b) provide better out-of-sample near-term 162 

predictions. 163 

 164 

Rodent capture data 165 

Our data come from the Portal Project, a long-term monitoring study of a desert rodent community 166 

(Brown 1998, Ernest et al. 2020) that has been undergoing active forecasting since 2016 (White et al. 167 

2019). The Portal Project is based in the Chihuahuan Desert near Portal, Arizona. The sampling 168 

design includes 24 experimental plots (50m x 50m), each containing a grid of 49 baited traps (Brown 169 

1998, Ernest et al. 2020). The design uses three experimental treatments. In control plots (N = 10), 170 

holes in the fence are large enough to allow free access for all rodents. Full rodent removal plots (N 171 

= 6) have fences with no holes. Kangaroo rat exclosures (N = 8) have fences with holes to allow 172 

passage of all rodents except kangaroo rats (Dipodomys genus). Investigators close holes during 173 

trapping to ensure all captured rodents are residents. Trapping follows the lunar monthly cycle, but 174 

weather and other disruptions result in missing observations (~5% on average; Dumandan et al. 175 

2023). 176 

The Portal dataset exhibits many of the complexities that confront population forecasting. 177 

These include observation errors due to imperfect detection, missing samples due to weather or 178 

other issues (e.g., global pandemics), and over dispersed discrete counts for many species (20 rodent 179 

species) that include large numbers of zeros and upper bounds set by the number of traps. 180 

Environmental drivers, including temperature and measures of primary production, exhibit lagged 181 
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and nonlinear impacts on rodent breeding, activity rates, and population dynamics (Brown and 182 

Ernest 2002). Moreover, the rodent species at Portal are known to compete for resources in 183 

complex ways, and these biotic interactions are postulated to have important consequences for 184 

variation in population dynamics. In other words, the Portal Project exhibits all the complexities that 185 

make the ecological forecasting of species populations particularly difficult, making it an ideal real-186 

world test case for exploring whether multi-species models can provide better near-term predictions 187 

than single species models. 188 

Open-source software exists to access the Portal Project data (Christensen et al. 2019b, 189 

Simonis et al. 2022). We used the portalr package to extract trapping records from the Portal data 190 

(version 3.134.0; downloaded October 2022; https://doi.org/10.5281/zenodo.7255488). Our study 191 

focused on rodent captures from the long-term control plots for the period December 1996 – August 192 

2022. The data has records for 20 rodent species, but some are rarely captured. We excluded 193 

species if they were observed in < 10% of trapping sessions. We did this to focus inferences on 194 

species with the most influence on community dynamics. Each observation was a vector of total 195 

captures on long-term control plots for the nine remaining species (Figure 1). 196 

 197 
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 198 

 199 

Figure 1: Rodent capture data from the Portal Project for the period December 1996 to August 2022. 200 

Counts are total captures across long-term control plots. Blanks are missing values. 201 

 202 

Covariate measurements 203 

Rodent populations at Portal, and the associated number of captures recorded during sampling, 204 

depend on environmental conditions that reflect resource availability and seasonal breeding signals. 205 

We therefore modelled species’ responses to environmental variation using minimum temperature 206 

and the Normalized Difference Vegetation Index (NDVI) as covariates. Hourly air temperature (°C) is 207 

recorded by an automated weather station, while Landsat images are used to calculate NDVI 208 

(accessed from the US Geological Service Earth Resources Observation and Science Center; 209 

https://www.usgs.gov/centers/eros). Measurements for both covariates were converted to monthly 210 

averages. We extracted covariate data from one year before the start of captures (from January 211 

1995) so we could calculate lagged and moving average versions. See Ernest et al. (2020) for details. 212 

https://www.usgs.gov/centers/eros
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 213 

Model description 214 

There were several aspects of the data we needed to consider when designing our model. Total 215 

rodent captures showed both short- and long-term fluctuations (Supplementary Figure S1). Captures 216 

for individual species also undulated over multi-annual cycles and were positively autocorrelated at 217 

lags up to 20 months (Supplementary Figures S2 and S3). To test whether multi-species information 218 

improves model performance, we needed to model these dynamics using a multivariate dependence 219 

structure. Second, we needed to leverage community information to estimate each species’ time-220 

delayed response to variation in vegetation and temperature. Because species’ responses to 221 

environmental change in this system are expected to be nonlinear (Brown and Ernest 2002), we 222 

used splines to model these responses. Rodent captures were modelled as 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 observations of 223 

a latent state model that was composed of a hierarchical GAM component (to capture shared 224 

environmental responses) and a multivariate dynamic vector autoregressive component to capture 225 

multispecies dependence. The full description for this model, which we abbreviate to GAM-VAR, is 226 

shown in Figure 2.   227 

 228 
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Figure 2: Model definition and priors for the GAM-VAR model. Coloured boxes highlight the five 229 

main components of the latent state model (X). 230 

 231 

The GAM component of the model consisted of hierarchical NDVI and minimum 232 

temperature effects. The structural forms of these functions were informed by theory and 233 

exploration of covariate time series (shown in Supplementary Figures S4-5). We used a 12-month 234 

moving average of NDVI (𝑁𝐷𝑉𝐼𝑀𝐴12) because we expected rodents to respond gradually to 235 

vegetation change. Our model assumed linear effects of 𝑁𝐷𝑉𝐼𝑀𝐴12, equivalent to a hierarchical 236 

slopes model. The partial pooling properties of this model allowed us to regularize weakly informed 237 

slopes toward a community average. Responses to temperature were estimated using a hierarchical 238 

distributed lag model in which nonlinear effects of minimum temperature varied smoothly with 239 

increasing lag. These effects were constructed as tensor products of four cubic basis functions for lag 240 

and three thin plate basis functions for minimum temperature. To allow our model to capitalize on 241 

multi-species learning, we included a shared community-level response 𝑓𝑔𝑙𝑜𝑏𝑎𝑙(𝑀𝑖𝑛𝑡𝑒𝑚𝑝, 𝑙𝑎𝑔) and 242 

species-level deviations 𝑓𝑠𝑝𝑒𝑐𝑖𝑒𝑠[𝑖](𝑀𝑖𝑛𝑡𝑒𝑚𝑝, 𝑙𝑎𝑔). The sum of these effects allowed each species to 243 

show a different temperature response from the wider community, but only if there was 244 

information in the data to support such a deviation. We used lags of up to six months in the past.  245 

A vector autoregression (VAR) of order 1 captured lagged multispecies dependence, where 246 

𝐴 was a 9 x 9 matrix of autoregressive coefficients. Diagonal entries of 𝐴 described density-247 

dependence, or the effect of a species’ dynamic process (at time 𝑡) on its own lagged values (at 𝑡 −248 

1). Off-diagonals represented cross-dependencies that could provide useful biological insights into 249 

interspecific interactions. For example, the entry in 𝐴[2,3] described the effect of species 3‘s 250 

dynamic state at time 𝑡 − 1 on the current state estimate for species 2 (at time 𝑡). To encourage 251 

stability and prevent forecast variance from increasing indefinitely, we enforced stationarity 252 

following methods described in Heaps (2023). Briefly, a multistep process was used to map the 253 
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constrained 𝐴 matrix to unconstrained partial autocorrelations 𝑃. Process errors were allowed to be 254 

contemporaneously dependent to capture any unmodelled correlations. Priors for all model 255 

components are shown in Figure 2 and described in detail in the accompanying R code. 256 

 257 

Evaluating whether multi-species dependencies improve prediction performance 258 

We formally tested whether learning from multiple species improved our model’s predictions using 259 

prediction-based model comparisons. To do so, we estimated a series of benchmark models that 260 

acted as natural simplifications of the GAM-VAR by eliminating multi-species components in a 261 

stepwise manner. The first benchmark model used the same HGAM linear predictor as the GAM-262 

VAR but replaced the multi-species VAR(1) dynamics with an AR(1) process. This model (called GAM-263 

AR in subsequent sections) eliminated the covariances and temporal cross-dependencies among 264 

species’ latent states, allowing us to ask whether the multivariate dynamic component was 265 

supported for improving model fit. Next, we further simplified the GAM-AR by removing the 266 

hierarchical environmental response functions from the linear predictor. This forced the model to 267 

learn environmental responses for each species without using information from other species in the 268 

data (GAM-AR no pooling). The final benchmark, referred to as AR, also used independent AR(1) 269 

states but removed the GAM component entirely. Because this model only learned from past 270 

observations, comparisons against it helped us understand how covariates impacted predictions and 271 

inferences. Each candidate model was trained on all observations (through August 2022, N = 319 272 

timepoints). Models were then compared using Pareto-smoothed importance sampling leave-one-273 

out cross-validation (PSIS-LOO), a method that reweights posterior draws to estimate leave-one-out 274 

pointwise prediction accuracy using Estimated Log Predictive Density (ELPD) values (Vehtari et al. 275 

2017). 276 

To adequately evaluate competing forecast models, it is also necessary to perform out-of-277 

sample validation (Harris et al. 2018, Clark et al. 2022, Lewis et al. 2022). This is particularly 278 
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important because LOO-CV is designed to ask how models would generalize to new observations 279 

within the training window. This metric does not evaluate a time series model’s ability to forecast, as 280 

information from future timepoints is used to influence predictions for previous time points. To 281 

evaluate forecasts in a way that respected the temporal nature of our forecasting exercise, we used 282 

exact leave-future-out cross-validation in an iterative expanding window framework. Models were 283 

re-trained on the first 273 time points (~22 years), with the subsequent 12 time points (through 284 

November 2019; selected to avoid a large sampling gap due to the COVID-19 pandemic) used to 285 

evaluate forecasts. This allowed us to gauge how models might perform in a forecast scenario, but it 286 

only provided a single comparison. To further scrutinize models, we retrained models on the first 75, 287 

115, 154, 194, and 233 observations, and evaluated the subsequent 12 observations in each cross-288 

validation fold. All forecast comparisons used an evenly weighted combination of two proper 289 

multivariate scoring rules. We chose the variogram score, which penalizes distributions that do not 290 

adequately capture correlations in test observations, and the energy score, which ignores 291 

correlations but penalizes forecasts if they are not well-calibrated (Scheuerer and Hamill 2015).  292 

 293 

Estimation 294 

We estimated posterior distributions with Hamiltonian Monte Carlo in Stan (Carpenter et al. 2017, 295 

Stan Development Team 2022), specifically the cmdstanr interface (Gabry and Češnovar 2021). 296 

Stan’s algorithms provide state-of-the-art diagnostics for probabilistic models (Betancourt 2017). For 297 

example, Hamiltonian Markov chains diverged when attempting to estimate minimum temperature 298 

deviations for some species in the GAM-VAR. Our data were not informative enough to learn how, 299 

or even if, these species responded to temperature change in ways that differed from the 300 

community response. Stan’s diagnostics guided us to a model that could be reliably estimated, which 301 

included deviation functions for the four most frequently captured species (D. ordii, D. merriami, 302 

Onychomys torridus and C. penicillatus). Posteriors were processed in R 4.3.1 (R Core Team 2023) 303 
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with the mvgam R package (Clark and Wells 2023). Traceplots, rank normalized split-R̂ and effective 304 

sample sizes interrogated convergence of four parallel chains. Each chain was run for 500 warmup 305 

and 1600 sampling iterations. R code to replicate all analyses and produce Figures is included in the 306 

Supplementary materials and will be permanently archived on Zenodo on acceptance. 307 

 308 

RESULTS 309 

Modeling relationships among species improves prediction performance 310 

Our data included total captures for nine rodent species over 319 time points. All models showed 311 

adequate convergence and posterior exploration, and randomized quantile residuals showed no 312 

obvious evidence of unmodelled temporal or systematic variation (Supplementary Figures S6 – S7). 313 

However, in-sample performances differed, with models that leveraged multi-species information 314 

producing higher ELPD scores compared to simpler models (Table 1). This was the case for all 315 

stepwise comparisons apart from one: although the GAM-AR, which used partial pooling to learn 316 

species’ environmental responses, was favoured over the simpler GAM-AR no pooling, overlapping 317 

ELPD standard errors suggested there was still large uncertainty about the magnitude of this 318 

difference (Table 1). 319 

 320 

Table 1: Approximate Pareto-smoothed importance sampling leave-one-out cross-validation (PSIS-321 

LOO) was used to compute the Estimated Log Predictive Density (ELPD) of competing models. A 322 

higher ELPD indicates a model is expected to generalize better to new data within the training 323 

window. 324 

Model ELPD difference SE of ELPD difference 

GAM-VAR 0.0 0.0 
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GAM-AR -15.5 8.3 

GAM-AR no pooling -22.1 7.0 

AR -74.3 12.6 

 325 

We also found that forecast performance differed among models, with more complex multi-species 326 

models again tending to score higher for forecast performance than simpler models. Forecasts from 327 

the multi-species GAM-VAR were the most accurate when considering all validation points in 328 

aggregate and for 4 / 6 cross-validation folds (Figure 3; Supplementary Figure S8). The GAM-AR and 329 

GAM-AR no pooling models gave similar predictions and effectively tied for second in forecast 330 

performance, giving the most accurate forecasts in 2 / 6 cross-validation folds (Figure 3). The 331 

simplest AR model gave the worst forecasts.  332 

The multi-species GAM-VAR model estimated large, positive autoregressive coefficients for 333 

most species (diagonal entries in Supplementary Figure S9). It also relied strongly on information 334 

from multiple species by estimating many non-zero cross-dependence effects (off-diagonal entries in 335 

Supplementary Figure S9) and process error correlations (Supplementary Figure S10), which 336 

provided structure that the model leveraged to accurately simulate historical dynamics. The model 337 

recovered multiple notable transitions observed in the time-series including a major shift in 338 

community composition around 2000 following the establishment of Bailey's pocket mouse C. 339 

baileyi, and a second restructuring that happened following a drought in 2008 – 09 (Supplementary 340 

Figure S11). It was these multispecies effects that enabled the GAM-VAR to produce more accurate 341 

forecasts compared to the benchmarks. For example, Ord’s kangaroo rat (D. ordii) and silky pocket 342 

mouse (P. flavus) had negative cross-dependencies in the GAM-VAR, providing structure that the 343 

model used to make predictions (Figure 4). The benchmarks, which ignored this structure, produced 344 

smoother, less synchronous trends and wider uncertainties (Supplementary Figure S12). In the 345 
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following sections, we use simulations to briefly interpret each of the multi-species effects that 346 

allowed the GAM-VAR to outperform simpler models. 347 

 348 

Figure 3: Cross-validation forecast performances for three of the competing models (we do not show 349 

metrics for the GAM-AR no pooling model as they were not clearly distinguishable from the GAM-350 

AR metrics). Y-axis shows the log of the weighted variogram score, a scoring rule that penalizes 351 

multivariate forecasts if they are not well calibrated and do not capture inter-series correlations in 352 

observed data (lower scores are preferred). 12-step ahead predictions were evaluated over a 353 

sequence of six evenly spaced origins. Points show individual forecast scores, with lower scores 354 

indicating a better forecast. Lines show Loess smoothed trend lines. Missing points indicate that 355 

sampling did not occur at the time point for that horizon. 356 

 357 
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 358 

Figure 4: Posterior latent state estimates (top panel) and posterior predictions (bottom two panels) 359 

from the GAM-VAR model for Ord’s kangaroo rat (Dipodomys ordii; in red) and silky pocket mouse 360 

(Perognathus flavus; in blue) for the training and testing periods (demarked by the vertical dashed 361 

line). State estimates were scaled to unit variance for comparisons. Ribbon shading shows posterior 362 

empirical quantiles (90th, 60th, 40th and 20th). Dark lines show posterior medians. Points show 363 

observations. 364 

 365 

Modeling relationships among species provides unique insights into community dynamics 366 
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Our cross-validation metrics strongly favoured the GAM-VAR and suggested that the multivariate 367 

dynamic component was a particularly important driver of increased performance. Estimates of 368 

process error were larger for the benchmarks than the GAM-VAR for nearly all species 369 

(Supplementary Figure S13), suggesting this model used additional information from multi-species 370 

cross-dependencies to produce better predictions. But interpreting this cross-dependence is difficult 371 

because VAR effects provide only a marginal view into the complex network of conditional 372 

associations. We used impulse response functions (Lütkepohl 1990) to better understand the model. 373 

These functions involve simulating an ‘impulse’ in captures for one species and then evaluating how 374 

predicted captures for other species changed over the next six months (Figure 5). Following a 375 

simulated impulse of three extra captures for Merriam’s kangaroo rat (D. merriami), the model 376 

expected some initial increases (due to the correlated process errors) followed by declines in 377 

captures for most of the other species (Figure 5). The shapes of these declines varied by species. 378 

Captures for the two pocket mouse species (C. baileyi and C. penicillatus) showed more immediate 379 

declines, while the two grasshopper mouse species (O. leucogaster and O. torridus) declined more 380 

gradually (Figure 5). In contrast, the other kangaroo rat species (D. ordii) was expected to increase 381 

following a D. merriami pulse (Figure 5). Different effects were expected when changing the focal 382 

species (Supplementary Figure S14) 383 
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 384 

Figure 5: Expected responses to a simulated pulse in captures of Merriam’s kangaroo rat (D. 385 

merriami). Ribbon plots show how mean captures (𝜇, on the log scale) are expected to change over 386 

the next six months if three additional D. merriami individuals are captured. Ribbons show posterior 387 

empirical quantiles (90th, 60th, 40th and 20th). Dark red lines show posterior medians. 388 

 389 

Positive NDVI associations and hierarchical minimum temperature effects 390 

We found broad support for positive 𝑁𝐷𝑉𝐼𝑀𝐴12 associations (Figure 6). Conditional simulations, 391 

which asked how rodents might respond if moved from a relatively dry/brown vegetation state to a 392 

relatively moist/green vegetation state, gave higher probability to increased captures in the 393 

moist/green scenario for all species. But uncertainties about this effect varied. Greatest increases 394 

were expected for Ord's kangaroo rat (D. ordii), Western harvest mouse (R. megalotis) and cactus 395 

mouse (Peromyscus eremicus). The model was less confident about the direction of effect for 396 

Northern grasshopper mouse (O. leucogaster) and for one of the most dominant species in the 397 
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study, Meriam’s kangaroo rat (D. merriami). For these species, the model expected a increases in 398 

~70% of simulations and decreases in ~30% (Figure 6). While primary conclusions were generally 399 

similar when using the GAM-AR no pooling model, which did not leverage multi-species learning, 400 

the estimates of these contrasts were much more variable (Figure S15). 401 

 402 

 403 

Figure 6: Posterior NDVI contrasts from the hierarchical slopes component of the GAM-VAR model. 404 

Histograms illustrate how much the expected number of captures, 𝑒𝑥𝑝(𝜇), would change if the z-405 

scored NDVI 12-month moving average (𝑁𝐷𝑉𝐼𝑀𝐴12) changed from a relatively low value (-0.50) to a 406 

relatively high value (0.50). Numbers in each plot indicate the proportion of probability mass at or 407 

below zero (in blue) vs above zero (in red). 408 

 409 

Interpreting minimum temperature distributed lag effects also required simulation. We visualized 410 

1,000 simulated functions for each species using temperatures from 1997 (Figure S15). There was 411 
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large uncertainty in function shapes for all species except desert pocket mouse (C. penicillatus). 412 

Captures for this species were expected to increase from May to October and decrease sharply in 413 

winter. For seven of the other eight species, the model generally expected more captures in spring 414 

(March – May) and fewer in late summer / autumn (July – October). But the shapes of these 415 

responses varied. The two kangaroo rats (D. merriami and D. ordii) had smoother shapes that 416 

decreased gradually from mid-summer to mid-winter. But the model expected D. ordii captures to 417 

peak slightly later (May as opposed to March for D. merriami). The Southern grasshopper mouse (O. 418 

torridus) was the only species that was expected to show higher captures in late autumn / early 419 

winter (Figure S16). The five species that relied solely on the global function (O. leucogaster, C. 420 

baileyi, P. eremicus, P. flavus and R. megalotis) were expected to show tighter spring peaks and 421 

autumn troughs. When simulating from the GAM-AR no pooling model, the lack of multi-species 422 

learning was immediately obvious. There was not enough information to learn nonlinear distributed 423 

lag functions for these five species, with the model instead estimating flat functions centred on zero 424 

for all five species (Figure S17). 425 

 426 

DISCUSSION 427 

Understanding and predicting change in species abundances requires models that capture realistic 428 

biotic structure and address data complexities to produce near-term ecological forecasts (Hampton 429 

et al. 2013, Holmes et al. 2014). Our results show that incorporating relationships between species 430 

to estimate their lagged dependence, and to learn their potentially non-linear associations with 431 

environmental drivers, yields more accurate in-sample and out-of-sample predictions. In addition to 432 

improved forecasts, incorporating these multi-species complexities provides opportunities for 433 

interpretation that are not possible with simpler models. Our dynamic VAR process uncovered biotic 434 

structure representing a cascading network of relationships within the community. Captures for all 435 

species increased with higher NDVI and responded nonlinearly to temperature change, but the 436 
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shapes and magnitudes of these responses differed across species. Our results show that models 437 

that describe biological complexity, both through nonlinear covariate functions and multi-species 438 

dependence, are useful both for generating more accurate near-term forecasts and for asking 439 

targeted questions about drivers of ecological change (Ives et al. 2003, Greenville et al. 2016, 440 

Ovaskainen et al. 2017, Pedersen et al. 2019). 441 

 442 

Leveraging relationships between species for ecological forecasting 443 

Our analyses show why models that target multi-species effects in both their environmental 444 

responses and their direct biotic interactions should be strongly considered when studying 445 

community dynamics. The GAM-VAR’s process variance estimates were smaller than those from the 446 

benchmarks because it used more information from the data. By learning about the relationships 447 

between species the model could better capture both shared responses to environmental factors 448 

(e.g., a wet year in the desert is good for most species) and direct temporal effects (e.g., competition 449 

for seeds). These relationships between species can allow forecasts for less commonly observed 450 

species to borrow strength from more common species, yielding better overall predictions for future 451 

population abundances. But like other multivariate autoregressive models (Ives et al. 2003, Holmes 452 

et al. 2014, Hannaford et al. 2023)  the VAR parameters of the GAM-VAR should not be interpreted 453 

as a species interaction matrix, because these relationships can result from multiple sources (i.e., 454 

shared environmental responses and direct interactions). While the parameters are not 455 

interpretable as direct interactions, this approach does make it possible to gain a more detailed 456 

understanding of population dynamics. Conducting simulations from this type of model allows 457 

exploring which species have the strongest cascading effects, what changes might we expect if 458 

management increases or decreases abundance for target species, and how these effects relate to 459 

regime transitions. This approach also makes it possible to partition variance among observation 460 

error, environmental responses, and multispecies dependence to guide future efforts to improve 461 
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ecological forecasting. In our study, forecasts were dominated by uncertainty in the dynamic process 462 

model, but using a vector autoregressive process allowed us to dissect this uncertainty in meaningful 463 

ways (Lütkepohl 1990, Ives et al. 2003). Simulated responses to sudden impulses in captures were 464 

often delayed and nonlinear. Despite the restriction to a VAR of lag of one month, these responses 465 

resulted in cascading changes that lasted up to six months. 466 

 467 

Learning hierarchical nonlinear effects from community data 468 

Our model captured linear, nonlinear, and lagged responses to environmental and climatic 469 

covariates that were informed by data from all species at once. We found positive linear associations 470 

between capture rates and a 12-month moving average of NDVI. This response was expected 471 

because the rodents at Portal depend on plants for food and other resources (Brown and Ernest 472 

2002, Ernest et al. 2020) and NDVI measures vegetation greenness in the landscape. Within this 473 

overarching community pattern there were interesting patterns of variation in these responses 474 

among species. The strongest positive association was shown by Ord's kangaroo rat (D. ordii), a 475 

species that field evidence suggests consumes and harvests grasses (Kerley et al. 1997). In contrast, 476 

Merriam’s kangaroo rat (D. merriami) showed weaker associations with NDVI. This species has been 477 

predicted to increase in prevalence in the study region with more severe droughts, in part due to a 478 

preference for more open foraging habitat with less vegetation (Cárdenas et al. 2021). 479 

 Distributed lag functions determine the best combination of lags for environment covariates 480 

but are not commonly used in ecology (but see Ogle et al. 2015, Wells et al. 2016). Our study shows 481 

how these effects can be learned hierarchically and provides useful insights into delayed responses 482 

to temperature change for rodents at Portal. Most species showed higher captures when minimum 483 

temperatures were low 3 – 4 months prior, suggesting increases begin during mid to late spring 484 

when resources such as seeds become available. But others, such as Merriam’s kangaroo rat and 485 

Southern grasshopper mouse, showed increases during cooler months in autumn and winter. 486 
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Asynchronous phenology, where species show different reproductive timing, is sometimes expected 487 

in competitive communities (Carter and Rudolf 2022). Analysis of individual reproductive status in 488 

different biotic contexts suggests that some species shift their reproductive timing in the presence of 489 

strong competitors in the Portal system (Dumandan et al. 2023). Do these competitive forces play a 490 

role in seasonal capture variation over the long-term? Comparing temperature responses on control 491 

vs experimental plots would be one interesting way to tackle this question. 492 

Interestingly, despite the relatively large number of observations our data contained for 493 

each species, estimates of environmental responses were still more precise and informative when 494 

using hierarchical models (which use partial pooling) as opposed to a no-pooling model that only 495 

considers species’ effects in isolation. While hierarchical intercepts and slopes are commonly used in 496 

ecological models, there has been less emphasis on hierarchical nonlinear functions (but see 497 

Pedersen et al. 2019). Open access to new software that makes it easy to construct and estimate 498 

these types of functions, such as the mvgam R package that we used here (Clark and Wells 2023), 499 

should improve their uptake in ecological forecasting exercises. 500 

But despite the power of hierarchical environmental effects to improve predictions, we 501 

cannot interpret environmental response estimates as directly causal for several reasons. First, we 502 

know NDVI is not a perfect measure of changes in seed production. Second, it is likely that changes 503 

to NDVI and minimum temperature are both related to other unmeasured environmental drivers 504 

that may also influence rodent abundance. Major storms, the El Niño Southern Oscillation and other 505 

factors that influence moisture levels can all influence temperature and vegetation change (Sun and 506 

Kafatos 2007). These other drivers could act as unmeasured confounds, biasing estimates in a causal 507 

inference framework (McElreath 2020). 508 

 509 

Future directions 510 
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Two additional steps would be useful to fully assess the value of multi-species models for ecological 511 

forecasting, both in this system and more broadly as an ecological application. First, a more diverse 512 

suite of candidate models could be estimated to determine how forecasts could be combined into 513 

an ensemble to provide the best predictions in situations where prediction accuracy is the primary 514 

goal (Clark et al. 2022, Powell‐Romero et al. 2023). This could be especially useful for detecting 515 

changes in the system. For example, GAM-VAR gave better forecasts in most cross-validation tests, 516 

but its performance was slightly worse than the simpler GAM-AR when the training window stopped 517 

just prior to a major restructuring of rodent abundances that was taking place in response to a 518 

drought. Second, determining which models are best for true forecasting requires evaluating 519 

forecasts in the presence of uncertainty in future covariate values. In this study we were hindcasting 520 

and therefore used the actual observed environmental measurements for the period reserved for 521 

model evaluation. Fortunately, the system is undergoing active forecasting involving a suite of 522 

simpler models and leveraging actual forecasts for environmental covariates (White et al. 2019, 523 

Simonis et al. 2022). A natural next step for this work is to compare the performance of the GAM-524 

VAR model to simpler models both using hindcasting with observed covariates and when making 525 

true forecasts relying on predictions instead of observations for NDVI and minimum temperature. 526 

The Portal Project also provides a unique opportunity to disentangle the combined influence 527 

of shared environmental responses and direct species interactions in driving observed relationships 528 

between species. The site includes a long-term experimental manipulation where kangaroo rats 529 

(Dipodomys species) are excluded from some plots. Recent work shows that single species 530 

forecasting models for C. baileyi do not transfer well between the control plots and this 531 

experimental manipulation, likely due to the different competitive environment experience in the 532 

absence of the behaviorially dominant kangaroo rats (Dumandan et al. 2023). Multi-species models 533 

like the GAM-VAR have the potential to transfer better in situations where one or more species are 534 

removed from the system by accurately predicting the response of the other species to this removal. 535 

Therefore, a key next step in evaluating the potential strengths of our models is to determine if they 536 



26 
 

can more effectively transfer to make accurate predictions on the plots with the experimentally 537 

manipulated species composition. More broadly, we hope that the ability to estimate multi-species 538 

dependence and species-level variation in nonlinear environmental responses result in more 539 

accurate forecasts, inspire new questions, and lead to an improved understanding of the factors that 540 

govern ecological community dynamics. 541 

 542 
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 552 

SUPPORTING INFORMATION CAPTIONS 553 

Figure S1: Total rodent captures from the Portal Project for the period December 1996 to August 554 

2022. Counts represent total captures for nine species across long-term control plots, sampled at 555 

each cycle of the lunar moon. Blanks represent missing values. 556 

Figure S2: Autocorrelation functions of rodent capture time series in the Portal Project. Dashed lines 557 

show values beyond which the autocorrelations are considered significantly different from zero.  558 

Figure S3: Histograms of rodent capture time series in the Portal Project. Counts represent total 559 

captures across long-term control plots, sampled at each cycle of the lunar moon.  560 
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Figure S4: Seasonal and Trend decomposition using Loess smoothing (STL) applied to observed 561 

minimum temperature time series for the period December 1996 – August 2022. The top panel 562 

shows the raw time series. The middle plot shows the estimated long-term trend (calculated using a 563 

Loess regression to the de-seasoned time series). The bottom plot shows the time-varying estimate 564 

of seasonality (calculated using a Loess regression that smooths across years). STL components were 565 

estimated using the msts() function in the forecast R package (Hyndman and Khandakar 2008).  566 

Figure S5: Top panel: observed Normalized Difference Vegetation Index (NDVI) time series for the 567 

period December 1996 – August 2022, with obvious seasonal fluctuations. Bottom panel: a 12-568 

month moving average that represents smooth, gradual changes in NDVI at the study site. 569 

Figure S6: Autocorrelation functions of randomized quantile residuals from the GAM-VAR model. 570 

Ribbon shading shows posterior empirical quantiles (90th, 60th, 40th and 20th). Dark red lines show 571 

posterior medians. Dashed lines show values beyond which the autocorrelations would be 572 

considered significantly different from zero in a Frequentist paradigm. 573 

Figure S7: Normal quantile-quantile plots of randomized quantile residuals from the GAM-VAR 574 

model. Ribbon shading shows posterior empirical quantiles (90th, 60th, 40th and 20th). Dark lines show 575 

posterior medians. 576 

Figure S8: Posterior predictions from the GAM-VAR model for the training and testing periods 577 

(demarked by the vertical dashed line). Latent state estimates were scaled to unit variance for 578 

comparisons. Ribbon shading shows posterior empirical quantiles (90th, 60th, 40th and 20th). Dark 579 

lines show posterior medians. Points show observations. 580 

Figure S9: Posterior distributions of vector autoregressive coefficients (matrix 𝐴). Off-diagonals 581 

represent cross-dependencies. For example, the entry in 𝐴[1,2] captures the effect of DO’s state at 582 

time 𝑡 − 1 on the current state estimate for DM (at time 𝑡). Diagonals (with grey shading) represent 583 

autoregressive coefficients (the effect of a species’ state at time 𝑡 − 1on its own state at time 𝑡). 584 

Colours indicate the proportion of probability mass at or below zero (in blue) vs above zero (in red). 585 

DO, Dipodomys merriami; DO, Dipodomys ordii; OL, Onychomys leucogaster; OT, Onychomys 586 

torridus; PB, Chaetodipus baileyi; PE, Peromyscus eremicus; PF, Perognathus flavus; PP, Chaetodipus 587 

penicillatus; RM, Reithrodontomys megalotis. 588 

Figure S10: Posterior distributions for process error correlations (matrix 𝐶). Colours indicate the 589 

proportion of probability mass at or below zero (in blue) vs above zero (in red). DO, Dipodomys 590 

merriami; DO, Dipodomys ordii; OL, Onychomys leucogaster; OT, Onychomys torridus; PB, 591 
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Chaetodipus baileyi; PE, Peromyscus eremicus; PF, Perognathus flavus; PP, Chaetodipus penicillatus; 592 

RM, Reithrodontomys megalotis. 593 

Figure S11: Simulated rodent communities. Using the GAM-VAR model’s posterior predictive 594 

distribution, we simulated communities of 200 individuals at different timepoints to investigate how 595 

well the model captured known community transitions. Colours represent different species 596 

Figure S12: Posterior trend estimates from three competing models for Ord’s kangaroo rat 597 

(Dipodomys ordii; in red) and silky pocket mouse (Perognathus flavus; in blue). Trends were scaled to 598 

unit variance for comparisons. Ribbon shading shows posterior empirical quantiles (90th, 60th, 40th 599 

and 20th). Dark lines show posterior medians. 600 

Figure S13: Posterior estimates of trend standard deviations from the three competing models. 601 

Estimates are the square root of diagonal parameters from the trend covariance matrix (𝛴𝑉𝐴𝑅) for 602 

the GAM-VAR (black), GAM-AR (red) and AR (blue). 603 

Figure S14: Expected responses to a pulse in captures of the desert pocket mouse (Chaetodipus 604 

penicillatus). Ribbon plots show how mean captures (μ, on the log scale) are expected to change 605 

over the next six months if three additional C. penicillatus individuals are captured. Ribbon shading 606 

shows posterior empirical quantiles (90th, 60th, 40th and 20th). Dark red lines show posterior 607 

medians. 608 

Figure S15: Posterior NDVI contrasts from the independent slopes component of the GAM-AR no 609 

pooling model. Histograms illustrate how much the expected number of captures, 𝑒𝑥𝑝(𝜇), would 610 

change if the z-scored NDVI 12-month moving average (𝑁𝐷𝑉𝐼𝑀𝐴12) changed from a relatively low 611 

value (-0.50) to a relatively high value (0.50). Numbers in each plot indicate the proportion of 612 

probability mass at or below zero (in blue) vs above zero (in red). 613 

Figure S16: Conditional distributed lag minimum temperature functions from the hierarchical 614 

smooth component of the GAM-VAR model, using temperatures observed in 1997. All other effects 615 

were ignored. Functions for O. leucogaster, C. baileyi, P. eremicus, P. flavus and R. megalotis were 616 

drawn solely from the global function. Functions for other species were the sum of the global 617 

function and a species-specific deviation function. Estimates were scaled to unit variance for 618 

comparisons. Ribbons show posterior empirical quantiles (90th, 60th, 40th and 20th). Dark red lines 619 

show posterior medians. 620 

Figure S17: Conditional distributed lag minimum temperature functions from the independent 621 

smooth component of the GAM-AR no pooling model, using temperatures observed in 1997. All 622 

other effects were ignored. Functions for O. leucogaster, C. baileyi, P. eremicus, P. flavus and R. 623 
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megalotis were drawn solely from the global function. Functions for other species were the sum of 624 

the global function and a species-specific deviation function. Estimates were scaled to unit variance 625 

for comparisons. Ribbons show posterior empirical quantiles (90th, 60th, 40th and 20th). Dark red lines 626 

show posterior medians. 627 
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