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 7 
Highlights 8 

- Prophages can impact bacterial ecology and evolution in diverse ways  9 
- Systems biology has advanced our understanding how the effects of prophages on bacteria extend 10 

to other species and ecosystems 11 
- Prophages contribute through cascading effects to mutualistic interactions and increased disease 12 

severity to global biogeochemical processes 13 
- Future research should aim for integrative approaches describing how the effects of prophages on 14 

bacteria are transmitted to other levels, especially in non-model systems and in the presence of 15 
microbial communities 16 

 17 
Abstract 18 

Prophages, latent viral elements residing in bacterial genomes impact bacterial 19 
ecology and evolution in diverse ways. Do these prophage-mediated effects extend 20 
beyond the prophage-bacterium relationship? Here, I summarize the latest advances 21 
exploring how the impact of prophages are transmitted through multiple levels with 22 
potential impacts on ecosystem stability and functioning. The diverse effects of prophages 23 
on higher-order interactions are context-specific, ranging from contributions to global 24 
biogeochemical processes and mutualistic interactions to increased disease severity with 25 
negative impacts on ecosystem engineers and potential cascading effects for multiple 26 
species. While we have a solid understanding about the mechanisms by which prophages 27 
modulate their bacterial host at the cellular and population level, future research should 28 
take an integrative approach to quantify their effects in complex ecosystems. 29 
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Introduction 41 
Prophages are latent viral elements residing in bacterial genomes. They represent 42 

a specific form of a temperate phage, which upon entering a host cell can either lyse and 43 
kill the bacterium or become a prophage. Due to their high prevalence and diversity, 44 
prophages are inevitable parts of the microbial world, where they, like ruthless puppet 45 
masters, shape bacterial ecology and evolution.  46 

Bacteria themselves, fundamental components of all global ecosystems, partake in 47 
diverse ecological interactions, not only with phages and other bacteria, but also with 48 
eukaryotic organisms. The pervasive presence of prophages and their strong impact on 49 
bacteria raises the question to what extent these viruses influence higher order interactions 50 
that go beyond the bacterium-prophage relationship? Moreover, will potential cascading 51 
effects of these interactions through multiple levels of an ecosystem impact ecosystem 52 
functioning? For example, prophages are important drivers of the viral shunt, a process in 53 
aquatic ecosystems where viral lysis of bacterial cells releases dissolved organic matter 54 
back into the water column, making it available for other organisms [1, 2]. This phenomenon 55 
significantly contributes to nutrient cycling and energy flow in aquatic ecosystems with 56 
potential upstream effects through the food-web on higher organisms and the broader 57 
ecosystem. Quantifying the impact of prophages in such multi-level processes is thus 58 
crucial for gaining a better understanding of ecosystem functioning and resilience. 59 

However, understanding the ecological and evolutionary consequences of 60 
prophages on higher order interactions and ecosystem functioning is a difficult task 61 
because of the complex interplay between prophages, bacteria, bacterial hosts, and the 62 
environment. Therefore, we need integrative approaches that incorporate different 63 
interaction partners, integrate over different levels of organization, and generate a dynamic 64 
and evolutionary understanding by including time and space. Here, I summarized recent 65 
advances of how the impacts of prophages on bacteria are transmitted and amplified in 66 
higher-level biological interactions and highlight examples of how the cascading effects 67 
affect entire ecosystems (Figure 1).  68 



 69 

 70 
Prophages – Double Edged Swords 71 

Interactions among microbes are often competitive [3] and driven by similar growth 72 
needs. Prophages can switch to the lytic cycle, replicate, and lyse their host to release free 73 
phages, which can kill competing bacteria and thereby increase the fitness of the 74 
remaining lysogens, i.e., prophage carrying bacteria. Experimental [4-6] and modelling [7] 75 
approaches have repeatedly shown that the presence of one or more prophages can turn 76 
a competitive interaction into a predatory interaction characterized by phage killing. Such 77 
a beneficial effect during microbial warfare can have cascading effects. Two independent 78 
studies showed for instance that prophages, which killed surrounding phage-susceptible 79 
competitors, enhanced lysogen colonization success in a mammalian intestinal ecosystem 80 
[8, 9].  81 

Besides directly killing competing bacteria, prophages can also indirectly influence 82 
a competitive interaction among bacteria. One example is the prophage-dependent 83 

Figure 1 Four potential routes through which the impact of prophages on the fitness of their host bacterium extends beyond 
the prophage-bacterium relationship thereby affecting other organisms and potentially entire ecosystems. From left to right: 
Double-Edged Swords: Prophages can excise from the genome which kills the individual lysogen but released phage 
particles can kill surrounding phage-susceptible bacteria. Both affect the fitness of the lysogen and its surrounding bacteria 
and if the lysogen is a pathogen this could have far-reaching consequences for eukaryotes and, if these are key stone species, 
possibly for entire ecosystems. Friends Bearing Gifts: Prophages can encode a plethora of genes which can change the 
phenotype of the bacterial host and ultimately the relationship between the host bacterium and eukaryotes or in the case of 
certain auxiliary metabolic genes biogeochemical processes. Construction Engineers: Prophages play a pivotal role in biofilm 
formation, which in turn are important pathogenesis factors and components of mutualistic relationships between plants and 
bacteria. Molecular Editors: Prophages can influence bacterial adaptive evolution and gene expression via multiple direct and 
indirect ways, which can for instance in the case of pleiotropic changes influence interactions between bacteria and higher 
organisms. 



release of bacteriocins, that can significantly enhance lysogen fitness by killing competitors 84 
[10, 11]. A recent study revealed that temperate phages and prophages can harbour so-85 
called biosynthetic gene clusters (BGCs) that often encode bacteriocins which can 86 
enhance lysogen fitness [11]. 87 

Prophage induction is usually lethal for the lysogen. Some bacteria exploit this 88 
“Achilles heel” of lysogens and actively induce their competitor’s prophage(s) [12-14]. For 89 
instance, Pseudomonas aeruginosa can selectively trigger an S. aureus prophage through 90 
the release of phenanzine pyocyanin [14]. In this case, the authors speculate that P. 91 
aeruginosa, which is resistant to the released phage, will additionally benefit from these 92 
phages because they may kill additional phage-susceptible competitors. Similarly, during 93 
invasion of corals, the pathogen V. coralliilyticus induces the prophages of competing non-94 
toxigenic Vibrio sp. and other coral symbionts by releasing H2O2. A genome-wide-95 
association study, revealed that the LodAB operon, which mediates H2O2 release, is widely 96 
distributed among bacteria and possibly constitutes an important feature facilitating 97 
invasion of healthy microbiomes by pathogens [13]. This highlights that a prophage that 98 
negatively affects the fitness of an important ecosystem engineer such as corals, may have 99 
far-reaching consequences across entire ecosystems with cascading effects on plants, 100 
fishes, and invertebrates. However, more studies, that consider entire species networks 101 
are needed to quantify the overall effect of prophage induction and subsequent lysis on 102 
ecosystem stability and resilience. 103 
 104 
Prophages – Friends bearing gifts 105 

During lysogeny, bacteria and prophage fitness is tightly intertwined, resembling a 106 
mutualistic relationship. Prophages can increase lysogen fitness through lysogenic 107 
conversion, i.e., by carrying non-essential genes whose expression modifies the bacterial 108 
phenotype [15]. The first described example of lysogenic conversion that turned a 109 
harmless bacterium into a deadly pathogen is the prophage born origin of the cholera 110 
disease [16]. Since then, many other prophage-encoded virulence genes, which are often 111 
species-specific [17], but also non-virulence genes with selective benefits, have been 112 
discovered. These include genes, that protect bacteria from superinfection by other 113 
phages [18] and environmental stress [19], increase serum resistance [20] or enable the 114 
host bacterium to access new metabolic resources [21-24]. Consequently, the expression 115 
of these genes and the resulting phenotype changes can influence existing ecological 116 
interactions, that involve the lysogen, in diverse ways. 117 

One example are auxiliary metabolic genes (AMGs), which can alter the metabolism 118 
of their hosts and influence ecosystem biogeochemistry (see [25] for a review). While the 119 
rise of metagenomic and viromic data is revealing an ever-increasing number of putative 120 
phage-encoded AMGs, knowledge on their function often remains elusive, because we 121 
lack sufficient phage-host systems to confirm their predicted function [22]. Alternative 122 
integrative approaches to circumvent the lack of suitable systems include, amongst others, 123 



comparisons of prophage to host gene ratios which revealed the importance of prophages 124 
in sulphur and thiosulphate oxidation [23] or the use of heterologous expression systems 125 
which identified phage-encoded carbohydrate-active enzymes that play an important role 126 
in the break-down of complex carbon to CH4 and CO2 [24]. However, without culturable 127 
phage-host systems it remains challenging to estimate the real contribution of these AMG-128 
carrying phages to global biogeochemical processes and their effects on ecosystems [22].  129 

Bacteria that coexist with higher organisms are constantly exposed to their immune 130 
system. Prophages have acquired multiple mechanisms to protect their host from this 131 
threat. This includes their ability to inhibit local inflammatory and immune reactions, in 132 
particular phagocytosis (for a review see [26]). One of the most recently discovered 133 
examples are ankyphages, that encode and express the immunomodulatory ankyrin 134 
protein (ANKp). ANKp, which reduces phagocytosis rates, fosters the mutualistic 135 
relationship between sponges and ANKp-lysogens, and possibly many other mutualistic 136 
host-microbe relationships [27]. However, in the case of pathogens, such prophage-137 
encoded immune-evasion genes can increase disease severity with negative 138 
consequences for the eukaryotic host.  139 

Another hazard prophages can protect their host from, are superinfecting phages. 140 
Indeed, many prophages carry superinfection exclusion (SIE) proteins that can for instance 141 
modify cell surface structures preventing phage attachment. If accompanied by a loss of 142 
function, such modifications can however, negatively impact lysogen fitness [28, 29]. Thus, 143 
prophage-encoded SIE proteins could change the outcome of a competitive interaction 144 
among bacteria or the colonization success of a pathogen for the worse. Only a few studies 145 
have investigated the cascading effects of SIE proteins. One example is a systematic study 146 
on 30 closely related prophages of Pseudomonas aeruginosa, which found no additional 147 
fitness cost of SIE for the lysogen [30]. This is however in stark contrast to SIE mediated by 148 
filamentous phages. The massive amplification and subsequent release of viral particles 149 
through phage-encoded proteins inserted into the bacterial cell membrane significantly 150 
reduces lysogen growth [31-33]. Thus, despite their ability to protect their host from super 151 
infecting phages, their high fitness cost renders filamentous phages more susceptible to 152 
extinction if phage-resistant cell surface mutants emerge [33]. While there are many 153 
described individual examples of prophage-encoded SIE proteins, their ecological and 154 
evolutionary impact on higher order interactions remains unclear. That is because we lack 155 
a detailed understanding of their net fitness effect for lysogens and of how widespread 156 
these different SIE mechanisms are. Integrating large scale genome mining to uncover the 157 
nature and distribution of SIE across different microbial ecosystems with modelling that 158 
predicts their impact on higher order interactions represents an exciting possibility for 159 
future research.  160 



Prophages – versatile construction engineers 161 
Prophages are pivotal to the formation and maintenance of biofilms [34-38]. Within 162 

biofilms, bacteria are protected from adverse conditions, including for instance antibiotics 163 
[39] and immune system components [40]. This makes biofilms an important pathogenesis 164 
factor [34, 38] and exemplifies how the impact of prophages can manifest as cascading 165 
consequences across multiple species. 166 

However, biofilms are also important components of many terrestrial and aquatic 167 
ecosystems where they form the basis of food-webs and maintain nutrient cycling and 168 
bioremediation; for a review see [41]. Thus, in contrast to clinical biofilms, prophages that 169 
contribute to the formation of ecological biofilms can support mutualistic interactions. One 170 
example of this phenomenon can be observed in the symbiotic association between 171 
Phaeobacter inhibens and microalgae, which relies on the lysogenic state of P. inhibens to 172 
form biofilms on the surface of the algae and is likely attributable to prophage-encoded 173 
genes in P. inhibens [42]. 174 

Given that biofilms exhibit a higher level of productivity compared to their planktonic 175 
counterparts, they are of significant relevance to ecosystem functioning. While we have a 176 
detailed understanding about the mechanisms by which prophages influence biofilm 177 
formation, it is difficult to quantify the functional significance of prophages for the biofilm 178 
and the implications on subsequent ecological interactions. That is because we lack 179 
quantitative data and adequate theoretical models that allow us to reveal the temporal 180 
dynamics of prophage-biofilm interactions in different environments. 181 

Moreover, there is growing evidence that the biofilm lifestyle may be more mutagenic 182 
than the planktonic one and that virulence and antibiotic resistance genes are more 183 
efficiently distributed via horizontal gene transfer (HGT) within biofilms [43]. If the 184 
functioning of these biofilms depends on prophages, they may indirectly influence the 185 
evolution of multidrug resistant pathogens and worsen the outcome for the eukaryote.  186 

 187 
Prophages – molecular editors 188 

Like all mobile genetic elements (MGEs), temperate phages play a significant role 189 
in shaping the molecular landscape of bacteria and, therefore, impacting bacterial 190 
evolution. Commonly known is their ability to act as vectors for HGT, either via transduction 191 
or lysogenic conversion, allowing bacteria to acquire new genes and traits that can impact 192 
higher order interactions. However, recent advances identified a variety of additional 193 
genetic and epigenetic mechanisms through which prophages impact bacterial evolution.  194 

Prophage integration can accelerate adaptive evolution either directly through the 195 
acquisition of adaptive prophage-encoded genes, which can occur at a faster rate than de 196 
novo mutations [44] or indirectly by integrating into protein coding sequences which can 197 
increase the supply of beneficial mutations [45]. Both mechanisms are beneficial for 198 
bacterial fitness and can in the case of colonizers foster host-symbiont relationships [44] 199 



or in the case of pathogens facilitate the transition from acute to chronic infections likely 200 
increasing disease severity [45]. 201 

 Prophages can also regulate the expression of bacterial genes through various 202 
mechanisms. For example, prophages can reverse the disruption of host genes through 203 
controlled excision, acting as genetic switches [46, 47]. This process, defined as active 204 
lysogeny [46], can regulate phagosomal escape and virulence in the intracellular pathogen 205 
Listeria monocytogenes [47], and facilitate rapid, parallel adaptation in P. aeruginosa, 206 
enabling the establishment of chronic infections [48]. Prophage integration can regulate 207 
the expression of bacterial genes by controlling the transcription of nearby genes [49] or 208 
by causing changes in the bacterial chromatin structure [50], which likely affects the 209 
accessibility of the genetic material to the transcriptional machinery. This can result in 210 
changes in the expression of genes involved in various cellular processes such as 211 
metabolism, growth, and virulence. Thus, by altering the expression of genes involved for 212 
instance in stress response and adaptation, prophages can also influence the adaptive 213 
response of bacteria to environmental changes.  214 

Environmental change in turn can significantly influence the shape and trajectory of 215 
bacteria-prophage co-evolution. For instance, environments that reduce bacterial growth 216 
rate can inhibit phage infections (for a review see [51]), which can slow down phage 217 
resistance evolution and prolong phage epidemics [52]. Moreover, environmental 218 
conditions that influence the balance between lysis and lysogeny drive the emergence of 219 
phage resistance mutations and subsequent prophage loss, which might explain why 220 
prophage prevalence varies across environments [53]. Thus, changing environments 221 
provide an additional way by which the impact of prophages can spread quickly across 222 
microbial populations and beyond. This highlights the importance of considering 223 
environmental factors in future studies in this field. 224 

Prophages can also indirectly influence bacterial evolution. For instance, by driving 225 
bacterial counteradaptation, pleiotropic effects of evolved phage resistance can occur [33, 226 
54]. Here, molecular, or epigenetic alterations of cell appendices such as type IV pili or O 227 
antigen structures that prevent phage re-infections can create an evolutionary trade-off 228 
between phage resistance and bacterial fitness [33, 54, 55]. By acting as an additional 229 
death rate for carriers of other MGEs, such as plasmids, prophages can constrain the 230 
horizontal spread of these MGEs, which can slow down plasmid mediated adaption [56]. 231 
Through evolutionary changes in their own genome, e.g., changes in genes affecting 232 
phage release rate, which positively correlates with bacterial virulence, prophages can 233 
indirectly shape bacterial phenotypes [54].  234 

Despite a growing understanding of the mechanisms by which prophages influence 235 
bacterial evolution in controlled laboratory settings, there is still a significant knowledge 236 
gap regarding the evolution of prophages and bacteria in natural environments, and how 237 
this influences the evolution of higher organisms and the cascading effects thereof. 238 
Considering that bacteria co-evolve with higher organisms, a pertinent question for future 239 



research is to investigate the extent to which prophages shape these co-evolutionary 240 
dynamics, and through what mechanisms. 241 
 242 
Conclusion 243 

Holistic and multi-scale studies have provided ample evidence that prophages 244 
significantly affect bacterial ecology and evolution, which translates via cascading effects 245 
to higher organisms and ecosystem functioning. Although we have a solid understanding 246 
of the mechanistic ways in which prophages influence their bacterial hosts at the cellular 247 
and population level, there is still much to investigate to fully understand the impact of 248 
prophages across multiple levels. Two of the key areas where more research is needed 249 
include: 250 

- Understanding of prophage function and maintenance in different ecological niches. 251 
We mainly study prophages in the context of human and animal hosts, and less in 252 
soil, water, and plant associated microbes where their role and impact may be 253 
different 254 

- We are only beginning to understand the role of prophages in host-microbiome 255 
interactions. However, a recent synthesis suggests that the context of the bacterial 256 
community is important for interactions between virulent phages and bacteria [57], 257 
and therefore in vitro observations may not always hold true in vivo [58]. Thus, more 258 
research is needed to unravel the complex interplay between prophages and the 259 
host’s microbiome and to elucidate how the microbiome, in turn, shapes the host’s 260 
response to prophages.  261 

 262 
Thus, to decipher the magnitude of prophages on higher order interactions and 263 

complex ecological systems, future work requires multi-disciplinary approaches 264 
encompassing a combination of computational and experimental techniques with a focus 265 
on non-model systems. This includes genomic and transcriptomic analyses of phage-266 
containing microbiomes to reveal the genetic make-up and expression patterns of 267 
prophages in these systems. Additional functional assays, such as measuring lytic vs 268 
lysogenic activity can reveal the impact of the dynamics of a prophage’s lifecycle while 269 
advanced imaging techniques can provide mechanistic insights at the cellular or sub-270 
cellular level. Integrating these data into predictive models that simulate interactions among 271 
prophages, bacteria and higher order interaction partners under different conditions will 272 
enable us to gain a deeper understanding of how prophages influence complex ecological 273 
systems. Such an understanding is crucial, given the global importance of bacteria for both 274 
our existence and the fundamental ecological processes that govern our planet.   275 
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