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Abstract

1. How demographic factors lead to variation or change in growth rates can be
investigated using life table response experiments (LTRE) based on structured
population models. Traditionally, LTREs focused on decomposing the asymp-
totic growth rate, but more recently decompositions of annual ‘realized’ growth
rates have gained in popularity.

2. Realized LTREs have been used particularly to understand how variation in vital
rates translate into variation in growth for populations under long-term study.
For these, complete population models may be constructed by combining data
in an integrated population model (IPM). IPMs are also used to investigate how
temporal variation in environmental drivers affect vital rates. Such investigations
have usually come down to estimating covariate coefficients for the effects of
environmental variables on vital rates, but formal ways of assessing how they
lead to variation in growth rates have been lacking.

3. We extend realized LTREs in two ways. First, we further partition the contri-
butions from vital rates into contributions from temporally varying factors that
affect them. The decomposition allows us to compare the resultant effect on the
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growth rate of different environmental factors that may each act via multiple
vital rates. Second, we show how realized growth rates can be decomposed into
separate components from environmental and demographic stochasticity. The
latter is typically omitted in LTRE analyses.

4. We illustrate how to use the approach in an IPM for data from a 26 year study on
northern wheatears (Oenanthe oenanthe), a migratory passerine bird breeding
in an agricultural landscape. For this population, consisting of around 50-120
breeding pairs per year, we partition variation in realized growth rates into en-
vironmental contributions from temperature, rainfall, population density, and
unexplained random variation via multiple vital rates, and from demographic
stochasticity.

5. The case study suggest that variation in first year survival via the random com-
ponent, and adult survival via temperature are two main factors behind envi-
ronmental variation in growth rates. More than half of the variation in growth
rates is suggested to come from demographic stochasticity, demonstrating the
importance of this factor for populations of moderate size.

Keywords integrated population model; life table response experiment; growth rate;
environmental stochasticity; demographic stochasticity

Introduction

Populations in the wild regularly experience changes in their environments, resulting
in variation in demographic rates such as survival, birth and immigration rates. Life
Table Response Experiments (LTREs) are a suite of methods developed with the aim
of understanding how such change in demographic rates translate into variation in
population growth (Caswell, 1989). The use of LTREs initially focused on decompos-
ing changes in the asymptotic growth rate of stage or age structured deterministic
matrix models into contributions from demographic rates, and also from environmen-
tal factors determining those rates. In a frequently changing environment asymptotic
growth rates may, however, never be attained as constant perturbations hinder the
population from approaching the stable stage structure associated with any particu-
lar environmental state. In such dynamic environments, LTREs based on asymptotic
growth rates may not accurately capture the demographic causes of variation. For
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instance, Koons et al. (2016) showed that the demographic factors highlighted as im-
portant in explaining variation in asymptotic growth rates by classical LTREs were
not the same as those causing variation in the short term.

As an alternative to LTREs based on asymptotic growth rates, Koons et al. (2016)
therefore considered LTREs decomposing variation in ‘realized’ growth rates into con-
tributions from vital rates. The realized growth rate is simply the annual growth rate,
and its variation is considered over a finite period of time such as the duration of a
study period. One key difference between the classical LTREs and realized LTREs
is that the latter includes effects due to variation in stage-structure, which does not
affect asymptotic growth rates. Koons et al. (2016) called these ‘transient LTREs’.
Here we will instead refer to them as ‘realized LTREs’ to emphasize that they are not
only useful in non-stationary environments or in a state away from equilibrium, but
also to analyze population variation in stationary stochastic environments.

LTREs have often been used as a theoretical tool to gain a deeper understanding of
already parametrized population models, but realized LTREs in particular also lend
themselves well in an inferential context. Integrated population models (IPM, Besbeas
et al., 2005; Plard et al., 2019) can be used to fit fairly complete structured popula-
tion models by combining multiple types of demographic and population data. They
therefore provide a framework for inferring a population model from a combination of
demographic and census data in a coherent way. Using realized LTREs in combina-
tion with integrated population models, contributions of demographic vital rates to
population growth can be estimated along with its uncertainty (Koons et al., 2017;
Paquet et al., 2019).

IPMs can be used to investigate relations between temporal variation in environmental
variables and variation in growth rates, mediated via demographic rates (Clark-Wolf
et al., 2023; Weegman et al., 2017; Zhao et al., 2021). Such studies have usually used
estimated covariate coefficients to assess the strength of environmental variables on
demographic rates. A large coefficient does, however, not necessarily imply a large
impact on the growth rate if the sensitivity of the vital rate is low. Similarly, opposing
directions of effects of the same environmental variable on multiple vital rates can lead
to unclear resultant effects on the growth rate (Canonne et al., 2023). Investigations
into how environmental variation translates into variation in growth have been done
with classical LTREs (Caswell, 2001) but rarely with realized LTREs. An exception is
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Maldonado-Chaparro et al. (2018) who suggested regression on simulated population
trajectories to decompose variation in annual growth into environmental contributions
for integral projection models, but as far as we are aware such decompositions have
not been used with integrated population models.

The aim of this paper is to explore a decomposition of variation in realized growth
rates into contributions from environmental factors and density dependence acting via
the vital rates, extending the methods of Koons et al. (2016). In addition we propose
an approach to quantify the relative contributions of environmental and demographic
stochasticity to variation in growth rates. We apply these decompositions to an IPM
of northern wheatears (Oenanthe oenanthe), where we include temperature and rain-
fall during different periods of the annual cycle, as well as breeding period density
dependence, as explanatory covariates for vital rate variation.

Methods

Scope

We consider a modelling framework where we have a structured population model
with environmental variation and, possibly, demographic stochasticity. Environmen-
tal variation refers to temporal fluctuations in demographic rates across a population,
and demographic stochasticity to chance events of demographic outcomes for individ-
uals (Engen et al., 1998). Environmental variation can be captured by projection
matrices 𝐴𝑡 for each time step 𝑡 which are determined by a set of vital rates. Below
we will assume that 𝑡 represents year, so that we have annual projection matrices.
The vital rates determining the 𝐴𝑡 matrices may vary over years and can be driven
by environmental variables. In general we think of the annual vital rates as modelled
with some link function for an appropriate scale (e.g. logit for survival probabilities),
and with a linear predictor that may include population level annual environmental
covariates and random effects. We also include the possibility of simple density depen-
dence, e.g. via total population size, in the linear predictors. This framework covers
common types of models inferred via fitting integrated population models (Schaub &
Kéry, 2021).
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Contributions from population structure and environmental variation

We start by considering only environmental variation in population dynamics, and
decompose variation in realized growth rates into contributions from population struc-
ture (in terms of age or stage), density dependence and environmental factors. In a
later section we will also consider demographic stochasticity.

Under environmental variation only, age or stage structured population dynamics are
fully described in terms of the annual projection/transition matrices 𝐴𝑡, and 𝑛𝑡+1 =
𝐴𝑡𝑛𝑡, where 𝑛𝑡 is a vector containing the population numbers in the different ages or
stages. The realized annual growth rate (as defined in Koons et al. (2016)) is then

𝜆𝐸𝑆
real,𝑡 = ||𝐴𝑡𝑛𝑡||

||𝑛𝑡||
= ||𝐴𝑡�̃�𝑡||

where || ⋅ || is the l1 vector norm (i.e. the total of all elements in the vector) and �̃�𝑡 is
the normalised population age or stage-structure vector. We use the superscript ES
to highlight that this growth rate is determined by the state of the environment (𝐴𝑡)
and by the stage structure.

Koons et al. (2016) used a Taylor approximation of 𝜆𝐸𝑆
real,𝑡 to break down its variance

𝑉 (𝜆𝐸𝑆
real,𝑡) into contributions from time varying vital rates. The same type of first

order Taylor approximation is also commonly used for computing classical LTREs
of deterministic asymptotic growth rates (Caswell, 2001). For these classical LTREs
the first order approximation has further been used to compute contributions from
environmental factors acting on the vital rates. We use the same approach here, but
apply it to realized annual growth rates instead of deterministic asymptotic growth
rates.

To help illustrate the approximation we write the annual realized growth rate as a
function of all its underlying time varying parameters:

𝜆𝐸𝑆
real,𝑡 = 𝑓(𝜃𝑡)

so that 𝜆𝐸𝑆
real,𝑡 is completely determined by 𝜃𝑡. A first order Taylor expansion around

the mean of 𝜃 gives

𝑓(𝜃) ≈ 𝑓( ̄𝜃) + ∇𝑓𝑇
̄𝜃 (𝜃 − ̄𝜃)
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where ∇𝑓 ̄𝜃 = ( 𝜕𝑓
𝜕𝜃1

| ̄𝜃, ⋯ , 𝜕𝑓
𝜕𝜃𝑘

| ̄𝜃) is the gradient of 𝑓 evaluated at the (temporal) mean
of the vector 𝜃, and 𝑇 denotes vector transpose. Using rules for how to compute the
variance of a vector of random parameters multiplied by a fixed vector, the variance
of 𝑓 can be approximated as

Var(𝑓(𝜃)) ≈ (∇𝑓)𝑇
̄𝜃 Σ𝜃(∇𝑓) ̄𝜃

where Σ𝜃 is the covariance matrix of 𝜃. This is identical to a delta approximation
(Ver Hoef, 2012) for the variance of the function 𝑓 given the covariance matrix of its
parameters.

The formula can be used to define contributions to the variance from each 𝜃𝑖 by
summing the variance and covariance terms involving 𝜃𝑖

contribution(𝜃𝑖) = 𝑉 (𝜃𝑖) ( 𝜕𝑓
𝜕𝜃𝑖

)
2

+ ∑
𝑗≠𝑖

Cov(𝜃𝑖, 𝜃𝑗)
𝜕𝑓
𝜕𝜃𝑖

𝜕𝑓
𝜕𝜃𝑗

These contribution sum to the total (approximate) variance of 𝜆𝐸𝑆
real , and relative contri-

butions can be computed through dividing by this total variance. Covariances between
pairs of distinct parameters are given equal weights in their respective contributions,
and contributions for some parameters can become negative when the covariance terms
are negative and dominate the variance, which can make interpretation difficult. A
computationally convenient formula to simultaneously calculate all contributions is

contribution(𝜃) ∶= ∇𝑓 ̄𝜃 ∘ Σ𝜃 ∇𝑓 ̄𝜃

where ∘ denotes element-wise multiplication (Hadamard product).

Koons et al. (2016) treated the 𝜃𝑡 as the set of all time varying vital rates (e.g. repro-
duction and survival at different ages) plus the elements of the population structure
vectors. To decompose the variance further we can instead think of 𝜃 as containing
time varying components of the linear predictors that determine the time varying vi-
tal rates, plus the population structure. As an example, suppose we model first year
survival as a function of population density, a covariate 𝑥 and a random effect,

logit(𝜙0,𝑡) = 𝜇 + 𝛽𝑥𝑡 + 𝛾||𝑛𝑡|| + 𝜖𝑡,
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then the time varying components of this linear predictor are 𝛽𝑥𝑡, 𝛾||𝑛𝑡||, and 𝜖𝑡. If
we collect all such terms across all time varying vital rates and add the population
structure, 𝜆real,𝑡 is again completely determined by 𝜃 and we can use the variance
approximation formula to decompose the variance of the realized growth rate into con-
tributions from the terms in the linear predictors. To do this, we need to compute the
gradient ∇𝑓 ̄𝜃 and the covariance matrix Σ𝜃. The gradient ∇𝑓 ̄𝜃 is usually straightfor-
ward (but potentially tedious) to compute as 𝜆𝐸𝑆

real,𝑡 = ||𝐴𝑡�̃�𝑡|| tend to contain simple
terms (sums of products between vital rates and population structure) that are easy
to differentiate (Appendix C). This gradient is similar to the gradient when the 𝜃 are
treated as vital rates (Koons et al., 2016) but with the addition that we also need to
take the derivative of the inverses of any link function. The covariance matrix Σ𝜃 can
be estimated by the sample covariance matrix of the full 𝜃 vector across time. With
IPMs, which are typically implemented using MCMC in a Bayesian framework, it is
easy to set up computations so that all the elements of 𝜃 are directly available and the
covariance matrix can then be computed for each posterior iteration to give a posterior
distribution of the contributions.

Diagnosing the linear approximation The approximation used to break down vari-
ation in 𝜆𝐸𝑆

real into its contributing components will not work well if there is strong
non-linearity in the relationships between the components and the growth rate over
the range of the variation in the components. Fortunately, the performance of the
approximation can be easily checked by comparing the variance of 𝜆𝐸𝑆

real, t to its total
variation as indicated by the approximation (sum of all its contributions)(Caswell,
2001; Koons et al., 2017). This comparison is also useful for diagnosing coding errors
or incorrect calculations of derivatives.

Measuring contributions of demographic stochasticity

Demographic stochasticity can be included in population models using distributions
that describe outcomes of life-history events at the individual level. For instance,
annual survival of an individual may be modelled as a Bernoulli trial and, assuming
independence and identical rates among individuals in the same stage in the population,
the total number of survivors in a life-stage has a binomial distribution.

In this situation, we define the matrix 𝐴𝑡 as the expected projection matrix in year 𝑡
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given the environment (and population size) where the expectation is taken over the
demographic stochasticity. In other words, we define 𝐴𝑡 using the expected vital rates
in year 𝑡, e.g. the expected survival probability of an age class. The population vector
𝑛𝑡+1 is then no longer equal to 𝐴𝑡𝑛𝑡 and we define

𝜆real,𝑡 = ||𝑛𝑡+1||
||𝑛𝑡||

= ||𝐴𝑡𝑛𝑡|| + 𝐷𝑡
||𝑛𝑡||

= 𝜆𝐸𝑆
real,𝑡 + 𝜆𝐷

real,𝑡

where 𝐷𝑡 = ||𝑛𝑡+1|| − ||𝐴𝑡𝑛𝑡|| is the difference between actual population size and the
projected population size we would expect from environmental variation alone. 𝐷𝑡

denotes the total effect of demographic stochasticity and can be a complex quantity
involving products or sequences of demographic stochasticity from multiple vital rates.
Note that 𝜆𝐷 unlike 𝜆𝐸𝑆 can be both negative and positive (this would be avoided if
the decomposition is defined at the log-scale). For large 𝑛, 𝜆𝐷 should become small.

We then use
𝑉 (𝜆𝐸𝑆

real,𝑡) + Cov(𝜆𝐸𝑆
real,𝑡, 𝜆𝐷

real,𝑡)
𝑉 (𝜆real,𝑡)

as a measure of the relative contribution of environmental variation and population
structure to variation in the realized growth rate, and, correspondingly,

𝑉 (𝜆𝐷
real,𝑡) + Cov(𝜆𝐷

real,𝑡, 𝜆𝐸𝑆
real,𝑡)

𝑉 (𝜆real,𝑡)

for the relative contribution of demographic stochasticity. Covariance terms are in-
cluded so that the sum of the two relative contributions is 1.

Case study using transient LTREs with integrated population models

The above decompositions can be used in combination with inference via integrated
population models. We will illustrate this in a case study where we first compute the
contribution of environmental covariates, density dependence and population structure
to variation in 𝜆𝐸𝑆 as in the previous section, and then separately estimate the relative
magnitude of environmental and demographic variation. For the case study we use
field data from 26 years (1993 to 2018) from a population of wheatears, a migratory
bird species wintering in the Sahel region and breeding in an agricultural landscape
near Uppsala in Sweden. We use mark-resighting data of birds ringed either as adults
or as chicks in the nest, data on reproductive performance, and census data on occupied
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breeding territories to parametrize an age structured population model by combining
data in an integrated population model. The model describes the number of young
(one year old) and old (2 years and older) males each year in a pre-breeding census
formulation. We choose these two age classes because they display the most prominent
differences in vital rates (e.g. Pärt, 2001), and we only consider males as they are
easy to categorize as young or old whereas the same female age classes are harder to
determine. Details of the wheatear study system and of how data are handled and
combined in the IPM are provided in Appendix A, and we focus below on the annual
dynamics resulting from the IPM.

Annual transition matrix The basic structure of the annual projection matrix 𝐴𝑡,
without demographic stochasticity, is

𝐴𝑡 = ⎛⎜
⎝

𝜈1,𝑡𝑟𝜓𝑡𝜙0,𝑡 + 𝜔1,𝑡 𝜈2,𝑡𝑟𝜓𝑡𝜙0,𝑡 + 𝜔1,𝑡

𝜙1,𝑡 + 𝜔2,𝑡 𝜙2,𝑡 + 𝜔2,𝑡

⎞⎟
⎠

Briefly, 𝜈1,𝑡 and 𝜈2,𝑡 represent the probability of early nest survival from initiation
of breeding until chicks are approximately 6 days old for young (1) and old (2) male
parents, 𝑟 is the expected number of 6 day old chicks produced per nest, 𝜓𝑡 is the
survival probability of nestlings until fledging (from 6 days old until 15 days when
they fledge), 𝜙0,𝑡 is first year apparent survival probability after fledging and includes
the probability that the bird is a male (because chicks cannot be sexed in the field, see
Appendix A), 𝜙1,𝑡 and 𝜙2,𝑡 are apparent survival probabilities of young and old males,
and 𝜔1,𝑡 and 𝜔2,𝑡 are immigration rates into the young and old age classes (see Table
1 for a more precise definition of the vital rates). Except for 𝑟 which is estimated
as a fixed parameter among years, these vital rates are modelled via link functions
(logistic for survival probabilities and exponential for immigration rates) as depending
on environmental covariates, density dependence and annual random effects. For early
nest survival and nestling survival we used local rain and temperature during those
stages as covariates, for first year survival after fledging we used breeding population
density and rainfall in the wintering area, and for young and old male survival we
used local rainfall and temperature in summer as well as rainfall in the wintering area
(Table 1). Further motivation behind the choice of environmental covariates is given
in Appendix A.
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Demographic stochasticity To incorporate demographic stochasticity, we consider
each vital rate in the matrix 𝐴𝑡 to be the expectation of a random variable capturing
variation in the outcomes of individual life-history events. These random variables
representing demographic stochasticity are modelled with binomial distributions for
early nest survival and nestling survival, and for first year, young male and old male
survival, and with Poisson distributions for the number of chicks and the number of
immigrants into each age class. As a consequence, the total number of young males
in year 𝑡 + 1, 𝑛1,𝑡+1, is the sum of the result of a sequence of binomial and Poisson
draws involving young males breeding in year 𝑡, a sequence of draws involving old
males breeding in year 𝑡 and immigration via a Poisson((𝑛1,𝑡 + 𝑛2,𝑡)𝜔1,𝑡) distributed
variable. Likewise, the number of old males in year 𝑡 + 1, 𝑛2,𝑡+1, is the sum of a
Binomial(𝑛1,𝑡, 𝜙1,𝑡), a Binomial(𝑛2,𝑡, 𝜙2,𝑡), and a Poisson((𝑛1,𝑡 + 𝑛2,𝑡)𝜔2,𝑡) distributed
variable.

Model fitting details We formulate the model in a Bayesian framework and therefore
need priors for model parameters. For regression coefficients at the logit scale we used
normal priors with zero mean and standard deviation 1.5 for intercepts and 1 for
covariate slopes. We used uniform priors over (0, 1) for detection probabilities, and a
uniform prior over (0, 8) for 𝑟.

For vital rates for which there are no direct observed data, typically immigration as
in our case, contributions tend to get inflated when temporal random effects for them
are modelled (Paquet et al., 2021). To reduce this effect we put exponential shrinkage
priors (rate = 20) on the random effect standard deviations (for all vital rate random
effects, not only immigration). These priors aim to reduce model complexity (Simpson
et al., 2017) by shrinking variation towards zero. As a consequence, a small posterior
random effect variance does not necessarily mean that the variation in the parameter
is small, but simply that there is no evidence of strong variation.

We also put a shrinkage prior on the intercepts for immigration (rate = 10) as we
don’t have direct data on immigration which might lead to unstable estimation of this
parameter.

The IPM was implemented in NIMBLE (Valpine et al., 2016) using 4 MCMC chains,
each with 21000 iterations and discarding the first 1000 iterations (code in Supplement
1). For each iteration of the MCMC output we computed contributions from each
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component of the linear predictors of the vital rate, and from age structure, to yield the
posterior distribution of the contributions. Convergence of the MCMC was assessed
using the R-hat statistic on the 4 chains. These were all below 1.03.

Model fit was assessed by posterior predictive p-values (Appendix B). The fit was
acceptable for most aspects of the model that we investigated. However, the number
of chicks was underdispersed relative to the Poisson distribution we used. Attempts
to reconcile this with a multinomial distribution resulted in numerical problems for
the MCMC sampler, and we therefore kept the Poisson distribution.

In addition to the main model we considered an alternative with a different specifi-
cation of nestling survival. The alternative model assumed that variation in nestling
survival was due to deaths of individual young in the nest, as opposed to total nest
failure in the main model (see Appendix A and B for further discussion).

The age-structure vector in our case has two components that sum to 1, so that there
is only one degree of freedom in its variation. We therefore parameterized 𝜆𝐸𝑆

real,𝑡 as a
function of �̃�1,𝑡 only (i.e. with �̃�2,𝑡 replaced by 1 − �̃�1,𝑡) when computing the gradient
and contributions.

Results of case study

The population declined over the study period with a marked variation in annual
growth rates (Fig. 1). Decomposing the variance in the realized growth rate without
demographic stochasticity (𝜆𝐸𝑆) into contributions from vital rates (similarly to Koons
et al., 2016, 2017) suggests that most of the variation comes from first year survival,
and with smaller contributions from survival of old and young males and nestlings (Fig.
2). Early nest survival and immigration both have small contributions, and variation
in age structure contributed almost nothing to variation in growth.

Breaking the contributions down into environmental components affecting the vital
rates suggests that random effects and winter rain for first year survival and summer
temperature for survival of old males provide the largest contributions to environmen-
tal variation in the growth rate (Fig. 3). The effects of these two rain and temperature
covariates are however uncertain (Fig 4). There is a clearer effect for summer tem-
perature on nestling survival, but the resulting contribution to variation in growth is
small.
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Figure 1: Left panel: Observed (points) and estimated (shaded area, showing 50% cred-
ible intervals) population size over the study period. Right panel: Observed
(points) and estimated (shaded areas, showing 50% credible intervals) annual
growth rates. The green shaded area shows estimated annual growth rates
including environmental variation and variation in age structure (i.e. 𝜆ES),
the purple shaded area shows estimated growth rate also including demo-
graphic stochasticity (i.e. 𝜆ES + 𝜆D).
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Figure 2: Total relative contributions to environmental variance in the realized growth
rate for each vital rate (summed across all linear predictor components of the
vital rates). Error bars show 50% (thick) and 95% (thin) credible intervals.
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Figure 3: Relative contributions (summing to 1) to environmental variation in the
realized growth rate from all linear predictor components and vital rates.
Error bars show 50% (thick) and 95% (thin) credible intervals.
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Figure 4: Estimated slopes for all environmental covariates on vital rates. Error bars
show 50% (thick) and 95% (thin) credible intervals.
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Alternatively, we may compute total contributions of different groups of variables that
may act across different vital rates. For example, Fig. 5 shows total contributions
of weather, density, random effects, and population structure to the variance in the
realized growth rate, showing that roughly equal portions of the variance are due to
weather and random effects in the model. The weather contributions were computed
by summing contributions from all temperature and rainfall covariates across all vital
rates, and the random effect contributions by summing all random effects components
across all vital rates (including immigration).

Comparing the actual variance of 𝜆𝐸𝑆 to the approximated variance (i.e. the sum of
all contributions) shows that the approximation slightly underestimated the actual
variance with a relative error of -2% on average over the posterior distribution, but
with larger errors for some posterior draws (95% CI: -16% - 14%).
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Figure 5: Relative contributions from weather (rainfall and temperature), population
density, random effects (including for immigration), and age structure to
environmental variance in realized growth. Error bars show 50% (thick) and
95% (thin) credible intervals.

The above results show contributions to environmental variation in growth only. If we
consider the population across the censused area, which has around 50-120 individual
males per year, demographic stochasticity accounts for a large portion of the variance
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in the realized growth rate. Specifically the contribution of demographic stochasticity
via 𝜆𝐷 is ca 56% (95% CI: 31-84%), while the remaining contribution is due to varia-
tion in 𝜆ES, i.e. environmental variation and, to a very small extent, variation in age
structure.

In the alternative model where variation in nestling survival is assumed to be due to
death of individual chicks instead of total nest failure (Appendix B), there is a large
contribution of nestling survival to variation in growth, and a smaller contribution
from first year survival compared to the main model (Fig 6). In this model, the
contributions from temperature and rainfall via nestling survival are also larger (Fig
7). Because distinguishing the two models is difficult (Appendix B), it is not fully clear
during which part of the time period from the ringing of chicks to their return the
following year that some of the variation contributing to variation in growth occurs.

Discussion

Studies using LTREs to decompose variance in realized growth rates with IPMs have
focused on contributions from variation in vital rates, even when environmental predic-
tors have been included in models (e.g. Canonne et al., 2023; Nater et al., 2022). We
show how realized LTREs can be used to also decompose variation into contributions
from environmental factors, and to assess the overall contribution of environmental
versus demographic stochasticity, two conceptual extensions of the approach of Koons
et al. (2016).

Estimating contributions

The decomposition of environmental variation relies on approximating the (environ-
mental) realized growth rate using a first order Taylor expansion, which may not be
accurate if there is strong environmental variation or strong non-linearity in the re-
sponse to the environment. In our case study the average relative error was a modest
-2%, but was higher over parts of the posterior distribution. Alternative decompo-
sitions to try to reduce error have been suggested. Rees & Ellner (2009) suggested
LTREs of the realized growth rate for integral projection models that rely on multiple
regression growth rates against vital rates for simulated population dynamics. This
approach has been extended to LTREs of environmental factors determining the vital
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rates, also for integral projection models (Maldonado-Chaparro et al., 2018). It differs
from the approach taken here in that a simulation scheme for hypothetical environmen-
tal variables as well as regression model to analyze the simulated growth rates need
to be set up. In contrast, Taylor approximation based LTREs are directly derived
from the model and no design choices are necessary in the calculation of contributions.
Another difference is that while we estimate only direct effects on the growth rate,
Maldonado-Chaparro et al. (2018) try to also estimate lagged effects of environmental
variables. Such lagged effects would appear in the age structure contributions of our
approach.

Another alternative is to use functional decompositions (Hooker, 2007) as a basis for
LTREs. Hernández et al. (2023) proposed this approach and used it to decompose
differences in the asymptotic growth rate between different treatments. It could, in
theory, be used to approximate the variance in realized growth rates to an arbitrary
degree of precision by increasing the order of the functional expansion, but in practice
computation time and interpretation will be limiting factors (Hernández et al., 2023).
As far as we are aware none of these two alternative decompositions have yet been
used with IPMs, but it appears straightforward to apply them also in that setting. It
is unclear to us if they would perform better than the Taylor approximation based
LTREs. We suggest that the more direct Taylor based or functional decomposition ap-
proaches could be used in first attempts to compute contributions from environmental
variables. In cases where the performance turns out to be poor, a simulation approach
(Maldonado-Chaparro et al., 2018) could be considered.

To measure contributions from demographic stochasticity we compare the growth rate
when random outcomes from all the model components that represent demographic
stochasticity are included to the expected growth rates when these components are
fixed at their annual means. The relative effect of the demographic stochasticity
components will decrease with population size and hence the relative contribution of
demographic stochasticity will depend on the size of the population that is consid-
ered. In an IPM with census data, an obvious choice is to estimate the contribution
of demographic stochasticity for the population that is being censused. However, the
contribution of demographic stochasticity could be predicted more generally by sim-
ulating the outcomes of demographic events for a population of any given (initial)
size.
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Case Study

For the wheatear population model, an LTRE decomposition into vital rate contribu-
tions suggests that environmental variation in annual growth rates mainly comes from
variation in first year survival after fledging and in survival of old males (Fig. 1). Fur-
ther decomposing these contributions into components from environmental variables
shows that the contribution from first year survival is mainly linked to unexplained
random variation while the contribution from old male survival is related to summer
temperatures. In total, slightly less than half of the environmental variation in growth
were explained by weather covariates while the other half came from the unexplained
random components. Another new aspect of our IPM analysis is that we also quantify
the magnitude of demographic stochasticity, and a large portion of the variance in the
realized growth rate seems to come from this component.

The importance of first year and adult survival is partly in agreement with a previous
realized LTRE analysis of vital rates in this population using a different model (Paquet
et al., 2019). Our results are also partly compatible with previous analyses of weather
variables in the wheatear population, conducted at an individual level rather than at
the population level adopted here. These suggested, among other things, that rainfall
during the nestling period reduced fledging success and that temperature increased it
(Öberg et al., 2015). Our results point in the same direction although the negative
effect of rainfall was uncertain in the main model. The implications on variation in
population growth however was strongly dependent on the specification of the nestling
survival model. In the main model the contribution from these weather effects via
nestling survival were very small, but substantial in the alternative model. This shows
how seemingly innocuous model specification choices, in this case whether variation in
nestling survival was due to complete nest failure or to death of individual chick, can
sometimes lead to substantial differences in contributions.

In contrast to several other studies (Millon et al., 2019; Nater et al., 2022; e.g. Weeg-
man et al., 2017), including the previous IPM study on wheatears (Paquet et al., 2019),
our results suggest limited contribution of immigration to annual variation in growth
rates. We believe this is mainly a consequence of our use of penalized complexity pri-
ors for random effects variances. Using an uninformative weak prior for immigration
will often result in a large contribution because direct information about immigration
is typically missing and the error term adjusts to any discrepancy between the growth
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rate projected from the vital rates and the growth rate inferred from survey data (Pa-
quet et al., 2021). Penalized complexity priors are a convenient way of mitigating this
effect.

The large contribution from demographic stochasticity (56%) may seem high, but is
not unreasonable for a population of this size (~100 males, c.f. Lande et al., 2003;
Steiner et al., 2021), although in our case the estimate of demographic stochasticity
may be inflated to some extent since we had to resort to a Poisson distribution for
computational reasons. Nevertheless, estimating environmental variability in demo-
graphic rates from study populations of limited size is a challenge because its signals
can be obscured by demographic stochasticity, even for long term studies (Ross &
Weegman, 2022). This may partly explain the large uncertainty often seen in esti-
mated contributions, here and in other studies.

Conclusions

LTRE analyses of realized growth rates have been used to shed light on how variation
in vital rates over a study period contribute to population change. The methods
illustrated here provide a means of assessing how these contributions are mediated
by lower level environmental drivers, and additionally determining contributions from
demographic stochasticity. They can give us a more complete picture of the different
paths along which a population model moderates fundamental sources of variation
into variation in population growth.

Author contributions JK and MP conceived the initial idea for the study. JK anal-
ysed data, with input from all authors, and wrote the original draft. TP initiated the
field study, DA and TP led the study and curated data. DA extracted initial data for
analysis. All authors contributed to revisions of the text.
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Appendix A - IPM details

Study system and data filtering

We used field data from a long-term population study of northern wheatears (Oenanthe
oenanthe), a migratory Passerine bird species wintering in the Sahel region (Arlt et
al., 2015; Cramp, 1988) and breeding in an agricultural landscape near Uppsala in
Sweden. The study site is located south east of Uppsala, (59,500 N, 17,500 E), and
covers an area of 60 km2 with 230 territory sites that have been occupied by wheatears
at least once since 1993 when the yearly monitoring started. About 100–180 pairs
breed annually in the study area. Demographic data of individuals used in this study,
however, were collected from a smaller central part of the study area (c. 40 km2, 179
territory sites and 70-100 pairs breeding annually) to achieve more precise estimates
of survival rates of individuals dispersing short distances between years. For details of
the study system, see e.g. (Arlt & Pärt, 2017; Paquet et al., 2019)

Breeding data

We split breeding performance into three separate components: the probability of a
nest to survive until chicks are approximately 6 days old (i.e. early nest survival; the
period starts at nest initiation and includes the egg stage as well as the period where
females frequently incubate small nestlings), the number of chicks in the nest at that
age, and the individual survival probability of chicks from an age of 6 days to fledging
(i.e. nestling survival). This was chosen to match the collection of different types of
information on reproduction (Arlt et al., 2008; Pärt, 2001). If the nest was accessible,
chicks were ringed and counted when they were approximately 6 days old. For the
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subset of nests that could be ringed, we therefore have information about the nest still
being alive when the chicks were 6 days old, and the number of chicks in the nest. At
the time of fledging, defined as the time when chicks are around 15 days old, all nests
were checked for signs of activity (chick seen or alarming parents) to determine fledging
success. The fledging success data are therefore binary indicating whether at least one
chick was still alive at the time of fledging. The breeding model was assembled from
these pieces of information.

We assume that nests survive until chicks are 6 days old with probability 𝜈𝑎,𝑡 (early
nest survival, including mainly the incubation period), where survival is defined as
at least one surviving chick, and 𝑎 denotes whether the male of the nest is young or
old. Given early nest survival until chicks are 6 days old, we assume that chicks are
ringed with probability 𝑝𝑅,𝑡, which are year dependent nuisance parameters, and that
the number of chicks in the nest follows a Poisson distribution with a constant mean
𝑟. We also assume that the number of chicks in the nest is independent of whether or
not chicks were ringed.

A chick that is 6 days old survives until fledging (15 days) with probability 𝜓𝑡 (nestling
survival). We assume that the survival of chicks during this period was composed of
two parts, a time-varying probability of complete nest failure 𝜓𝑡 (e.g. due to predation)
and a constant probability 𝜁 of individual chick death that is independent among
siblings. We then model breeding success as the probability that the nest does not
completely fail and at least one chick survives until 15 days after hatching, so that the
probability of breeding success in a nest with 𝑚 6 day old chicks is 𝜓𝑡(1 − (1 − 𝜁)𝑚).

We then model the joint data, (𝑓, 𝑚), for each nest where 𝑓 is the binary fledging
success and 𝑚 is the number of chicks ringed in the nest (which is zero if the nest
could not be accessed). For ringed nests (𝑚 > 0), we know that the nest survived
until chicks were approximately 6 days old and therefore

𝑓|𝑚 ∼ Bernoulli(𝜓𝑡(1 − (1 − 𝜁)𝑚))

For unringed nests we have

𝑃(𝑓 = 1|𝑚 = 0) = 𝑃(𝑓 = 1, 𝑚 = 0)
𝑃(𝑚 = 0)

The probability that a nest is not ringed 𝑃(𝑚 = 0) is 1 minus the probability that it
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is ringed:

𝑃(𝑚 = 0) = 1 − 𝜈𝑎,𝑡𝑝𝑅,𝑡

The joint probability is

𝑃(𝑓 = 1, 𝑚 = 0) = 𝜈𝑎,𝑡(1 − 𝑝𝑅,𝑡) ∑
𝑥>0

(𝜓𝑡(1 − (1 − 𝜁)𝑥)) Poisson(𝑥; 𝑟)

where the sum is over the possibilities for the number of chicks in the nest,
and Poisson(𝑥; 𝑟) is the Poisson probability of 𝑥 chicks when the mean is 𝑟
(i.e. Poisson(𝑥; 𝑟) = 𝑟𝑥 exp(−𝑟)/𝑥!). By combining the above,

𝑓|𝑚 = 0 ∼ Bernoulli (𝜈𝑎,𝑡
1 − 𝑝𝑅,𝑡

1 − 𝜈𝑎,𝑡𝑝𝑅,𝑡
∑
𝑥>0

(𝜓𝑡(1 − (1 − 𝜁)𝑥)) Poisson(𝑥; 𝑟)) .

To finalise the joint model of (𝑓, 𝑚), we also need to determine the marginal distribu-
tion of 𝑚. For this, we have that 𝑚 is larger than 0 with probability 𝜈𝑎,𝑡𝑝𝑅,𝑡 as above,
and given 𝑚 > 0, 𝑚 ∼ Poisson(𝑟). For simplicity we did not zero truncate the Poisson
distribution since the observed mean of the number of chicks ringed is large enough
(5.3) that zeros are unlikely.

The assumption that temporal variation in nestling survival is driven entirely by the
complete nest failure probability 𝜓𝑡 is somewhat arbitrary. We therefore alternatively
considered a model where the temporal variation is instead driven by the other com-
ponent 𝜁𝑡 and where the probability of complete nest failure is constant over time.
Results from this model are presented in Appendix B.

Covariates Temporal variation in early nest survival, 𝜈𝑎,𝑡, was modelled at the logit
scale with an intercept, temperature and rainfall as covariates, and a random residual
term. Daily temperature and rainfall were obtained from a weather station in Ultuna,
approximately 10 kms from the study area. The covariates were computed as the
daily mean of temperature between May 14 and June 14 each year, a period covering
incubation for a majority of individuals. These covariates were included because poor
weather conditions (low temperature and/or high precipitation) could potentially affect
survival of young in the first days or the ability of parents to care for the nest (Öberg
et al., 2015). All coefficients were estimated as different for the two age classes (young
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and old male parent), and random effects were assumed independent between the age
classes.

Temporal variation in nestling survival, 𝜓𝑡, was modelled similarly to early nest sur-
vival, but without dependence on the age of the parent, and mean daily temperature
and rainfall were computed over the period from June 2 to June 24, covering the
nestling survival period for a majority of individuals. The motivation for the covari-
ates is the expectation that high temperature and low precipitation could make it
easier for parents to find food for the chicks (Öberg et al., 2015).

Mark-resighting data

Birds were ringed with colour rings, either as chicks in the nest or when trapped
as adults. Marked birds are then resighted and identified from the colour marks
in following years (and sometimes also re-trapped). We only consider trapping and
resightings of males. However, chicks marked in the nest cannot be sexed in the hand.
We therefore include all chicks marked, but they will only occur as resighted in later
years if they are male.

We use a CJS formulation for these data with time and age dependent survival proba-
bilities modelled with covariates and random effects, and temporally constant but age
dependent (young and old) detection probabilities.

We parametrized survival in the first year (for birds ringed in the nest) as a product of
nestling survival (survival from ringing until fledging, 𝜓𝑡 above) and first year survival
(survival from fledging until returning and establishing a territory the next year, 𝜙0,𝑡).
As we only consider resightings of males and the sex of birds is unknown in their first
year, the first year survival probability, 𝜙0,𝑡, includes the probability that the bird is
a male. Since we expect an even sex ratio at the time of ringing, actual apparent
survival of male chicks should be close to 2𝜙0,𝑡. Annual apparent survival of young
males (one year old) until establishing a territory the next year is denoted 𝜙1,𝑡 and
annual apparent survival of old males (2+ years) is denoted 𝜙2,𝑡.

Covariates For first year survival, 𝜙0,𝑡, we included a rainfall index for the wintering
area in Sahel, and population size (i.e. density dependence) in the study area as co-
variates. The rainfall index was computed as the mean of a monthly index from June
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through October (JISAO, 2018) in the same year as the birds arrive in the wintering
area. This coincides with the rainy season in Sahel which affects how dry the winter
months will be, and thereby vegetation development and potentially foraging condi-
tions. Northern wheatears are known to winter in the Sahel (Cramp, 1988), and birds
from our study population winter in a relatively large part of the Western African
Sahel (Arlt et al., 2015). Rain conditions are fairly homogeneous across large parts
of the Western and Eastern Sahel regions, and we therefore expect the Sahel rainfall
index to be associated with the wintering conditions at a regional scale for birds from
the study population.

Density dependence was included under the hypothesis that chicks born in a year with
a large breeding population may be less able to return to the study area to establish
their own nest in the following year. Population density was included as the total
abundance (𝑛1,𝑡 + 𝑛2,𝑡), and was transformed by removing 90 and dividing the result
by 10 to roughly center and scale the covariate.

For survival of young and old males we included temperature and rainfall during the
nestling period (June 8 to June 24 as defined above) as well as the Sahel rainfall index.
The rationale behind the covariates for the nestling period was that they may affect
the amount of effort required by parents to raise young, which may in turn affect
survival (Low et al., 2010).

All above survival probabilities were modelled at the logit scale and also included
intercepts and residual random effects, and all with different parameters for each age.
Random effects were also assumed independent across the different ages.

Census data

Census data on the number of occupied breeding territories were collected by contin-
uously monitoring potential territory and nest sites during the breeding season. For
almost all breeding pairs we also know the age of the male. We therefore use the
number of territories occupied by young and old males as census data, which provide
direct information about annual population growth. We assume that counts follow a
Poisson distribution:

𝑛obs
𝑎,𝑡 ∼ Poisson(𝑛𝑎,𝑡)
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for both young (𝑎 = 1) and old (𝑎 = 2) males. The 𝑛𝑎,𝑡 are assumed to follow
the population process governed by the vital rates in Table 1, and with demographic
stochasticity incorporated by drawing the number of surviving nests, juveniles, and
young and old males using binomial distributions, and the number of young in nests
and immigrants using Poisson distributions (see model code in Supplement 1).

Due to the large number of visits to the study area each season, we believe census
errors to be small and a Poisson distribution should have enough variance to capture
census errors.

Appendix B - Goodness of fit and an alternative model

Alternative model specification

As mentioned in the main text, we tested a different specification of the model for
breeding success (Appendix A) where the probability of breeding success (at 15 days
after hatching) from the time of ringing was 𝜓(1−(1−𝜁𝑡)𝑚). This model has temporal
variation (covariates and random effects) in the probability of individual chick death
(𝜁𝑡) instead of in the probability of complete nest failure (𝜓). All other aspects of the
alternative model were identical to those of the model in the main text.

Results from this model differ from those in the main text in that there is a large
contribution from nestling survival to variation in growth, and the contribution from
first year survival is reduced (Fig. 6). The reason for this seems to be that a higher
temporal variation in 𝜁𝑡 is required to capture temporal variation in breeding success
than in the model with variation in 𝜓. This is because 1 − (1 − 𝜁𝑡)𝑚 is closer to 1
than 𝜁𝑡 and therefore the variation in 1 − (1 − 𝜁𝑡)𝑚 is restricted, which needs to be
countered by a higher variance in 𝜁𝑡.

The goodness of fit checks in the next subsection did not show a clear preference for
either of the two model formulations over the other.

Goodness of fit

We assessed goodness of fit using posterior predictive p-values with Freeman-Tukey
goodness of fit statistics for breeding success and mark recapture data. We simulated
the replicate data for each MCMC iteration starting from the random effects values,
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Figure 6: Total relative contributions to environmental variance in the realized growth
rate for each vital rate (summed across all linear predictor components of
the vital rates) for the alternative model specification. Error bars show 50%
(thick) and 95% (thin) credible intervals.
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Figure 7: Relative contributions to environmental variation in the realized growth rate
from all linear predictor components and vital rates in the alternative model.
Error bars show 50% (thick) and 95% (thin) credible intervals.
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Figure 8: Estimated slopes for all environmental covariates on vital rates in the alter-
native model. Error bars show 50% (thick line) and 95% (thin line) credible
intervals.

31



0.00

0.25

0.50

0.75

1.00

weather density random age structure

co
nt

rib
ut

io
n

Figure 9: Relative contributions from weather (rainfall and temperature), population
density, random effects (including for immigration), and age structure to
environmental variance in realized growth in the alternative model. Error
bars show 50% (thick) and 95% (thin) credible intervals.
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i.e. we conditioned on the random effects rather than drawing new values for the
temporal variation.

The Freeman-Tukey statistic is

∑
𝑖

(√𝑧𝑖 − √𝐸(𝑧𝑖))2

where 𝑧𝑖 is an aggregation of binomial variables over a group 𝑖 and 𝐸(𝑧𝑖) is the expected
value of 𝑧𝑖.

For breeding success, we used the Freeman-Tukey statistic for both ringed and un-
ringed nests. For ringed nests, we aggregated the number of successes by both year
and the number of ringed chicks, giving two discrepancy metrics. For unringed nests
(where the number of chicks is not known) we aggregated only by year.

For the mark recapture data we computed Freeman Tukey statistics for the number
of recaptured young and old males respectively, both aggregated by year.

The above statistics are shown in Fig. 10 for the model in the main text and for the
alternative model in Fig. 11. As the p-values are very similar between the two models,
it appears difficult to distinguish between them.

The fit of the Poisson model of the number of chicks in the nest at time of ringing
was done separately by visually comparing the empirical distribution of the number
of chicks ringed per nest to the fitted Poisson model, which has a mean of 5.3. The
distribution of the number of chicks is underdispersed relative to the Poisson, as the
maximum number of observed chicks was 8. As mentioned in the main text, we were
not successful with attempts at using a multinomial distribution for the number of
chicks and stayed with the Poisson despite the underdisperion. This may lead to
somewhat higher estimation uncertainty, and could inflate the contribution of demo-
graphic stochasticity to some extent.

The fit of the count model was checked visually by comparing the estimated population
trajectory to observed population totals (Fig 1).
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Figure 10: Observed versus predicted (via posterior simulation) values of the Freeman-
Tukey goodness of fit statistics across the posterior distribution for the
model in the main text. The resulting Bayesian p-values are also shown.
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Figure 11: Observed versus predicted (via posterior simulation) values of the Freeman-
Tukey goodness of fit statistics across the posterior distribution for the
alternative model. The resulting Bayesian p-values are also shown.

35


	Abstract
	Introduction
	Methods
	Scope
	Contributions from population structure and environmental variation
	Measuring contributions of demographic stochasticity
	Case study using transient LTREs with integrated population models
	Results of case study

	Discussion
	Estimating contributions
	Case Study
	Conclusions

	References
	Appendix A - IPM details
	Study system and data filtering
	Breeding data
	Mark-resighting data
	Census data

	Appendix B - Goodness of fit and an alternative model
	Alternative model specification
	Goodness of fit


