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ABSTRACT 35 

Forecasts of community dynamics are essential for the management of biodiversity. Theory suggests 36 

these predictions can be improved by leveraging multi-species dependencies to improve models, but 37 

empirical support for this is lacking. We test whether models that learn from multiple species, both 38 

to estimate nonlinear environmental effects and temporal dependence, improve forecasts for a 39 

semi-arid rodent community. Using Dynamic Generalized Additive Models, we analyze monthly 40 

captures for nine rodents over 25 years. We find strong evidence that multi-species dependencies 41 

improve performance, as models that captured these effects gave superior predictions. These 42 

models also provide novel insights, in our case by quantifying how changes in abundance for some 43 

species can have delayed, nonlinear effects on others while also uncovering important lagged effects 44 

of environmental drivers. We show that multivariate models are useful not only to improve 45 

ecological forecasts but also to ask targeted questions about community dynamics. 46 
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INTRODUCTION 51 

Predicting the impacts of environmental change on ecosystems is a global challenge 52 

(Intergovernmental Science - Policy Platform on Biodiversity and Ecosystem Services 2019). The 53 

need for explicit predictions has sparked a renewed emphasis on ecological forecasting (Lewis et al. 54 

2023) including the prediction of population dynamics (Ward et al. 2014, Johnson-Bice et al. 2021). 55 

But this is a difficult task, particularly because ecological forecasting is often a multivariate problem. 56 

Monitoring studies typically gather data for multiple species, and managers often require 57 

community predictions to guide decisions (Clark et al. 2001, Greenville et al. 2016). A major focus of 58 

empirical and theoretical research seeks to understand how we can improve predictions using 59 

models that leverage data from multiple species (Holmes et al. 2014, Powell‐Romero et al. 2023). 60 

Forecasting species abundances is inherently difficult because many processes influence 61 

population dynamics (Johnson-Bice et al. 2021, Clark and Wells 2023). Population dynamics often 62 

exhibit complex responses to drivers (including non-linear responses and lags; Cárdenas et al. 2021), 63 

temporal autocorrelation (Ives et al. 2003), and data complexities (e.g., irregular sampling, 64 

observation errors, missing samples, and over dispersed counts; Clark and Wells 2023). Species’ 65 

relationships are also important. The way a species responds to change results from direct influences 66 

of the environment on its ability to find resources and reproduce (Heske et al. 1994) and the effects 67 

of other species on its abundance and vital rates (Ives et al. 2003). Inference on both processes can 68 

be informed using data from multiple species, which should theoretically improve near-term 69 

predictions. For example, we expect some species to exhibit shared responses to environmental 70 

factors (Christensen et al. 2018), and we gain more precise inferences by learning these responses 71 

hierarchically. Importantly, these responses do not need to be assumed to be linear, as Pedersen 72 

and colleagues (2019) recently showed how Hierarchical Generalized Additive Models (HGAMs) can 73 

estimate multiple non-linear relationships in a single joint model. In addition to shared 74 

environmental responses, we also expect direct biotic interactions to play important roles (Heske et 75 
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al. 1994, Ernest and Brown 2001, Bledsoe and Ernest 2019). Models that impose multispecies 76 

temporal dependence offer a solution to explore these interactions and use them to make more 77 

informed predictions (Ives et al. 2003, Greenville et al. 2016). However, while we postulate that 78 

capturing these sources of multispecies dependence will improve population-level forecasts, 79 

empirical tests of this hypothesis are rare. 80 

We evaluate whether models that incorporate multi-species relationships can improve near-81 

term population forecasts. Using multi-species data from a long-term monitoring study, we build 82 

models that learn species’ shared environmental responses and temporal interactions to make 83 

inference about factors that relate to community dynamics. Comparisons with simpler models are 84 

used to test whether the incorporating biotic dependence structures improves predictions. We show 85 

that this approach to modelling population abundances provides a more detailed understanding of 86 

the drivers of ecological community change as well as more accurate forecasts. 87 

 88 

MATERIALS AND METHODS 89 

Rodent capture data 90 

Our data come from the Portal Project, a long-term monitoring study of a desert rodent community 91 

near Portal, Arizona (Brown 1998, Ernest et al. 2020). Sampling covers 24 experimental plots (50m x 92 

50m), each containing 49 baited traps that are opened following the lunar monthly cycle (Ernest et 93 

al. 2020). The data exhibit many of the complexities that confront population forecasting. These 94 

include imperfect detection, missing observations (~5% on average; Dumandan et al. 2023b) and 95 

over dispersed discrete counts that include many zeros. Environmental drivers are known to exhibit 96 

lagged and nonlinear impacts on rodent population dynamics (Brown and Ernest 2002). The rodents 97 

at Portal compete for resources in complex ways, and these biotic interactions are postulated to 98 

have important consequences for population dynamics (Lima et al. 2008, Bledsoe and Ernest 2019). 99 
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We used the portalr R package (Christensen et al. 2019) to extract trapping records from the 100 

Portal data (version 3.134.0; downloaded October 2022; https://doi.org/10.5281/zenodo.7255488). 101 

The design uses three experimental treatments with varying levels of rodent exclusion (Ernest et al. 102 

2020), but our study focused on long-term control plots (that allow free movement of all rodents) 103 

for the period December 1996 – August 2022. We excluded transient species, observed in < 10% of 104 

trapping sessions, to focus on species with the most influence on community dynamics (Figure 1). 105 

 106 

 107 

 108 

Figure 1: Rodent captures from December 1996 to August 2022. Counts are total captures across 109 

long-term control plots. Blanks are missing values. 110 

 111 

Covariate measurements 112 
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Rodents at Portal depend on environmental conditions that reflect resource availability and seasonal 113 

breeding signals. We therefore modelled species’ responses to environmental variation using 114 

minimum temperature and the Normalized Difference Vegetation Index (NDVI) as covariates. Hourly 115 

air temperature (°C) is recorded by an automated weather station, while Landsat images are used to 116 

calculate NDVI (accessed from the USGS Earth Resources Observation and Science Center; 117 

https://www.usgs.gov/centers/eros). Measurements were converted to monthly averages and 118 

extracted from one year before the start of captures (from January 1995) to calculate lagged and 119 

moving average versions. 120 

 121 

Model description 122 

There were several aspects we needed to consider in our model. Total captures showed both short- 123 

and long-term fluctuations (Figure S1). Captures for individual species undulated over multi-annual 124 

cycles and were positively autocorrelated at lags up to 20 months (Figures S2 and S3). To test 125 

whether multi-species information improves model performance, we needed to model these 126 

dynamics using multivariate dependence structures. We also needed to leverage community 127 

information to estimate species’ time-delayed responses to vegetation and temperature variation. 128 

Rodent captures were modelled as 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 observations of a latent state that was composed of a 129 

hierarchical GAM component (to capture shared environmental responses) and a multivariate 130 

dynamic component to capture multispecies dependence. The full description for this model, which 131 

we abbreviate to GAM-VAR (Figure 2).   132 

https://www.usgs.gov/centers/eros
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 133 

Figure 2: Definition of the GAM-VAR model. Coloured boxes highlight the five main components of 134 

the latent state model. 135 

 136 

The GAM component consisted of hierarchical NDVI and minimum temperature effects that 137 

were informed by theory and exploration of covariate time series (shown in Figures S4-5). We used a 138 

12-month moving average of NDVI (𝑁𝐷𝑉𝐼𝑀𝐴12) because we expected rodents to respond gradually 139 

to vegetation change. Our model assumed linear effects of 𝑁𝐷𝑉𝐼𝑀𝐴12, equivalent to hierarchical 140 

slopes. Responses to temperature were estimated using hierarchical distributed lags in which 141 

nonlinear effects of minimum temperature varied smoothly with increasing lag. To encourage multi-142 

species learning, we included a shared community-level response 𝑓𝑔𝑙𝑜𝑏𝑎𝑙(𝑀𝑖𝑛𝑡𝑒𝑚𝑝, 𝑙𝑎𝑔) and 143 

species-level deviations 𝑓𝑠𝑝𝑒𝑐𝑖𝑒𝑠[𝑖](𝑀𝑖𝑛𝑡𝑒𝑚𝑝, 𝑙𝑎𝑔). These allowed each species to show a different 144 

temperature response from the community average, but only if there was information in the data to 145 

support such a deviation. We used lags of up to six months in the past.  146 

A vector autoregression (VAR) of order 1 captured lagged multispecies dependence, where 147 

𝐴 was a matrix of autoregressive coefficients. Diagonal entries of 𝐴 described density-dependence, 148 
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or the effect of a species’ state (at time 𝑡) on its own lagged values (at 𝑡 − 1). Off-diagonals 149 

represented cross-dependencies that could provide useful biological insights into interspecific 150 

interactions. For example, the entry in 𝐴[2,3] described the effect of species 3‘s state at time 𝑡 − 1 151 

on the current state for species 2 (at time 𝑡). To encourage stability and prevent forecast variance 152 

from increasing indefinitely, we enforced stationarity following methods described in Heaps (2023). 153 

Briefly, a multistep process mapped the constrained 𝐴 matrix to unconstrained partial 154 

autocorrelations 𝑃. Process errors were allowed to be contemporaneously dependent to capture 155 

any unmodelled correlations. Priors are shown in Figure 2 and described in the accompanying R 156 

code. 157 

 158 

Do multi-species dependencies improve predictions? 159 

We tested whether learning from multiple species improved our model’s predictions using model 160 

comparisons. To do so, we estimated a series of benchmark models that acted as natural 161 

simplifications of the GAM-VAR by eliminating multi-species components in a stepwise manner. The 162 

first benchmark model used the same HGAM linear predictor as the GAM-VAR but replaced the 163 

multi-species VAR(1) dynamics with an AR(1) process. This model (called GAM-AR in subsequent 164 

sections) eliminated the covariances and temporal cross-dependencies among species’ latent states, 165 

allowing us to ask whether the multivariate dynamic component was supported for improving model 166 

fit. Next, we further simplified the GAM-AR by removing the hierarchical environmental response 167 

functions from the linear predictor. This forced the model to learn environmental responses for each 168 

species without using information from other species in the data (GAM-AR no pooling). The final 169 

benchmark, referred to as AR, also used independent AR(1) states but removed the GAM 170 

component entirely. Because this model only learned from past observations, comparisons against it 171 

helped us understand how covariates impacted predictions and inferences. Each candidate model 172 

was trained on all observations (through August 2022, N = 319 timepoints). Models were then 173 
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compared using Pareto-smoothed importance sampling leave-one-out cross-validation (PSIS-LOO), a 174 

method that reweights posterior draws to estimate leave-one-out pointwise prediction accuracy 175 

using Estimated Log Predictive Density (ELPD) values (Vehtari et al. 2017). 176 

Benchmarking against simpler models is also useful for forecast evaluation (Simonis et al. 177 

2021). To evaluate forecasts in a way that respected the temporal nature of our forecasting exercise, 178 

we used exact leave-future-out cross-validation in an iterative expanding window framework. 179 

Models were re-trained on the first 273 time points (~22 years), with the subsequent 12 time points 180 

(through November 2019; selected to avoid a large sampling gap due to the COVID-19 pandemic) 181 

used to evaluate forecasts. This allowed us to gauge how models might perform in a forecast 182 

scenario, but it only provided a single comparison. To further scrutinize models, we retrained models 183 

on the first 75, 115, 154, 194, and 233 observations, and evaluated the subsequent 12 observations 184 

in each cross-validation fold. All comparisons used an evenly weighted combination of two proper 185 

multivariate scoring rules. We chose the variogram score, which penalizes distributions that do not 186 

adequately capture correlations in test observations, and the energy score, which ignores 187 

correlations but penalizes forecasts if they are not well-calibrated (Scheuerer and Hamill 2015).  188 

 189 

Estimation 190 

We estimated posterior distributions with Hamiltonian Monte Carlo in Stan (Carpenter et al. 2017) 191 

using the cmdstanr interface (Gabry and Češnovar 2021). Stan’s superior diagnostics guided us to a 192 

model that could be reliably estimated, which included deviation functions for the four most 193 

frequently captured species (D. ordii, D. merriami, Onychomys torridus and C. penicillatus). 194 

Posteriors were processed in R 4.3.1 (R Core Team 2020) with the mvgam R package (Clark and Wells 195 

2023). Traceplots, rank normalized split-R̂ and effective sample sizes interrogated convergence of 196 

four parallel chains. Each chain was run for 500 warmup and 1600 sampling iterations. R code to 197 
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replicate analyses and produce Figures is included in the Supplementary materials and will be 198 

permanently archived on Zenodo on acceptance. 199 

 200 

RESULTS 201 

Modeling relationships among species improves prediction performance 202 

Our data included total captures for nine rodent species over 319 time points. All models showed 203 

adequate convergence and posterior exploration, and randomized quantile residuals showed no 204 

obvious evidence of unmodelled systematic variation (Figures S6 – S7). In-sample performances 205 

differed among models, with models that leveraged multi-species information producing higher 206 

ELPD’s than simpler models (Table 1). This was the case for all stepwise comparisons apart from one: 207 

although the GAM-AR, which used partial pooling to learn species’ environmental responses, was 208 

favoured over the simpler GAM-AR no pooling, overlapping ELPD standard errors suggested there 209 

was large uncertainty about the magnitude of this difference (Table S1). 210 

Forecast performance also differed among models, with more complex multi-species models 211 

again tending to outperform simpler models. Forecasts from the multi-species GAM-VAR were the 212 

most accurate when considering all validation points in aggregate and for 4 / 6 cross-validation folds 213 

(Figure 3; Figure S8). The GAM-AR and GAM-AR no pooling models gave similar predictions and 214 

effectively tied for second in forecast performance, giving the most accurate forecasts in 2 / 6 cross-215 

validation folds (Figure 3). The simplest AR model gave the worst forecasts.  216 

The GAM-VAR model estimated large, positive autoregressive coefficients for most species 217 

(diagonal entries in Figure S9). It also relied strongly on information from multiple species by 218 

estimating many non-zero cross-dependence effects (off-diagonal entries in Figure S9) and process 219 

error correlations (Figure S10), which provided structure that the model leveraged to accurately 220 

simulate historical dynamics. The model recovered multiple notable transitions observed in the 221 
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time-series including a major shift in community composition around 2000 following the 222 

establishment of Bailey's pocket mouse C. baileyi, and a second restructuring that happened 223 

following a drought in 2008 – 09 (Figure S11). It was these multispecies effects that enabled the 224 

GAM-VAR to produce more accurate forecasts. For example, Ord’s kangaroo rat (D. ordii) and silky 225 

pocket mouse (P. flavus) had negative cross-dependencies, providing structure that the model used 226 

to make predictions (Figure 4). The benchmarks, which ignored this structure, produced smoother, 227 

less synchronous trends and wider uncertainties (Figure S12). Next, we use simulations to interpret 228 

the multi-species effects that allowed the GAM-VAR to outperform simpler models. 229 

 230 

Figure 3: Forecast performances for three of the competing models (we do not show metrics for the 231 

GAM-AR no pooling model as they were not distinguishable from the GAM-AR metrics). Y-axis 232 

shows the log of the weighted variogram score, a scoring rule that penalizes multivariate forecasts if 233 

they are not well calibrated and do not capture inter-series correlations (lower scores preferred). 12-234 

step ahead predictions were evaluated over six evenly spaced origins. Points show individual scores. 235 

Lines show Loess smoothed trend lines. Missing points indicate a missing observation. 236 
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 237 

 238 

Figure 4: Posterior state estimates (top panel) and posterior predictions (bottom two panels) from 239 

the GAM-VAR model for Ord’s kangaroo rat (Dipodomys ordii; in red) and silky pocket mouse 240 

(Perognathus flavus; in blue) for training and testing periods (demarked by the dashed line). State 241 

estimates were standardized for comparisons. Shading shows quantiles (90th, 60th, 40th and 20th). 242 

Dark lines show posterior medians. Points show observations. 243 

 244 

Species relationships provide new insights into community dynamics 245 
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Our cross-validation metrics strongly favoured the GAM-VAR and suggested that the multivariate 246 

dynamic component was a particularly important driver of increased performance. Estimates of 247 

process error were larger for the benchmarks than the GAM-VAR for nearly all species (Figure S13). 248 

But interpreting this cross-dependence is difficult because VAR effects provide only a marginal view 249 

into a complex network of conditional associations. We used impulse response functions (Lütkepohl 250 

1990) to better understand the model. These functions involve simulating an ‘impulse’ in captures 251 

for one species and then evaluating how predicted captures for other species changed over the next 252 

six months (Figure 5). Following a simulated impulse of three extra captures for Merriam’s kangaroo 253 

rat (D. merriami), the model expected some initial increases (due to the correlated process errors) 254 

followed by declines in captures for most of the other species (Figure 5). The shapes of these 255 

declines varied by species. Captures for the two pocket mouse species (C. baileyi and C. penicillatus) 256 

showed more immediate declines, while the two grasshopper mouse species (O. leucogaster and O. 257 

torridus) declined more gradually (Figure 5). In contrast, the other kangaroo rat species (D. ordii) was 258 

expected to increase following a D. merriami pulse (Figure 5). Different effects were expected when 259 

changing the focal species (Figure S14). 260 
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 261 

Figure 5: Impulse responses showing how mean captures (𝜇, on the log scale) are expected to 262 

change over the next six months if three additional D. merriami individuals are captured. Ribbons 263 

show quantiles (90th, 60th, 40th and 20th). Dark red lines show posterior medians. 264 

 265 

Positive NDVI associations and hierarchical minimum temperature effects 266 

We found broad support for positive 𝑁𝐷𝑉𝐼𝑀𝐴12 associations (Figure 6). Conditional simulations, 267 

which asked how rodents might respond if moved from a relatively dry/brown vegetation state to a 268 

relatively moist/green vegetation state, gave higher probability to increased captures in the 269 

moist/green scenario for all species. But uncertainties varied. Greatest increases were expected for 270 

Ord's kangaroo rat (D. ordii), Western harvest mouse (R. megalotis) and cactus mouse (Peromyscus 271 

eremicus). The model was less confident about the direction of effect for Northern grasshopper 272 

mouse (O. leucogaster) and for Meriam’s kangaroo rat (D. merriami). For these species, the model 273 

expected increases in ~70% of simulations and decreases in ~30% (Figure 6). While conclusions were 274 
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generally similar when using the GAM-AR no pooling model, which did not leverage multi-species 275 

learning, estimates were much more variable (Figure S15). 276 

 277 

 278 

Figure 6: Posterior NDVI contrasts from the GAM-VAR model. Histograms illustrate how expected 279 

captures would change if the z-scored NDVI 12-month moving average changed from a relatively low 280 

value (-0.50) to a relatively high value (0.50). Numbers indicate the proportion of probability mass at 281 

or below zero (in blue) vs above zero (in red). 282 

 283 

We interpreted minimum temperature distributed lag effects by simulating functions for 284 

each species using temperatures from 1997 (Figure S15). There was uncertainty in function shapes 285 

for all species except desert pocket mouse (C. penicillatus). Captures for this species were expected 286 

to increase from May to October and decrease sharply in winter. For seven of the other eight 287 

species, the model expected more captures in spring (March – May) and fewer in late summer / 288 
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autumn (July – October). But the shapes of these responses varied. Kangaroo rats (D. merriami and 289 

D. ordii) had smoother shapes that decreased gradually from mid-summer to mid-winter, while the 290 

Southern grasshopper mouse (O. torridus) was expected to show higher captures in late autumn / 291 

early winter (Figure S16). The five species that relied solely on the shared function (O. leucogaster, C. 292 

baileyi, P. eremicus, P. flavus and R. megalotis) were expected to show tighter spring peaks and 293 

autumn troughs. When simulating from the GAM-AR no pooling model, the lack of multi-species 294 

learning was obvious. There was not enough information to learn nonlinear functions for these 295 

species, with the model estimating flat functions centred on zero for all five species (Figure S17). 296 

 297 

DISCUSSION 298 

Understanding and predicting change in species abundances requires models that capture realistic 299 

biotic structure and address data complexities (Hampton et al. 2013, Holmes et al. 2014). Our results 300 

show that incorporating relationships between species to estimate temporal dependence, and to 301 

learn non-linear associations with environmental drivers, yields better model fits and more accurate 302 

predictions. In addition to improved forecasts, incorporating these multi-species complexities 303 

provides opportunities for interpretation that are not possible with simpler models. Our dynamic 304 

VAR process uncovered biotic structure representing a cascading network of relationships within the 305 

community. Captures for all species increased with higher NDVI and responded nonlinearly to 306 

temperature change, but the shapes and magnitudes of these responses differed across species. 307 

Models that describe biological complexity, both through nonlinear covariate functions and multi-308 

species dependence, are useful for asking targeted questions about drivers of change. 309 

 310 

Leveraging relationships between species  311 
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Our analyses show why models that target multi-species effects should be prioritized to study 312 

community dynamics. The GAM-VAR’s process variance estimates were smaller than those from the 313 

benchmarks because it used more information from the data. By learning relationships between 314 

species the model could better capture both shared responses to environmental factors (e.g., a wet 315 

year is good for most species) and direct temporal effects (e.g., competition for seeds). Simulations 316 

provided deeper insights into multi-species population dynamics. Simulated responses to sudden 317 

impulses were often delayed and nonlinear, with cascading impacts lasting up to six months. This 318 

type of simulation can have many broad uses in applied ecology, for example by assessing which 319 

species have the strongest cascading effects, what changes we can expect from management actions 320 

targeting key species, and how these effects relate to regime transitions (Ives et al. 2003). 321 

 322 

Learning hierarchical nonlinear effects from community data 323 

Our model captured linear, nonlinear, and lagged responses to environmental and climatic 324 

covariates that were informed by all species at once. While we cannot interpret these estimates as 325 

causal, recovered relationships were consistent with operational models of the system. Positive 326 

associations between capture rates and a 12-month moving average of NDVI were expected because 327 

rodents at Portal depend on plants for food and resources (Ernest et al. 2000, Brown and Ernest 328 

2002). But there were interesting patterns of variation in these effects. The strongest positive 329 

association was shown by Ord's kangaroo rat (D. ordii), a species that consumes and harvests grasses 330 

(Kerley et al. 1997). In contrast, Merriam’s kangaroo rat (D. merriami) showed weaker associations 331 

with NDVI. This species has been predicted to increase in prevalence with more severe droughts, in 332 

part due to a preference for foraging habitat with less vegetation (Cárdenas et al. 2021). 333 

 Our study shows how distributed lag effects can be learned hierarchically and provides 334 

useful insights into delayed responses to temperature for rodents at Portal. Most species showed 335 

higher captures when temperatures were low 3 – 4 months prior, suggesting increases begin during 336 
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mid to late spring when resources become available. But others showed increases during cooler 337 

months in autumn and winter. Asynchronous phenology, where species show different reproductive 338 

timing in the presence of competition, has been reported at Portal (Dumandan et al. 2023b) and 339 

may be one reason why seasonal patterns differed among species. Comparing temperature 340 

responses on control vs experimental plots may help to determine if these competitive forces play a 341 

role in seasonal capture variation. 342 

Despite the large number of observations in our data, estimates of environmental responses 343 

were more precise when they were learned from all species jointly. This strongly supports the need 344 

for hierarchical models in ecology. But while hierarchical intercepts and slopes are common, there 345 

has been less emphasis on hierarchical nonlinear functions (but see Pedersen et al. 2019). Open 346 

access to software that makes it easy to construct and estimate these types of functions, such as the 347 

mvgam R package that we used here (Clark and Wells 2023), should improve their uptake in 348 

ecological forecasting. 349 

 350 

Future directions 351 

As ecosystems undergo shifts in species composition (e.g. Dornelas et al. 2014), integrating species 352 

relationships into forecasting models may become increasingly important. Recent work leveraging 353 

the Portal Project’s long-term experimental manipulations shows that single-species models can 354 

perform poorly when transferred to novel biotic contexts (i.e., between controls and manipulations 355 

Dumandan et al. 2023a). This suggests that in ecosystems undergoing biotic reorganization single-356 

species models may be insufficient for predicting future populations, even if such models perform 357 

well under current conditions. By considering species relationships, multi-species models like the 358 

GAM-VAR have the potential to transfer better into situations where composition is changing – an 359 

assumption that can be tested using the experimental plots at Portal. 360 
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More broadly, we hope that estimating multi-species dependencies will result in more 361 

accurate forecasts, inspire new questions, and lead to an improved understanding of the factors that 362 

govern ecological community dynamics. The combination of long-term monitoring, manipulative 363 

experiments, and models that capture real-world biological complexities provide a framework for 364 

advancing both our understanding of ecological systems and our ability to forecast their dynamics. 365 

 366 
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 376 

SUPPORTING INFORMATION CAPTIONS 377 

Figure S1: Total rodent captures from the Portal Project for the period December 1996 to August 378 

2022. Counts represent total captures for nine species across long-term control plots, sampled at 379 

each cycle of the lunar moon. Blanks represent missing values. 380 

Figure S2: Autocorrelation functions of rodent capture time series in the Portal Project. Dashed lines 381 

show values beyond which the autocorrelations are considered significantly different from zero.  382 

Figure S3: Histograms of rodent capture time series in the Portal Project. Counts represent total 383 

captures across long-term control plots, sampled at each cycle of the lunar moon.  384 
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Figure S4: Seasonal and Trend decomposition using Loess smoothing (STL) applied to observed 385 

minimum temperature time series for the period December 1996 – August 2022. The top panel 386 

shows the raw time series. The middle plot shows the estimated long-term trend (calculated using a 387 

Loess regression to the de-seasoned time series). The bottom plot shows the time-varying estimate 388 

of seasonality (calculated using a Loess regression that smooths across years).  389 

Figure S5: Top panel: observed Normalized Difference Vegetation Index (NDVI) time series for the 390 

period December 1996 – August 2022, with obvious seasonal fluctuations. Bottom panel: a 12-391 

month moving average that represents smooth, gradual changes in NDVI at the study site. 392 

Figure S6: Autocorrelation functions of randomized quantile residuals from the GAM-VAR model. 393 

Ribbon shading shows posterior empirical quantiles (90th, 60th, 40th and 20th). Dark red lines show 394 

posterior medians. Dashed lines show values beyond which the autocorrelations would be 395 

considered significantly different from zero in a Frequentist paradigm. 396 

Figure S7: Normal quantile-quantile plots of randomized quantile residuals from the GAM-VAR 397 

model. Ribbon shading shows posterior empirical quantiles (90th, 60th, 40th and 20th). Dark lines show 398 

posterior medians. 399 

Figure S8: Posterior predictions from the GAM-VAR model for the training and testing periods 400 

(demarked by the vertical dashed line). Latent state estimates were scaled to unit variance for 401 

comparisons. Ribbon shading shows posterior empirical quantiles (90th, 60th, 40th and 20th). Dark 402 

lines show posterior medians. Points show observations. 403 

Figure S9: Posterior distributions of vector autoregressive coefficients (matrix 𝑨). Off-diagonals 404 

represent cross-dependencies. For example, the entry in 𝑨[𝟏, 𝟐] captures the effect of DO’s state at 405 

time 𝑡 − 1 on the current state estimate for DM (at time 𝑡). Diagonals (with grey shading) represent 406 

autoregressive coefficients (the effect of a species’ state at time 𝑡 − 1 on its own state at time 𝑡). 407 

Colours indicate the proportion of probability mass at or below zero (in blue) vs above zero (in red). 408 

DO, Dipodomys merriami; DO, Dipodomys ordii; OL, Onychomys leucogaster; OT, Onychomys 409 

torridus; PB, Chaetodipus baileyi; PE, Peromyscus eremicus; PF, Perognathus flavus; PP, Chaetodipus 410 

penicillatus; RM, Reithrodontomys megalotis. 411 

Figure S10: Posterior distributions for process error correlations (matrix 𝑪). Colours indicate the 412 

proportion of probability mass at or below zero (in blue) vs above zero (in red). DO, Dipodomys 413 

merriami; DO, Dipodomys ordii; OL, Onychomys leucogaster; OT, Onychomys torridus; PB, 414 

Chaetodipus baileyi; PE, Peromyscus eremicus; PF, Perognathus flavus; PP, Chaetodipus penicillatus; 415 

RM, Reithrodontomys megalotis. 416 
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Figure S11: Simulated rodent communities. Using the GAM-VAR model’s posterior predictive 417 

distribution, we simulated communities of 200 individuals at different timepoints to investigate how 418 

well the model captured known community transitions. Colours represent different species 419 

Figure S12: Posterior trend estimates from three competing models for Ord’s kangaroo rat 420 

(Dipodomys ordii; in red) and silky pocket mouse (Perognathus flavus; in blue). Trends were scaled to 421 

unit variance for comparisons. Ribbon shading shows posterior empirical quantiles (90th, 60th, 40th 422 

and 20th). Dark lines show posterior medians. 423 

Figure S13: Posterior estimates of trend standard deviations from the three competing models. 424 

Estimates are the square root of diagonal parameters from the trend covariance matrix (𝜮𝑽𝑨𝑹) for 425 

the GAM-VAR (black), GAM-AR (red) and AR (blue). 426 

Figure S14: Expected responses to a pulse in captures of the desert pocket mouse (Chaetodipus 427 

penicillatus). Ribbon plots show how mean captures (μ, on the log scale) are expected to change 428 

over the next six months if three additional C. penicillatus individuals are captured. Ribbon shading 429 

shows posterior empirical quantiles (90th, 60th, 40th and 20th). Dark red lines show posterior 430 

medians. 431 

Figure S15: Posterior NDVI contrasts from the independent slopes component of the GAM-AR no 432 

pooling model. Histograms illustrate how much the expected number of captures, 𝑒𝑥𝑝(𝜇), would 433 

change if the z-scored NDVI 12-month moving average (𝑁𝐷𝑉𝐼𝑀𝐴12) changed from a relatively low 434 

value (-0.50) to a relatively high value (0.50). Numbers in each plot indicate the proportion of 435 

probability mass at or below zero (in blue) vs above zero (in red). 436 

Figure S16: Conditional distributed lag minimum temperature functions from the hierarchical 437 

smooth component of the GAM-VAR model, using temperatures observed in 1997. All other effects 438 

were ignored. Functions for O. leucogaster, C. baileyi, P. eremicus, P. flavus and R. megalotis were 439 

drawn solely from the global function. Functions for other species were the sum of the global 440 

function and a species-specific deviation function. Estimates were scaled to unit variance for 441 

comparisons. Ribbons show posterior empirical quantiles (90th, 60th, 40th and 20th). Dark red lines 442 

show posterior medians. 443 

Figure S17: Conditional distributed lag minimum temperature functions from the independent 444 

smooth component of the GAM-AR no pooling model, using temperatures observed in 1997. All 445 

other effects were ignored. Functions for O. leucogaster, C. baileyi, P. eremicus, P. flavus and R. 446 

megalotis were drawn solely from the global function. Functions for other species were the sum of 447 

the global function and a species-specific deviation function. Estimates were scaled to unit variance 448 
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for comparisons. Ribbons show posterior empirical quantiles (90th, 60th, 40th and 20th). Dark red lines 449 

show posterior medians. 450 
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