
1 
 

Forecasting rodent population dynamics and community transitions with dynamic nonlinear 1 

models 2 

Nicholas J. Clark1,2, S. K. Morgan Ernest3, Henry Senyondo3, Juniper L. Simonis3,4, Ethan P. White3, 3 

Glenda M. Yenni3, K. A. N. K. Karunarathna1,2,5  4 

 5 

1 School of Veterinary Science, Faculty of Science, The University of Queensland, Queensland 4343, 6 

Australia 7 

2 UQ Spatial Epidemiology Laboratory, School of Veterinary Science, The University of Queensland, 8 

Gatton, Queensland 4343, Australia 9 

3 Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida 32611, USA 10 

4 DAPPER Stats, 3519 NE 15th Avenue, Suite 467, Portland, Oregon 97212, USA 11 

5 Department of Mathematics, Faculty of Science, Eastern University, Sri Lanka 12 

 13 

Short title: 14 

Modelling rodent community regime transitions 15 

 16 

Corresponding author: 17 

Nicholas J. Clark; n.clark@uq.edu.au  18 

  19 

mailto:n.clark@uq.edu.au


2 
 

ABSTRACT  20 

Ecological communities are dynamic. These dynamics are influenced by many sources of variation, 21 

making it difficult to understand or predict future change. Biotic interactions, and other sources of 22 

multi-species dependence, are major contributors. But ecological prediction overwhelmingly focuses 23 

on models that treat individual species in isolation. Here, we model the relative importance of 24 

nonlinear environmental responses and multi-species temporal dependencies for a community of 25 

semi-arid rodents. We use a hierarchical, Dynamic Generalized Additive Model (DGAM) to analyze 26 

monthly capture time series for nine rodents across a 25-year period. A vector autoregression to 27 

model unobserved trends allowed us to ask targeted questions about population dynamics. We find 28 

that multi-species dependencies are important for capturing unmeasured drivers of community 29 

change. Variation in captures for some species are expected to have delayed, often nonlinear effects 30 

on captures for others. These complexities are useful for inference but also for prediction. Models 31 

that captured multi-species dependence gave better near-term forecasts of community change than 32 

models that ignored it. We also quantify nonlinear effects of temperature change and positive 33 

effects of vegetation greenness on captures for nearly all species. Models that describe biological 34 

complexity, both through nonlinear covariate functions and multi-species dependence, are useful to 35 

ask targeted questions about population dynamics and drivers of change. 36 
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INTRODUCTION 42 

Regime shifts are sudden transitions from one ecological state to a stable, but different, state (Foley 43 

et al. 2003, Chaparro-Pedraza and de Roos 2020). Forecasting these events is a high priority (Biggs et 44 

al. 2009, Carpenter et al. 2011, Brook et al. 2013), and so it should be. Abrupt transitions can pose 45 

real threats to ecosystems and people that depend on them (Scheffer et al. 2009, Levin et al. 2013). 46 

Marine examples include catastrophic fishery collapses and shifts from kelp forests to sea urchin 47 

barrens (Roughgarden and Smith 1996, Biggs et al. 2009). On land, cattle grazing and fire 48 

suppression are linked to rapid transitions from semi-arid grassland to shrubland, magnifying erosion 49 

and driving declines of grassland species (Brandt et al. 2013, Cosentino et al. 2014). Other examples 50 

abound (May 1977, Anderson et al. 2008, Scheffer et al. 2009).  51 

But most ecosystem changes are not sudden, they are gradual (Fukami and Wardle 2005, 52 

Hughes et al. 2013). To make better predictions, we must learn more about why gradual transitions 53 

happen. The relative abundances of species, for example, fluctuate for many reasons (Hampton et 54 

al. 2013). Food and shelter availability limit survival. Intraspecific (e.g. density dependence) and 55 

interspecific (e.g. competition, predation) interactions affect colonization and vital rates. Severe 56 

weather events and climate variation alter habitat suitability. Current changes in abundance can 57 

have carry-on effects on abundance in future time periods, irrespective of local conditions. These 58 

sources of variation combine to produce the observations we must analyze (Green et al. 2005, 59 

Greenville et al. 2016, Ovaskainen et al. 2017, Lasky et al. 2020). This makes it difficult to 60 

understand, let alone predict, ecosystem change. 61 

In this paper, we pose a probability model to meet some of the challenges of inferring and 62 

predicting community dynamics. We use this model to analyse time series of long-term trapping 63 

data for multiple rodent species. Our work has two main goals. First, we make inferences about 64 

environmental and biotic factors that relate to population dynamics. Second, we forecast how the 65 

community is expected to change over short timescales. Our data come from the Portal Project, a 66 
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monitoring study designed to understand how rodent communities change over time (Brown 1998, 67 

Ernest et al. 2020). Connections between species interactions, environmental disturbance and 68 

population dynamics in this system have been extensively explored (Brown and Munger 1985, Heske 69 

et al. 1994, Brown 1998). Christensen et al. (2018) used latent time series clustering to infer that 70 

some rodent species respond synchronously to disturbances like droughts or storms. Using trait 71 

analyses, Supp et al. (2015) report that transient species are more diverse in their life history traits 72 

and show more chaotic spatial dynamics compared to established species, perhaps due to inferior 73 

competition. Manipulation experiments provide more direct evidence of biotic interactions. We 74 

know that some species can block others from arriving (Ernest and Brown 2001, Christensen et al. 75 

2019a) or force them into less preferred habitat (Heske et al. 1994, Bledsoe and Ernest 2019). But do 76 

these complex interactions lead to regime transitions? If so, can we detect or predict them? 77 

Unfortunately, we don't know if we can estimate, let alone forecast, community transitions 78 

in this system. Do species with similar requirements track environmental change in parallel? Or are 79 

their responses to change blurred by stochastic interactions? These questions are difficult. Previous 80 

work has made progress, but it has relied on pragmatic compromises. Brown and Heske (1990) used 81 

single species time series analyses and multi-species ordinations to detect patterns in rodent capture 82 

rates. But they did not use models that capture important statistical properties of the data, such as 83 

overdispersion and detection error. Christensen et al. (2018) inferred clusters using observed time 84 

series, but they could not infer drivers or generate species-level predictions. Simonis et al. (2021) 85 

and White et al. (2019) used time series models to forecast individual species. But they could not 86 

provide inferences about biotic effects. Bledsoe and Ernest (2019) used regression to relate the 87 

establishment of one species to the distribution of a competitor. Diaz and Ernest (2022) calculated 88 

energy use over time to make inferences about metacommunity dynamics.  89 

All these studies were important and informative. But we still do not know how biotic and 90 

environmental relationships impact regime transitions. We address these gaps with a Bayesian 91 
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probability model that combines two powerful approaches. First, it uses nonlinear functions to 92 

estimate how species respond to environmental change. The model learns these functions 93 

hierarchically, where data for the community informs the response for each species. Second, our 94 

model estimates cross-dependences in species’ capture rates. We show that decomposing time 95 

series analyses in this way allows us to ask more detailed questions about regime transitions. 96 

 97 

MATERIALS AND METHODS 98 

Rodent capture data 99 

The Portal Project is a long-term study in the Chihuahuan Desert near Portal, Arizona (Ernest et al. 100 

2020). In 1977 researchers began investigating rodent populations using baited trapping. A 101 

hierarchical sampling design includes 24 experimental plots (50m x 50m), each containing a grid of 102 

49 Sherman traps (Brown 1998, Ernest et al. 2020). The design currently uses three treatments. In 103 

control plots (N = 10), holes in the fence are large enough to allow free access for all rodents. Full 104 

rodent removal plots (N = 6) have fences with no holes. Kangaroo rat exclosures (N = 8) have fences 105 

with small holes to allow passage of all rodents except the dominant kangaroo rats (Dipodomys 106 

genus). Investigators close holes during trapping to ensure all captured rodents are residents. 107 

Trapping follows the lunar cycle, with observations at approximately monthly intervals. Because of 108 

unforeseen interruptions, missing observations are common. 109 

Open-source software exists to access Portal data (Christensen et al. 2019b, Simonis et al. 110 

2022). We used these tools to extract trapping data (portalR version 3.134.0; downloaded October 111 

2022). Our study focused on control plots from December 1996 – August 2022. The data has records 112 

for 20 rodent species, but some are rarely captured. We excluded species if they were observed in 113 

less than 10% of trapping sessions. We did this to focus inferences on species with the most 114 

influence on regime transitions. This left nine time series. Each observation was a vector of total 115 
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captures (pooled across all control plots) for the nine included species (Figure 1). On a small number 116 

of occasions (12 of 309 timepoints), two trapping sessions occurred in the same month. Because our 117 

models assumed one session per month, we retained the first session. This resulted in a loss of 3.9% 118 

of observations. 119 

 120 

 121 

 122 

Figure 1: Rodent capture data from the Portal Project for the period December 1996 to August 2022. 123 

Counts are total captures across 10 control plots. Blanks are missing values. 124 

 125 

Covariate measurements 126 

Temperature and vegetation changes can impact rodent breeding and activity rates. They can also 127 

determine how much food and shelter is available (Cihlar et al. 1991, Pettorelli et al. 2011). We 128 

aimed to model these effects using minimum temperature and the Normalized Difference 129 
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Vegetation Index (NDVI) as covariates. Hourly air temperature (in °C) is recorded by an automated 130 

weather station. Landsat images are used to calculate NDVI (accessed from the United States 131 

Geological Service Earth Resources Observation and Science Center; 132 

https://www.usgs.gov/centers/eros). Measurements for both covariates were converted into 133 

monthly averages. We extracted covariate data from one year before the start of rodent captures 134 

(January 1995 to August 2022). This allowed us to calculate lagged and moving average versions. 135 

 136 

A hierarchical Dynamic Generalized Additive Model 137 

Hierarchical Generalized Linear Models (GLMs) capture contextual information in a grouped set of 138 

observations (Gelman 2006, McElreath and Koster 2014, McElreath 2020). They do this using 139 

adaptive regularization, where estimates for one group are informed by estimates from all other 140 

groups. This improves inferences and predictions, especially for noisy estimates. And noisy estimates 141 

are the norm in ecology. Other advantages of hierarchical models include reduced sensitivity to 142 

outliers and explicit group-level variance estimates (McElreath 2020). Provided computation is 143 

sound, a well-posed hierarchical model allows predictions to be generalized to unmeasured groups 144 

(Gelman 2006, McElreath and Koster 2014, Betancourt 2017). Many extensions are possible. For 145 

example, Pedersen and colleagues (2019) provide guidance for estimating hierarchical nonlinear 146 

functions in a Generalized Additive Model (GAM) framework. Hierarchical GLMs and GAMs can also 147 

capture overdispersion and autocorrelation, features that are common in ecology (Clark et al. 2001, 148 

Warton et al. 2015). 149 

We used a hierarchical GAM to model rodent captures. We chose a GAM because species’ 150 

responses to environmental change are expected to be nonlinear (Brown and Ernest 2002). Using a 151 

hierarchical model allowed us to jointly estimate these responses for nine species. There were 152 

several aspects of the data we needed to consider in our design. Monthly total rodent captures 153 

showed short-term fluctuations and long-term undulations (Supplementary Figure S1). Captures for 154 

https://www.usgs.gov/centers/eros
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individual species also undulated over multi-annual cycles and were positively autocorrelated at lags 155 

up to 20 months (Supplementary Figure S2). We needed to model these temporal dynamics. The 156 

second aspect we needed to consider was multi-species dependence. Captures for some species 157 

were often synchronized with others. For example, the rise to dominance for the Bailey's pocket 158 

mouse (C. baileyi) in the late 1990’s coincided with more captures for Ord's kangaroo rat (D. ordii) 159 

but fewer captures for other species (Ernest and Brown 2001). These included Merriam's kangaroo 160 

rat (D. merriami), Northern grasshopper mouse (Onychomys leucogaster) and Western harvest 161 

mouse (Reithrodontomys megalotis). When most species suffered declines during a drought in 2008 162 

– 2009 (Christensen et al. 2018), the C. baileyi population crashed and has not recovered on control 163 

plots. This signaled a regime transition to a community dominated by D. merriami and the desert 164 

pocket mouse (C. penicillatus; Figure 1). Other notable aspects of the data were evidence of 165 

overdispersion and missing observations (Figure 1, Supplementary Figure S3). These features 166 

motivate techniques to deal with mean-variance relationships, missingness and multi-species 167 

dynamics. Our model tackled these challenges with the following form: 168 

𝒇𝒐𝒓 𝒊 = 𝟏, … , 𝟗 𝒓𝒐𝒅𝒆𝒏𝒕 𝒔𝒑𝒆𝒄𝒊𝒆𝒔 169 

𝒇𝒐𝒓 𝒕 = 𝟏, … , 𝟑𝟎𝟗 𝒕𝒊𝒎𝒆 𝒔𝒕𝒆𝒑𝒔 170 

𝒀𝒊,𝒕 ~ 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝑩𝒊𝒏𝒐𝒎𝒊𝒂𝒍(𝝁𝒊,𝒕, 𝚽𝒊) 171 

𝒍𝒐𝒈(𝝁𝒊,𝒕) =  𝜷𝑵𝑫𝑽𝑰[𝒊] ∙ 𝑵𝑫𝑽𝑰_𝑴𝑨𝟏𝟐𝒕 + 172 

𝒇𝒈𝒍𝒐𝒃𝒂𝒍[𝒕](𝑴𝒊𝒏𝒕𝒆𝒎𝒑, 𝒍𝒂𝒈) + 𝒇𝒔𝒑𝒆𝒄𝒊𝒆𝒔[𝒊,𝒕](𝑴𝒊𝒏𝒕𝒆𝒎𝒑, 𝒍𝒂𝒈) + 𝒛𝒊,𝒕 173 

 174 

Captures were modelled with a Negative Binomial observation process parameterized by location 𝝁 175 

and overdispersion 𝚽 (where 𝐄(𝒀) =  𝝁 and 𝐕𝐚𝐫(𝒀) =  𝝁 + 𝝁𝟐/𝚽). We determined priors for all 176 

parameters using prior simulations (Betancourt 2021). Our prior choices gave low probability to 177 

impossible outcomes while still allowing wide flexibility. One example was our prior for 𝚽. The 178 

Negative Binomial distribution generalizes to Poisson as 𝚽 → ∞. Conversely, small values of 𝚽 lead 179 

to extreme overdispserion that makes joint estimation of trends difficult (Clark and Wells 2022). We 180 
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sampled 𝚽 from a containment prior using an 𝑰𝒏𝒗𝒆𝒓𝒔𝒆𝑮𝒂𝒎𝒎𝒂 distribution that placed high 181 

probability on large values (𝚽 < 𝟔𝟎𝟎) and low probability on small values (𝚽 < 𝟐): 182 

𝚽 ~ 𝑰𝒏𝒗𝒆𝒓𝒔𝒆𝑮𝒂𝒎𝒎𝒂(𝟎. 𝟓𝟒, 𝟔. 𝟖𝟖) 183 

 184 

 This complexity penalizing strategy pulled observations toward a Poisson distribution when support 185 

for overdispersion was lacking (Simpson et al. 2017).  186 

Variation in 𝝁 was modelled with a linear predictor capturing hierarchical functions of NDVI 187 

and minimum temperature. The structural forms of these functions were informed by theory and 188 

exploration of covariate time series (shown in Supplementary Figures S4-5). We used a 12-month 189 

moving average of NDVI (𝑵𝑫𝑽𝑰𝑴𝑨𝟏𝟐) because we expected rodents to respond gradually to 190 

vegetation change. Our model assumed linear functions for effects of 𝑵𝑫𝑽𝑰𝑴𝑨𝟏𝟐, equivalent to a 191 

hierarchical slopes model. Slopes were drawn from a normal distribution with hyperparameters 192 

𝝁𝑵𝑫𝑽𝑰 and 𝝈𝑵𝑫𝑽𝑰. Because 𝑵𝑫𝑽𝑰𝑴𝑨𝟏𝟐was scaled to unit variance, we used a containment 193 

𝑰𝒏𝒗𝒆𝒓𝒔𝒆𝑮𝒂𝒎𝒎𝒂 prior for 𝝈𝑵𝑫𝑽𝑰 that placed low probability on small values that were not sensible 194 

and can cause computational challenges (𝝈𝑵𝑫𝑽𝑰 < 0.1): 195 

𝜷𝑵𝑫𝑽𝑰~𝑵𝒐𝒓𝒎𝒂𝒍(𝝁𝑵𝑫𝑽𝑰, 𝝈𝑵𝑫𝑽𝑰) 196 

𝝁𝑵𝑫𝑽𝑰 ~ 𝑵𝒐𝒓𝒎𝒂𝒍(𝟎, 𝟏) 197 

𝝈𝑵𝑫𝑽𝑰 ~ 𝑰𝒏𝒗𝒆𝒓𝒔𝒆𝑮𝒂𝒎𝒎𝒂(𝟐. 𝟑𝟕, 𝟎. 𝟕𝟑) 198 

 199 

Autocorrelation functions for one species, desert pocket mouse (Chaetodipus penicillatus), showed 200 

cyclic patterns suggestive of seasonality (Supplementary Figure S3). This was expected, as the desert 201 

pocket mouse responds to falling temperatures and food shortages by entering a state of 202 

intermittent torpor (Brown and Zeng 1989). In the interest of parsimony, we could have used 203 

temperature effects to model seasonality only for this species, ignoring it for others. But 204 

autocorrelation functions can be misleading. They describe patterns in observations, and these 205 
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observations are usually a noisy representation of a latent process. We instead modeled seasonality 206 

for all species using functions of minimum temperature. But we did not believe species’ captures 207 

would respond immediately to temperature change. Changing temperatures, and other signals of 208 

seasonality, induce physiological responses such as reproductive development (Kenagy and 209 

Bartholomew 1981). They also provide signals for plants to begin seed production. These responses 210 

take time. More realistic models allow for delayed responses to climate variation (Dickman et al. 211 

1999, Luis et al. 2010, Wells et al. 2016). We used distributed lag nonlinear functions to capture 212 

seasonality through delayed effects of minimum temperature. These were estimated by finding 213 

penalized coefficients 𝜷 for sets of basis functions 𝒃. The 𝒃 were constructed as tensor products of 214 

marginal basis functions from a cubic spline for lag (4 basis functions) and a thin plate spline for 215 

minimum temperature (basis functions). The tensor product enforced a spline in which functions of 216 

minimum temperature varied smoothly with increasing lag. To encourage multi-species learning, we 217 

included tensor products for the community 𝒇𝒈𝒍𝒐𝒃𝒂𝒍(𝑴𝒊𝒏𝒕𝒆𝒎𝒑, 𝒍𝒂𝒈) and for species-level 218 

deviations 𝒇𝒔𝒑𝒆𝒄𝒊𝒆𝒔[𝒊](𝑴𝒊𝒏𝒕𝒆𝒎𝒑, 𝒍𝒂𝒈): 219 

𝒇𝒈𝒍𝒐𝒃𝒂𝒍 = ∑ 𝜷𝒈𝒍𝒐𝒃𝒂𝒍 ∙ 𝒃𝒈𝒍𝒐𝒃𝒂𝒍 220 

𝒇𝒔𝒑𝒆𝒄𝒊𝒆𝒔[𝒊] = ∑ 𝜷𝒔𝒑𝒆𝒄𝒊𝒆𝒔[𝒊] ∙ 𝒃𝒔𝒑𝒆𝒄𝒊𝒆𝒔[𝒊] 221 

 222 

Basis coefficients 𝜷 were given penalized multivariate normal priors. Prior precisions for these 223 

distributions were the products of penalty matrices 𝑺 and regularization terms 𝛌: 224 

𝜷𝒈𝒍𝒐𝒃𝒂𝒍 ~ 𝑴𝒖𝒍𝒕𝒊𝑵𝒐𝒓𝒎𝒂𝒍(𝟎, (∑ 𝑺𝒈𝒍𝒐𝒃𝒂𝒍 ∙ 𝝀𝒈𝒍𝒐𝒃𝒂𝒍)
−𝟏

) 225 

𝜷𝒔𝒑𝒆𝒄𝒊𝒆𝒔[𝒊] ~ 𝑴𝒖𝒍𝒕𝒊𝑵𝒐𝒓𝒎𝒂𝒍(𝟎, (∑ 𝑺𝒔𝒑𝒆𝒄𝒊𝒆𝒔[𝒊] ∙ 𝝀𝒔𝒑𝒆𝒄𝒊𝒆𝒔[𝒊])
−𝟏

) 226 

𝛌 ~ 𝐍𝐨𝐫𝐦𝐚𝐥(𝟑𝟎, 𝟐𝟓) 227 

 228 
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The ‘smoothing’ parameters 𝛌 controlled function wiggliness by penalizing the second derivative 229 

between adjacent basis coefficients (Miller 2019, Pedersen et al. 2019). Penalty matrices 𝑺 were 230 

constructed using basis expansion routines in the R package mgcv (Wood 2017). We used lags of up 231 

to six months in the past.  232 

We refer to the hierarchical covariate effects (i.e. 233 

𝝁𝑵𝑫𝑽𝑰 + 𝒛𝑵𝑫𝑽𝑰[𝒊]𝝈𝑵𝑫𝑽𝑰 ∙ 𝑵𝑫𝑽𝑰_𝑴𝑨𝟏𝟐𝒕 + 𝒇𝒈𝒍𝒐𝒃𝒂𝒍[𝒕](𝑴𝒊𝒏𝒕𝒆𝒎𝒑, 𝒍𝒂𝒈) +234 

𝒇𝒔𝒑𝒆𝒄𝒊𝒆𝒔[𝒊,𝒕](𝑴𝒊𝒏𝒕𝒆𝒎𝒑, 𝒍𝒂𝒈)) as the GAM component of the linear predictor. The remaining 235 

component, 𝒛, used a multivariate dynamic model to capture lagged cross-dependencies. We used a 236 

vector autoregression (VAR) of order 1, where 𝒛𝒕 was a 9-dimensional vector and 𝑨 was a 9 x 9 237 

matrix of autoregressive coefficients: 238 

𝒛𝒕 ~ 𝑴𝒖𝒍𝒕𝒊𝑵𝒐𝒓𝒎𝒂𝒍(𝑨 ∙ 𝒛𝒕−𝟏, 𝜮𝑽𝑨𝑹) 239 

 240 

Diagonal entries of 𝑨 captured dependence of a species’ trend (at time 𝒕) on its own lagged values 241 

(at 𝒕 − 𝟏). Off-diagonals represented cross-dependencies. For example, the entry in 𝑨[2,3] captured 242 

the effect of species 𝟑‘s trend at time 𝒕 − 𝟏 on the current trend for species 𝟐 (at time 𝒕). 243 

Conditional on these dependencies, latent trends were assumed to be contemporaneously 244 

independent. A diagonal covariance matrix 𝜮𝑽𝑨𝑹 estimated trend variability. An informative 𝑩𝒆𝒕𝒂 245 

prior was used for standard deviations. Off-diagonals were fixed at zero: 246 

𝑨 ~ 𝑵𝒐𝒓𝒎𝒂𝒍(𝟎, 𝟎. 𝟐𝟓) 247 

𝒔𝒒𝒓𝒕(𝜮𝑽𝑨𝑹[𝒊,𝒊]) ~ 𝑩𝒆𝒕𝒂(𝟖, 𝟏𝟐) 248 

𝜮𝑽𝑨𝑹[𝒊,𝒊`] = 𝟎 249 

 250 

Benchmark models for forecast comparisons 251 

Benchmarking against simpler models is useful for forecast evaluation (Simonis et al. 2021, Lewis et 252 

al. 2022). It is difficult to know if we are learning more about a system if our complex models cannot 253 
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produce better, or at least different, predictions than simple models. We refer to our model above 254 

as GAM-VAR for comparison against two benchmarks. The first used the same GAM linear predictor 255 

(and priors) as the GAM-VAR model, but replaced the VAR(1) with AR(1) trends: 256 

𝒛𝒊,𝒕 ~ 𝑵𝒐𝒓𝒎𝒂𝒍(𝑨𝑹𝒊,𝒕−𝟏 ∙ 𝒛𝒊,𝒕, 𝝈𝑨𝑹[𝒊]) 257 

𝝈𝑨𝑹 ~ 𝑩𝒆𝒕𝒂(𝟖, 𝟏𝟐) 258 

 259 

This model (called GAM-AR) eliminated cross-dependencies among species’ trends and was a 260 

natural simplification of GAM-VAR. The second benchmark, referred to as AR, also used AR(1) trends 261 

but removed the GAM component. Because this model only learned from past observations, 262 

comparisons against it helped us understand how covariates impacted predictions and inferences. 263 

 264 

Estimation and forecast evaluation 265 

We estimated posterior distributions for all models with Hamiltonian Monte Carlo in Stan (Carpenter 266 

et al. 2017, Stan Development Team 2022), specifically the CmdStanr interface (Gabry and Češnovar 267 

2021). Stan’s sampling algorithms provide state-of-the-art diagnostics for probabilistic models 268 

(Betancourt 2017). For example, Hamiltonian Markov chains diverged when attempting to estimate 269 

minimum temperature deviations for some species. Our data were not informative enough to learn 270 

how, or even if, these species responded to temperature change in ways that differed from the 271 

community response. Stan’s diagnostics guided us to a model that could be reliably estimated, which 272 

included deviation functions for the four most frequently captured species (Dipodomys ordii, D. 273 

merriami, Onychomys torridus and Chaetodipus penicillatus). Posterior distributions were processed 274 

in R 4.2.0 (R Core Team 2020) with the mvgam R package (Clark and Wells 2022). Traceplots, rank 275 

normalized split-R̂ (Vehtari et al. 2021) and effective sample sizes interrogated convergence of four 276 

parallel chains. Each chain was run for 500 warmup and 1000 sampling iterations. 277 
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Models were trained on the first 289 timepoints (~24 years). Remaining 20 timepoints were 278 

held out to evaluate forecasts. Although the total number of captures was usually forecast to be less 279 

than the number of traps (196 traps per session), on rare occasions our predicted total exceeded this 280 

number. But trapping more animals than we have traps available is unlikely (the observed total 281 

never exceeded 109). This conflict with domain knowledge led us to use judgmental forecast 282 

adjustment. We re-scaled any posterior draws where the total exceeded 196 using the following 283 

equation: �̂�𝒊,𝒕 = (�̂�𝒊,𝒕/ ∑ �̂�𝒕) ∙ 𝟏𝟗𝟔. Rescaling only affected a small percentage of posterior draws 284 

(0.40% of draws were rescaled in the GAM-VAR model). We then proceeded with forecast 285 

evaluation, which for probabilistic models should use the full distribution to better understand 286 

deficiencies (Simonis et al. 2021). We used the variogram score for evaluation. This proper scoring 287 

rule penalizes distributions that are less precise and that do not adequately capture observed 288 

correlations in test observations (Scheuerer and Hamill 2015). For completeness, we repeated 289 

evaluations using unscaled forecasts. R code to replicate all analyses and produce Figures is included 290 

in the Supplementary materials and will be permanently archived on Zenodo on acceptance. 291 

 292 

RESULTS 293 

All models showed adequate convergence and efficient posterior exploration. Rank normalized split-294 

R̂ values were <1.05 for all parameters and effective sample sizes ranged from 285 – 2952 (median = 295 

1980). Because our models were complex, we did not rely on point estimates / intervals to interpret 296 

them. Instead, we use posterior predictive simulations to interrogate and compare models. 297 

 298 

NDVI and minimum temperature effects 299 

Our model consistently recovered environmental and climatic signals. Hierarchical 𝑵𝑫𝑽𝑰𝑴𝑨𝟏𝟐 slopes 300 

were positive with high probability for eight of nine species. Using the sample-average minimum 301 
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temperature and ignoring the trend, we simulated expected captures, 𝐞𝐱𝐩(𝝁), under different 302 

𝑵𝑫𝑽𝑰𝑴𝑨𝟏𝟐 scenarios. The first resembled a relatively dry/brown vegetation state (𝑵𝑫𝑽𝑰𝑴𝑨𝟏𝟐 =303 

 −𝟎. 𝟕𝟓). The second resembled a relatively moist/green vegetation state (𝑵𝑫𝑽𝑰𝑴𝑨𝟏𝟐 =  𝟎. 𝟕𝟓). We 304 

used 1,000 simulations for each scenario. The model gave higher probability to increased captures in 305 

the moist/green scenario for all species, but uncertainties varied (Figure 2). Greatest increases were 306 

expected for Ord's kangaroo rat (D. ordii), Western harvest mouse (R. megalotis) and cactus mouse 307 

(Peromyscus eremicus). The two species that have dominated control plots recently (D. merriami and 308 

C. penicillatus) showed relatively weak increases. The model was less confident about the direction 309 

of effect for Northern grasshopper mouse (O. leucogaster). For this species, the model expected an 310 

increase in 64% of simulations and a decrease in 36% (Figure 2). 311 

 312 

 313 

Figure 2: Posterior NDVI contrasts. Histograms illustrate how much the expected number of 314 

captures, 𝐞𝐱𝐩(𝝁), would change if the z-scored NDVI 12-month moving average (𝑵𝑫𝑽𝑰𝑴𝑨𝟏𝟐) 315 



15 
 

changed from a relatively low value (-0.75) to a relatively high value (0.75). Numbers in each plot 316 

indicate the proportion of probability mass at or below zero (in blue) vs above zero (in red). 317 

 318 

Interpreting minimum temperature distributed lag effects also required simulation. We used 319 

temperatures from 1997 to make posterior predictions. Multiplying a draw of coefficients with the 320 

tensor product basis functions for 1997 gave us a realization from the set of posterior functions. We 321 

visualized 1,000 simulated functions for each species (Figure 3). There was large uncertainty in 322 

function shapes for all species except desert pocket mouse (C. penicillatus). Captures for this species 323 

were expected to increase from May to October and decrease sharply in winter. For seven of the 324 

other eight species, the model generally expected more captures in spring (March – May) and fewer 325 

in late summer / autumn (July – October). But the shapes of these responses varied. The five species 326 

that relied solely on the global function (O. leucogaster, C. baileyi, P. eremicus, P. flavus and R. 327 

megalotis) were expected to show tighter spring peaks and autumn troughs. The two kangaroo rat 328 

species (D. merriami and D. ordii) had smoother shapes that decreased gradually from mid-summer 329 

to mid-winter. But the model expected D. ordii captures to peak slightly later (May as opposed to 330 

March for D. merriami). The Southern grasshopper mouse (O. torridus) was the only species that was 331 

expected to show higher captures in late autumn / early winter (Figure 3). 332 



16 
 

 333 

Figure 3: Conditional distributed lag minimum temperature functions, using temperatures observed 334 

in 1997. All other effects were ignored. Functions for O. leucogaster, C. baileyi, P. eremicus, P. flavus 335 

and R. megalotis were drawn solely from the global function. Functions for other species were the 336 

sum of the global function and a species-specific deviation function. Estimates were scaled to unit 337 

variance for better comparisons. Ribbon shading shows posterior empirical quantiles (90th, 60th, 40th 338 

and 20th). Dark red lines show posterior medians. 339 

 340 

Cross-dependencies in latent trends 341 

Posterior VAR(1) coefficients supported complex temporal dependencies. Autoregressive 342 

coefficients, which capture self-dependence, were large and positive for all species except the cactus 343 

mouse, P. eremicus (diagonal entries in Supplementary Figure S6). The model also estimated cross-344 

dependence effects, where one species’ trend was associated with variation in another’s trend at 345 

the next timestep (off-diagonal entries in Supplementary Figure S6). Although many of these effects 346 
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were uncertain and centred on zero, there were prominent patterns. For example, the model 347 

expected fewer silky pocket mouse (P. flavus) captures if there was an increase in Ord's kangaroo rat 348 

(D. ordii) captures a month earlier (row seven, column two in Supplementary Figure S6). 349 

It is tempting to walk through pairwise VAR effects one by one. But these coefficients only 350 

provide marginal insights into a network of conditional associations. It is better to interpret them 351 

jointly. We again used simulations, this time in the form of impulse response functions (Lütkepohl 352 

1990). We generated a sudden ‘impulse’ in captures for one species and asked how captures for 353 

other species might change over the next six months. Responses to an impulse of three excess 354 

captures for Ord's kangaroo rat (D. ordii) are shown in Figure 4. Following a D. ordii pulse, the model 355 

expected fewer captures for six of the other eight species. But the shapes of these declines differed. 356 

Captures for silky pocket mouse (P. flavus), cactus mouse (P. eremicus), Merriam’s kangaroo rat (D. 357 

merriami), Northern grasshopper mouse (O. leucogaster) and Western harvest mouse (R. megalotis) 358 

gradually declined in most simulations (Figure 4). The effect on desert pocket mouse (C. penicillatus) 359 

was also negative but decayed more quickly (Figure 4). These simulated responses were not only 360 

insightful, they also illustrated why VAR effects should not be interpreted in isolation. For example, 361 

the cross-dependence effect of D. ordii on R. megalotis was marginally positive (row nine, column 362 

two in Supplementary Figure S6). Yet the model expected a slow decline in R. megalotis captures 363 

after a D. ordii pulse. How could this be? We must examine all VAR effects for an explanation. If 364 

captures for D. ordii suddenly increased, the model expected fewer subsequent captures for P. 365 

eremicus and O. leucogaster. Both species were then expected to induce a decline for R. megalotis 366 

through their positive cross-dependence coefficients. This effect was magnified because D. ordii’s 367 

trend was autocorrelated. A D. ordii pulse should lead to elevated captures for this species over a 368 

few months. Different effects were expected when changing the focal species. For example, the 369 

model expected several species to show increased captures after a pulse of desert pocket mouse (C. 370 

penicillatus; Supplementary Figure S7). 371 
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 372 

 373 

Figure 4: Expected responses to a pulse in captures of Ord’s kangaroo rat (Dipodomys ordii). Ribbon 374 

plots show how mean captures (𝝁, on the log scale) are expected to change over the next six months 375 

if three additional D. ordii individuals are captured. Ribbon shading shows posterior empirical 376 

quantiles (90th, 60th, 40th and 20th). Dark red lines show posterior medians. 377 

 378 

Forecast uncertainties were dominated by uncertainty in the trend component, as opposed 379 

to uncertainty in the GAM component (Supplementary Figure S8). This motivated us to ask how 380 

trend uncertainty for one species was related to captures of other species. Using a variance 381 

decomposition, we computed the relative contributions of pulses from all other species to trend 382 

variability for a focal species. Not surprisingly, we found a range of patterns (Supplementary Figure 383 

S9). Some species were more tightly related to their own lagged dynamics than to other species. 384 

Members of this group included the two grasshopper mouses (O. leucogaster and O. torridus), silky 385 
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pocket mouse (P. flavus) and Merriam’s kangaroo rat (D. merriami). For others, dynamics were 386 

governed by a broader suite of interspecies dependencies. For example, imagine we wish to forecast 387 

of captures for desert pocket mouse (C. penicillatus) on month ahead. According to the model, 388 

forecasts would be more sensitive to current captures of Northern grasshopper mouse (O. 389 

leucogaster) and Western harvest mouse (R. megalotis) than to current captures of the desert 390 

pocket mouse (Supplementary Figure S9). 391 

 392 

Improved community forecasts 393 

Ten of the 21 validation timepoints had non-missing observations that could be used to compare 394 

forecasts. Across these validation points, variogram scores for the three competing models were 395 

generally ranked by model complexity. GAM-VAR forecasts were the most accurate in eight of ten, 396 

and always scored better than forecasts from the GAM-AR (Supplementary Figure S10). Forecasts 397 

from the simplest model, AR, were the least accurate in seven of ten validation points. Evaluations 398 

did not change when using unscaled forecasts. We visualized posterior hindcast and forecast 399 

distributions to better understand how the GAM-VAR model outperformed the benchmarks. 400 

Prediction uncertainties for individual species were well-calibrated, and the VAR process was able to 401 

reproduce the observed multi-species temporal dynamics. For example, Ord’s kangaroo rat (D. ordii) 402 

and cactus mouse (P. eremicus) had negative cross-dependencies in the GAM-VAR, suggesting their 403 

trends should be somewhat structured. Posterior trends and predictions for these species confirm 404 

the model learned some of this structure to produce forecasts (Figure 5). The benchmarks produced 405 

smoother, less synchronous trends and flatter forecasts (Supplementary Figure S11). Estimates of 406 

trend variation were also larger for the benchmarks than the GAM-VAR for nearly all species 407 

(Supplementary Figure S12). 408 

We simulated communities to investigate whether the model could recreate known 409 

community transitions. This was done by sampling 200 individual rodents at a given historical 410 
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timepoint using multinomial draws. Multinomial sampling weights were chosen based on the 411 

model’s posterior median expectation, 𝐞𝐱𝐩(𝝁), for each species at each timepoint of interest. 412 

Simulated communities accurately reflected community changes that took place during the study 413 

period. Notable transitions included the shift to previously ‘inferior’ competitors from 2000 – 05 414 

following the establishment of Bailey's pocket mouse C. baileyi, and the reshuffling that happened 415 

following a drought in 2008 – 09 (Supplementary Figure S13).  416 

Posterior estimates of 𝚽 for most species indicated strong support for overdispersion 417 

(Supplementary Figure S14). Inspection of randomized quantile residuals uncovered no obvious 418 

evidence of unmodelled temporal or systematic variation (Supplementary Figures S15– S16). 419 
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 420 

Figure 5: Posterior trend and hindcast/forecast distributions for Ord’s kangaroo rat (Dipodomys 421 

ordii; in red) and cactus mouse (Peromyscus eremicus; in blue). Trends were scaled to unit variance 422 

for comparisons. Points are monthly total observed captures across 10 control plots. Ribbon shading 423 

shows posterior empirical quantiles (90th, 60th, 40th and 20th). Dark lines show posterior medians. 424 

 425 

DISCUSSION 426 
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This paper presents a Bayesian analysis of temporal variation in long-term rodent capture data. 427 

Community dynamics in this system were the product of environmental variation and multi-species 428 

dependence, as well as other un-modelled factors. Captures for all species increased with higher 429 

vegetation greenness and responded nonlinearly to temperature change. But the shapes and 430 

magnitudes of these responses differed across species. Biotic structure in trend estimates suggested 431 

that capture variation for some species can have cascading community effects, possibly underlying 432 

regime transitions. Ignoring one or more of these sources of variation led to less realistic forecasts. 433 

Models that describe biological complexity, both through nonlinear covariate functions and multi-434 

species dependence, are useful to ask targeted questions about drivers of change (Ives et al. 2003, 435 

Greenville et al. 2016, Pedersen et al. 2019). 436 

 437 

Understanding multi-species dependence and forecasting regime transitions 438 

The way a species responds to environmental change depends partly on how this change influences 439 

its ability to find resources and reproduce (Heske et al. 1994). But it also arises from effects on the 440 

abundances and vital rates of other species (Ives et al. 2003). Our analyses show why models that 441 

target both sources of variation should be default when studying community dynamics. The GAM-442 

VAR’s trend variance estimates were smaller than those from the benchmarks because it used more 443 

information from the data. It acquired this information from multi-species dependencies, which it 444 

used to produce more realistic predictions. What do these dependencies mean? Like other 445 

multivariate autoregressive models (Ives et al. 2003, Holmes et al. 2014), the GAM-VAR is not a 446 

biologically plausible model of community dynamics. But as an approximation to more complex 447 

models such as a Lotka Volterra system (Volterra 1931), our approach makes it possible to ask 448 

ecological questions that would be lost otherwise (Hampton et al. 2013, Holmes et al. 2014, 449 

Greenville et al. 2016). Which species have the strongest cascading effects? What changes might we 450 

expect if management increases or decreases abundance for target species? How could these effects 451 
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relate to regime transitions? An immediate benefit of modeling environmental responses and 452 

multispecies dependence jointly is that it is possible to estimate their relative importance in limiting 453 

forecast uncertainty. In our study, forecasts were dominated by uncertainty in multi-species trends. 454 

But using a vector autoregressive process allowed us to dissect this uncertainty in meaningful ways 455 

(Lütkepohl 1990, Ives et al. 2003). Simulated responses to sudden impulses in captures were often 456 

delayed. Despite the restriction to a VAR of lag of one month, these responses resulted in cascading 457 

changes that lasted up to six months. Variance decompositions pointed to even more complexity. 458 

Expected changes for some species were influenced, often nonlinearly, by lagged impulses of 459 

multiple other species. 460 

Ecological forecasts often extend over multidecadal scales (Dietze et al. 2018, Clark et al. 461 

2020), but our data and analyses show why this is difficult. The Portal study demonstrates that 462 

communities can show unexpected, and sometimes rapid, changes following a variety of 463 

disturbances (Brown et al. 1997, Ernest and Brown 2001, Christensen et al. 2018). We restricted our 464 

predictions to two years beyond the training data, and they performed well. But these were not real 465 

forecasts because we had access to the true environmental measurements for that period. We 466 

cannot rely on multi-year forecasts because it is difficult to realistically predict what disturbances or 467 

climate changes will happen (Dietze et al. 2018). Forecasts that extend over tens or hundreds of 468 

years are also problematic because they undervalue the practice of falsifiable hypothesis-testing 469 

(White et al. 2019). 470 

 471 

Hierarchical functions of NDVI and minimum temperature 472 

The hierarchical structure of our model assumed that species vary in their responses to NDVI and 473 

minimum temperature. But it also allowed the data to influence how much and in what ways this 474 

variation occurred. We found positive linear associations between capture rates and a 12-month 475 

moving average of NDVI. This was not surprising. The rodents at Portal depend on plants for food 476 
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and resources (Ernest et al. 2000, Brown and Ernest 2002), and NDVI measures vegetation greenness 477 

in the landscape. But interesting patterns emerged in the variation of these responses. The strongest 478 

positive association was shown by Ord's kangaroo rat (D. ordii). Field evidence suggests this species 479 

consumes and harvests grasses (Kerley et al. 1997), so a strong response to NDVI is a sensible 480 

expectation. In contrast, Merriam’s kangaroo rat (D. Merriam) and desert pocket mouse (C. 481 

penicillatus) showed some of the weakest associations with NDVI. These species have gained 482 

dominance on control plots in recent years as woody shrubs have slowly taken over arid grasslands 483 

(Brown et al. 1997). It is difficult to explain why these species would not respond as strongly to 484 

greener landscapes. Perhaps they are more capable of surviving in dryer, browner years than other 485 

species, which could partially explain their dominance following the 2009 – 10 drought event 486 

(Christensen et al. 2018). Or perhaps influxes of other species following periods of increased 487 

vegetation greenness result in a landscape that is too competitive for Merriam’s kangaroo rat and 488 

desert pocket mouse to continue their usual dominance. 489 

 Hierarchical distributed lag functions are not common in ecology, but their advantages are 490 

numerous. Regularizing species-level responses to change toward a community ‘average’ response is 491 

a powerful technique to improve inferences and predictions (Pedersen et al. 2019, McElreath 2020). 492 

In our study, we used hierarchical nonlinear functions to provide useful insights into delayed 493 

responses to temperature change for rodents at Portal. Most species showed higher captures when 494 

minimum temperatures were low 3 – 4 months prior, suggesting increases begin during mid to late 495 

spring when resources such as seeds become available. But others, such as Merriam’s kangaroo rat 496 

and Southern grasshopper mouse, bucked this trend by increasing during cooler months in autumn 497 

and winter. Asynchronous phenology, where species show different reproductive timing, is 498 

sometimes expected in competitive communities (Carter and Rudolf 2022). Analysis of individual 499 

reproductive status in different biotic contexts suggests some species shift their reproductive timing 500 

in the presence of strong competitors in the Portal system (Dumandan et al. 2022). Do these 501 

competitive forces play a role in seasonal capture variation over the long-term? Comparing 502 
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minimum temperature responses on control vs experimental plots would be one interesting way to 503 

begin tackling this question. 504 

We cannot interpret our environmental response estimates as directly causal, for several 505 

reasons. First, we know NDVI is not a perfect measure of changes in seed production. Second, it is 506 

likely that changes to NDVI and minimum temperature are both related to other unmeasured 507 

environmental drivers that may also influence rodent abundance. Major storms, the El Niño 508 

Southern Oscillation and other factors that influence moisture levels can all influence temperature 509 

and vegetation change (Sun and Kafatos 2007). These other drivers could act as unmeasured 510 

confounds, biasing estimates in a causal inference framework (McElreath 2020). 511 

 512 

Future directions 513 

We do not know the precise mechanisms that explain our estimated multi-species dependencies. 514 

This is a drawback of the model. But it also provides a valuable opportunity to develop hypotheses 515 

about the drivers of community change in semi-arid systems. There are several reasons why changes 516 

in abundance for one species can result in delayed changes for competitors (Heske et al. 1994, 517 

Hampton et al. 2013). Most rodents in the system use seed caches and may be temporarily buffered 518 

against changes in competitor abundance (Brown and Munger 1985). Reproduction is also episodic 519 

for most species, so we cannot expect an immediate increase in abundance following a decline in 520 

competition or predation (Brown and Ernest 2002). A productive avenue for future research could 521 

be to gather more detailed environmental measurements to identify the true proximate vegetation-522 

related drivers of population dynamics in this system. Better understanding of these mechanisms 523 

could also improve predictions in our modelling framework. Our model produced conditional 524 

forecasts, where expected trends for some species influence expected trends for others. This means 525 

we could realistically expect improved predictions for the entire community if we can learn more 526 

about dynamics for only a few species.  527 
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Other work could target model development. For example, we could estimate 9x9 matrices 528 

of autoregressive coefficients thanks to Stan’s superior Hamiltonian Monte Carlo samplers. But 529 

extending our approach to larger species assemblages could be difficult. Dimension reduction using 530 

factor models is one possible solution (Warton et al. 2015, Ovaskainen et al. 2017). There is also a 531 

need for broader comparison of models to understand whether features of the data can guide 532 

model development or informed forecast combinations (Clark et al. 2022, Powell‐Romero et al. 533 

2023). This may be particularly useful in situations where prediction accuracy is the primary goal. 534 

Developing models that can fuse the decades-worth of valuable pre-existing knowledge that has 535 

resulted from the Portal experiments should also be a key focus (Mikkola et al. 2021). 536 

 537 

Conclusions 538 

Approaching the challenges of understanding and predicting ecosystem change requires models that 539 

enforce realistic biotic structure in near-term ecological forecasts (Hampton et al. 2013, Holmes et 540 

al. 2014). Dynamic GAMs provide one possible solution. We hope that the ability to estimate multi-541 

species dependence and species-level variation in nonlinear environmental responses will inspire 542 

new questions about the factors that govern ecological community dynamics. 543 

 544 
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 552 

SUPPORTING INFORMATION CAPTIONS 553 

Figure S1: Total rodent captures from the Portal Project for the period December 1996 to August 554 

2022. Counts represent total captures for nine species across 10 control plots, sampled monthly. 555 

Blanks represent missing values. 556 

 557 

Figure S2: Autocorrelation functions of rodent capture time series in the Portal Project. Dashed lines 558 

show values beyond which the autocorrelations are considered significantly different from zero.  559 

 560 

Figure S3: Histograms of rodent capture time series in the Portal Project. Counts represent total 561 

captures across 10 control plots, sampled monthly.  562 

 563 

Figure S4: Seasonal and Trend decomposition using Loess smoothing (STL) applied to observed 564 

minimum temperature time series for the period December 1996 – August 2022. The top panel 565 

shows the raw time series. The middle plot shows the estimated long-term trend (calculated using a 566 

Loess regression to the de-seasoned time series). The bottom plot shows the time-varying estimate 567 

of seasonality (calculated using a Loess regression that smooths across years). 568 

 569 

Figure S5: Top panel: observed Normalized Difference Vegetation Index (NDVI) time series for the 570 

period December 1996 – August 2022, with obvious seasonal fluctuations. Bottom panel: a 12-571 

month moving average that represents smooth, gradual changes in NDVI at the study site. 572 

 573 
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Figure S6: Posterior distributions of vector autoregressive coefficients (matrix 𝑨). Off-diagonals 574 

represent cross-dependencies. For example, the entry in 𝑨[𝟏, 𝟐] captures the effect of DO’s trend at 575 

time 𝑡 − 1 on the current trend for DM (at time 𝑡). Diagonals (with grey shading) represent 576 

autoregressive coefficients (the effect of a species’ trend at time 𝑡 − 1on its own trend at time 𝑡). 577 

Colours indicate the proportion of probability mass at or below zero (in blue) vs above zero (in red). 578 

DO, Dipodomys merriami; DO, Dipodomys ordii; OL, Onychomys leucogaster; OT, Onychomys 579 

torridus; PB, Chaetodipus baileyi; PE, Peromyscus eremicus; PF, Perognathus flavus; PP, Chaetodipus 580 

penicillatus; RM, Reithrodontomys megalotis. 581 

 582 

Figure S7: Expected responses to a pulse in captures of the desert pocket mouse (Chaetodipus 583 

penicillatus). Ribbon plots show how mean captures (μ, on the log scale) are expected to change 584 

over the next six months if three additional C. penicillatus individuals are captured. Ribbon shading 585 

shows posterior empirical quantiles (90th, 60th, 40th and 20th). Dark red lines show posterior 586 

medians. 587 

 588 

Figure S8: Relative contributions of uncertainty in the latent trend and GAM components of the 589 

linear predictor to forecast uncertainty over increasing forecast horizons. 590 

 591 

Figure S9: Latent trend variance decompositions for a few species. Each line shows the relative 592 

contribution of a sudden pulse in captures at time zero to the focal species’ trend variance over a 593 

six-month forecast horizon. Black lines show relative contributions of pulses for the focal species on 594 

their own trend variance. Other lines show relative contributions of pulses for the remaining species 595 

in the community. Interesting relationships are highlighted in colour. Pulses were simulated as an 596 

excess of three captures at time zero. 597 
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 598 

Figure S10: Out of sample forecast performances of competing models. Y-axis shows the log of the 599 

variogram score, a proper score that penalizes multivariate forecasts if they do not capture 600 

correlations in observed data. Forecasts were evaluated on 24 out of sample time points (years 2021 601 

and 2022). Points show scores. Lines show Loess smoothed trendlines. Missing values were used for 602 

timepoints when sampling did not occur. A lower score indicates a better forecast. 603 

 604 

Figure S11: Posterior trend estimates from three competing models for Ord’s kangaroo rat 605 

(Dipodomys ordii; in red) and cactus mouse (Peromyscus eremicus; in blue). Trends were scaled to 606 

unit variance for comparisons. Ribbon shading shows posterior empirical quantiles (90th, 60th, 40th 607 

and 20th). Dark lines show posterior medians. 608 

 609 

Figure S12: Posterior estimates of trend standard deviations from the three competing models. 610 

Estimates are the square root of diagonal parameters from the trend covariance matrix (𝜮𝑽𝑨𝑹) for 611 

the GAM-VAR (black), GAM-AR (red) and AR (blue). 612 

 613 

Figure S13: Simulated rodent communities. Using the GAM-VAR model’s posterior predictive 614 

distribution, we simulated communities of 200 individuals at different timepoints to investigate how 615 

well the model captured known community transitions. Colours represent different species. 616 

 617 

Figure S14: Posterior estimates of Negative Binomial overdispersion parameters from the GAM-VAR 618 

(black), GAM-AR (red) and AR (blue). Smaller values of 𝚽 indicate a larger amount of overdispersion. 619 

 620 
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Figure S15: Normal quantile-quantile plots of randomized quantile residuals. Ribbon shading shows 621 

posterior empirical quantiles (90th, 60th, 40th and 20th). Dark lines show posterior medians. 622 

 623 

Figure S16: Autocorrelation functions of randomized quantile residuals. Ribbon shading shows 624 

posterior empirical quantiles (90th, 60th, 40th and 20th). Dark red lines show posterior medians. 625 

Dashed lines show values beyond which the autocorrelations would be considered significantly 626 

different from zero in a Frequentist paradigm. 627 

 628 

DATA AVAILABILITY STATEMENT 629 

Data is available for download using the portalR family of packages (Christensen et al. 2019b). R 630 

code to reproduce analyses is provided in Supplementary materials and will be permanently 631 

archived on Zenodo on acceptance of the manuscript. 632 
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