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Abstract 16 

Telomeres are non-coding DNA sequences located at the end of linear chromosomes, 17 

protecting genome integrity. In numerous taxa, telomeres shorten with age and telomere 18 

length (TL) is positively correlated with longevity. Moreover, TL is also affected by 19 

environmental stressors and/or resource-demanding situations particularly during early-life. 20 

Thus, TL has been used as a physiological marker of individual quality and also as an indicator 21 

of population trend in conservation physiology. In this study, we investigated the effects of 22 

hatching rank, year of birth (2014 to 2017), sex and nest environment on TL of 137 little owls 23 

nestlings (Athene noctua). Little owls’ populations in Europe showed a marked declined in the 24 

end of the 20th century. Nowadays, in the studied Alsatian population, the population is 25 

increasing. In this study, our results indicated that telomeres are longer in females and, 26 

independently of sex, in nestlings with the highest body condition. There was also a negative 27 

effect of hatching rank but only for last-hatched nestlings in large clutches of 5 nestlings. We 28 

did not find any effect of the environmental covariates on nestlings’ TL. Finally, we found that 29 

nestlings’ TL were shorter the last year of the study, while nestlings’ body condition stayed 30 

unchanged over the same period. This result is intriguing given the local positive population 31 

dynamics and is further discussed in the context of physiological conservation. Future studies 32 

should investigate the link between reduced TL and survival prospects in this species. 33 

  34 
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Introduction 35 

Telomeres are non-coding DNA structures, located at the end of the linear chromosomes, 36 

serving as a safe-keeper for preservation of coding DNA over cell duplication (Blackburn, 37 

1991). Thanks to the formation of a capped structure with specific shelterin proteins, 38 

telomeres help the cell to distinguish real chromosome ends from DNA breaks, thereby 39 

avoiding unappropriated cell emergency responses. Still, this telomere status is degrading 40 

over time, due to the progressive loss of telomere sequences at each cell division, affecting its 41 

functionality and triggering cell senescence (Blackburn, 2000). In addition, telomere 42 

sequences are enriched in GC bases, making them highly sensitive to a well-known ageing 43 

mechanism, the oxidative stress (von Zglinicki, 2002; Reichert & Stier, 2017) (but see 44 

Boonekamp et al., 2017). Such a stress-related property triggered the interest of evolutionary 45 

biologists to study how telomeres (length or dynamics) may vary with age and thus be used 46 

as a proxy to address the question of the existing variance in inter-specific longevity 47 

(Haussmann et al., 2003; Dantzer & Fletcher, 2015; Tricola et al., 2018; Criscuolo et al., 2021) 48 

or inter-individual differences in lifespan and fitness (Beaulieu et al., 2011; Foote et al., 2011; 49 

Boonekamp et al., 2014; Nettle et al., 2017; Bichet et al., 2020; Chatelain et al., 2020; 50 

Fitzpatrick et al., 2021; Sheldon et al., 2021; Salmón & Burraco, 2022).      51 

 The importance of how early life conditions affect inter-individual telomere length 52 

quickly appears as a key question to understand how somatic growth may shape individual 53 

life trajectories in the context of life history trade-offs (Metcalfe & Monaghan, 2003; 54 

Monaghan & Ozanne, 2018). This is based on the observation that growth is a period of high 55 

energy metabolism (2-6 times basal metabolic rate, e.g. Kirkwood, 1991) to fuel intense rate 56 

of cell division, which is likely to be costly in terms of telomere erosion (Vedder et al., 2017; 57 

Spurgin et al., 2018). Studies have shown juveniles exposed to challenging conditions in early 58 
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life to have shorter telomeres. This could be due to reduced investment in somatic 59 

maintenance as a consequence of low resource availability when conditions are harsh 60 

(Herborn et al., 2014; Nettle et al., 2015, 2017; Reichert et al., 2015; Angelier et al., 2017; 61 

Quque et al., 2021). Interestingly, telomeres may also be affected during the pre-hatching 62 

developmental period. For instance, temperature instability during egg development triggers 63 

shorter telomere length at hatching in Japanese quail (Coturnix Japonica, Stier et al., 2020), 64 

and decreasing incubation temperature in the common tern (Sterna hirundo) slows down 65 

growth rate and preserve telomere length in matched-body sized hatchlings (Vedder et al., 66 

2018). Yet, telomere dynamics are not only affected by stress effects. Producing eggs is costly 67 

for the female, and depending on maternal characteristics and environmental conditions, we 68 

can expect an adjustment of egg characteristics that will shape consequent embryonic traits 69 

(Williams, 1994; Groothuis & Schwabl, 2008). As such, a large diversity of egg components 70 

(like yolk and hormones), that may be positively or negatively correlated with each other, may 71 

vary and modulate future offspring phenotype (Postma et al., 2014; Williams & Groothuis, 72 

2015). In addition, because an entire clutch is produced over sequential laying of consecutive 73 

eggs, intra-clutch variability in egg traits may be part of a mother strategy of adaptation of the 74 

chick’s phenotype, and is then expected to follow the laying order (Groothuis et al., 2005). In 75 

particular, according to the brood reduction hypothesis, it is expected that the probability of 76 

survival of last hatched nestlings (from last laid eggs) will be smaller than that of first hatched 77 

ones in case of harsh conditions (Lack, 1947; Amundsen & Slagsvold, 1996). Thus, we can 78 

expect maternal investment to decrease over the laying sequence. Telomere length is not an 79 

exception, and progressive shortening has been observed within clutch laying order in captive 80 

zebra finches (Taeniopygia guttata, Noguera et al., 2016) . In this study, the astonishing result 81 

is that the difference in embryonic telomere lengths between the 1st and the last laid eggs 82 
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represents 60% of the telomere loss an offspring will show over its first year of life. This source 83 

of variation in telomere length may be important to consider since many studies have shown 84 

negative consequences of telomere erosion on future individual fitness, e.g. jackdaws (Corvus 85 

monedula, Boonekamp et al., 2018), king penguins (Aptenodytes patagonicus, Geiger et al., 86 

2012) or in wild purple-crowned fairy-wrens (Malurus coronatus coronatus, Eastwood et al., 87 

2019), to name a few. Still, we lack data on the effect of laying order in many bird species and 88 

on how laying order effect on telomere length may vary in relation to additional stress sources, 89 

like environmental conditions in the wild (but see Kärkkäinen et al., 2021).  90 

Our study is based on 4 years of data from a wild population of Little Owl (Athene 91 

noctua) reproducing in artificial nestboxes. All nestlings are ringed and measured before 92 

fledging. After checking for hatching rank and environmental effects on chick phenotype, we 93 

used telomere length measurements made on individual feather sampling to test how nestling 94 

telomere length varied with hatching rank and with the local characteristics of nest 95 

environment. To do so, we controlled for nestling sex, age, body condition, clutch size and 96 

year of birth. To estimate nest environment characteristics, we calculated the proportion of 97 

orchards, meadows, crops, buildings, water and forests around each nest box from land use 98 

maps. In central Europe, the Little Owl is a bird species associated with traditional farmlands 99 

and its optimal habitat should provide cavities, perches for hunting and short herbage with 100 

invertebrates and small rodents (herbage size is linked to prey accessibility and availability, 101 

van Nieuwenhuyse et al., 2008). In particular, meadows and orchards are supposed to be food-102 

rich habitats (Michel et al., 2017). 103 

We predicted last hatched nestlings to be in worse condition (body mass, telomere 104 

length) than first hatched nestlings according to the brood size reduction hypothesis. We also 105 
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predicted shorter telomeres in broods raised in unfavourable environments, i.e. more 106 

proportion of buildings, water and forests around the nest box. 107 

 108 

Material and Methods 109 

Model species and data collection 110 

The Little Owl is a small nocturnal raptor living in open or semi-open areas, such as farmland 111 

or orchards (van Nieuwenhuyse et al., 2008). The Little Owl is territorial and breeds in cavity, 112 

including artificial nestboxes. In Alsace (France), numerous ringers and volunteers from the 113 

French league for the protection of birds (LPO) installed and maintained more than 1,500 nest 114 

boxes since 2006, thereby monitoring the yearly reproductive success of the local population. 115 

Females lay 2-6 eggs in April, hatching occurs ca. 1 month later and nestlings are ringed 116 

between 15-35 days of age. At ringing, nestlings’ body mass was measured with an electronic 117 

balance to the nearest 0.1 g, as well as tarsus length with a calliper to the nearest 0.1 mm, and 118 

the length of the third primary feather with a ruler to the nearest mm. The measure of the 119 

feather allows us to approximate the age of the nestling with the formula: age=(length of the 120 

feather+36)/3.3, where the age is in days and the length of the feather is in mm (Juillard, 1984; 121 

Hameau et al., 2015). This formula is valid between age 15 and 35 when there is a linear 122 

growth of the feather. Using the age of each nestling in a nest, the hatching rank was deduced. 123 

When two nestling had the same estimated age, we assigned them the same hatching rank.  124 

We also collected 3-6 ventral feathers that are stored in ethanol 70% at ambient temperature 125 

during fieldwork and then at 4°C in the lab. 126 

For this study, we used data collected on 142 nestlings from 39 broods from 2014 to 2017. All 127 

those broods had more than 1 chick. We included in our study only broods with more than 1 128 
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chick in order to estimate the effect of hatching rank (n=3, n=14, n=16, n=6 for broods with 129 

respectively 2, 3, 4 and 5 chicks). 130 

Land use around the nestbox 131 

To determine the land use around the nest boxes, we used a land cover database for Alsace 132 

(Source: BdOCS CIGAL v2 2011/2012, www.geograndest.fr) which categorizes all the habitats 133 

found in our study area. We used the software QGIS version 3.4.14 (QGIS Development Team, 134 

2020) to map the active nest boxes and create a circular buffer zone of a 150 m radius around 135 

each one of them. This radius was established thanks to data on home range size (Exo, 1992; 136 

Génot, 2005) and the field observations made during the breeding season. Due to the high 137 

number of habitats, we made groupings based on the environmental characteristics of each 138 

variable to calculate the area (m²) covered by each land type within the buffer zones. Our final 139 

nest environment included six categories: (1) buildings, (2) meadows, (3) crops (crop fields, 140 

hedges, and vineyard), (4) orchards, (5) forest and (6) water. Because of the rarity of the last 141 

two categories, forest and water were pooled together. The surface of habitat of the different 142 

categories were correlated with each other and thus we used in the model only the proportion 143 

of surface of favorable habitat defined as the proportion of meadows and orchards in the 144 

buffer. 145 

Relative telomere length (RTL) measurement and sexing 146 

Genomic DNA was extracted from feathers using an adapted protocol of the NucleoSpin Tissue 147 

kit (Macherey Nagel, Düren, Germany). RTL was measured in the 142 nestlings in one 384-148 

wells plate, using the quantitative PCR (qPCR) methodology (see Electronic Supplementary 149 

Material, ESM). Intra-plate repeatability of RTL (ICC, see (Eisenberg et al., 2020)) was of 0.769. 150 

Molecular sexing of nestlings was determined using the same extracted DNA (following 151 

Griffiths et al., 1998). Briefly, the technique is based on the existence of two conserved CHD 152 
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(chromo-helicase-DNA-binding) genes that are located on the sex chromosomes. The CHD-W 153 

gene is located on the W chromosome (only in females) and the CHD-Z gene is located on the 154 

Z chromosome (both in males and females). For technical reasons, sex could not be 155 

determined in 5 nestlings. All the statistical analyses were performed on the remaining 137 156 

nestlings with known sex. 157 

Statistical analyses 158 

We used R version 4.3.1 (R Core Team, 2023) to compute mixed models (package lme4 version 159 

1.1-33 and lmerTest version 3.1-3). In all statistical models, brood identity was included as a 160 

random factor to account for the non-independence of nestlings of the same brood. We 161 

checked models’ assumptions (homoscedasticity, normal distribution of residuals) graphically 162 

using the package DHARMa (version 0.4.6). We assessed multicollinearity among predictors 163 

by calculating variance inflation factor, VIF (package car, version 3.1-2). 164 

Individual phenotypic characteristics  165 

To test for inter-individual variation in body condition, we first calculated the Scale Mass Index 166 

(SMI) following the formula of Peig & Green (2009): SMI = Mi [L0/Li]b where Mi and Li are the 167 

body mass and size measurements of individual i, b is the slope of the standardised major axis 168 

(SMA) regression of log-transformed M on log-transformed L and L0 is the arithmetic mean of 169 

L for the study population. We then computed a linear mixed model with SMI as a dependent 170 

variable and hatching rank, sex, nestling number, nestling age, cohort, the proportion of 171 

meadows and orchards, the interaction between hatching rank and sex, and the interaction 172 

between hatching rank and the proportion of meadows and orchards as fixed effects. From 173 

this global model, we fitted every possible model and then selected a set of top models (AICc 174 

threshold of 2). Then, if the null model was not the best model, we averaged the models from 175 

these top models set (conditional average, package MuMIn, version 1.47.5).  176 
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Inter-individual variation in Relative Telomere Length   177 

RTL were log-transformed before analyses. We computed a linear mixed model with individual 178 

covariates (hatching rank, sex, the interaction between hatching rank and sex, nestling 179 

number, nestling age, SMI and cohort) and environmental covariates (the proportion of 180 

meadows and orchards, the interaction between hatching rank and this proportion) as fixed 181 

effects. The model selection procedure was the same as described above. 182 

 183 

Results 184 

Individual phenotypic characteristics  185 

Concerning individual covariates, there were no significant variables that explained variation 186 

in SMI in our models. The fixed effects retained in the top models set (5 models) were the 187 

proportion of meadows and orchards, nestling number and sex (see Table S1) but their effects 188 

were not significantly different from 0 (see Figure S1). This is consistent with the fact that the 189 

null model was in the top models set (see Table S1).  190 

 191 

  192 
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Figure 1. Forest-plot of estimates for the average model of relative telomere length and 193 

individual covariates (see Table S3). Reference level for sex is females, for cohort is 2014 194 

(the first year of the study) and for rank is 5 (last hatched chicks). Significance levels are 195 

annotated with asterisks: *** p<00.1,**p<0.01,*p<0.05, . p<0.10 196 

 197 
 198 

 199 

 200 



11 

 

Inter-individual variation in Relative Telomere Length (RTL)  201 

Concerning individual covariates, RTL was not dependent on nestling number and there was 202 

no interaction between rank and sex, or between rank and the proportion of meadows and 203 

orchards. The variables in the top models set (6 models) were rank, sex, SMI, cohort, nestling 204 

age and the proportion of meadows and orchards (Table S3, Figure 1). Males have significantly 205 

shorter telomeres than females and there is a small significant positive effect of SMI on RTL 206 

(Figure 1). In addition, last hatched nestlings have shorter telomeres but only in the largest 207 

brood of 5 nestlings (Figures 1 and 2). The effect of the year of birth is significant for the last 208 

year of study, meaning that individuals born in 2017 have shorter telomeres than individuals 209 

born earlier (Figures 1 and 3).Concerning environmental covariates, the proportion of 210 

meadows and orchards was kept In the best model but has no significant effect on RTL (Figure 211 

1). 212 

  213 
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Figure 2. The effect of hatching rank on the relative telomere length before fledging. 214 

 215 

  216 
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Figure 3. The effect of the cohort on the relative telomere length before fledging. 217 

 218 

Discussion 219 

Based on the current knowledge on growth and telomeres in bird nestlings, we initially 220 

predicted that RTL of little owl nestlings will be: (i) negatively related to the hatching rank and 221 

(ii) negatively affected by the unfavourable nature of the nest surroundings. Our results 222 

indicated that RTL are longer in females and, independently of sex, in nestlings with the 223 

highest body condition. They also supported a mixed negative effect of hatching rank and 224 

intra-brood competition on little owl nestlings’ RTL, i.e. detectable only in the largest brood 225 

size, suggesting that the effect of hatching rank on telomeres is dependent on a threshold 226 
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effect in this species. We did not find an effect of the environmental covariates on nestlings’ 227 

RTL. Finally, our scan of nestlings’ RTL over years surprisingly underlined a possible progressive 228 

shortening, independent of any changes in body condition. 229 

Little owl nestlings’ RTL were shorter in the last year of the study (2017) in comparison 230 

to previous years (2014 onwards). Both telomere data and such year effect are of great 231 

interest in the context of conservation physiology aiming at developing physiological markers 232 

of individual quality to infer consequences at the population level (Beaulieu & Costantini, 233 

2014; Lea et al., 2018). Telomeres are good candidate to be such marker because telomere 234 

length at a given age is not reflecting only the negative effects of time on the cells (i.e. 235 

chronological age), it also points out the cumulative effects of stressors encountered over time 236 

that may accelerate the rate of loss of telomere ends over the expected rate at a given age for 237 

a given species (Asghar et al., 2015; Louzon et al., 2019; Chatelain et al., 2020; Salmón & 238 

Burraco, 2022). Thus, the use of telomere assay is potentially providing data that are useful to 239 

establish survival rates at specific age stages, like the nestling period. Since deleterious 240 

environmental conditions can affect negatively telomere length, the period of growth is 241 

supposed to be the life stage where telomere sequences can be the most impacted (Salomons 242 

et al., 2009; Young et al., 2013; Monaghan & Ozanne, 2018). Beside the classical explanation 243 

that the growing period is particularly sensitive to environmental stressors because the rate 244 

of cell division and/or the oxidative metabolism are higher in a growing organism, it is likely 245 

that chicks can just hardly escape the trade-off between growth and survival. As such, 246 

sustaining a fast (but not too fast, see below) rate of growth to shorten as much as possible 247 

the nestling period may be done at a cost for telomere length. Thus, depending on the 248 

harshness of early life environment, erosion of telomeres can be accelerated for a given age 249 

(e.g. Boonekamp et al., 2014; Stier et al., 2015), leading the fledglings to be grown 250 
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physiologically old. In addition, variation in growth rate, due to changes in food availability, 251 

may affect telomere length and not body mass or body condition. As an example, growth rate 252 

may accelerate after a stunt when optimal feeding conditions are re-established, which are 253 

known to trigger transient over-optimal compensatory growth rate and faster telomere 254 

erosion (Metcalfe & Monaghan, 2001; Geiger et al., 2012). This has, theoretically, obvious 255 

consequences for the individuals in terms of survival prospects and recruitments as adult 256 

breeders in the population, as early life telomere length or rate of telomere loss have been 257 

shown to predict future individuals’ survival (Boonekamp et al., 2014; Watson et al., 2015; 258 

Wood & Young, 2019). Consequently, it also has the potential to affect the population 259 

dynamics. First conceptualized few years ago (Stindl, 2004), such a hypothesis was recently 260 

supported by studies conducted on ectotherms’ populations (Dupoué et al., 2017, 2022). In 261 

the common lizard populations studied, analysis of telomere length in yearlings of populations 262 

showing different risks of collapsing due to local global warming pointed out reduced mean 263 

telomere length in the most endangered populations (Dupoué et al., 2017). Thereafter, the 264 

same group showed that short telomeres were already inherited in neonates of declining 265 

populations, thereby suggesting (epi)genetic roots, i.e. progressive telomere shortening being 266 

not only the result of bad early life conditions (Dupoué et al., 2022). We cannot draw the same 267 

conclusions in our case, particularly because (i) our data indicate that 2017 was the only year 268 

with shorter telomeres and (ii) we lack data on inter-generational variation of telomere length. 269 

It can be noted that in vertebrates, heritability estimates are moderate (Chik et al., 2022), but 270 

this recent meta-analysis has no data on raptors (Chik et al., 2022). In addition, as low rates of 271 

recruitments of juveniles as first-breeders is an important determinant of population decline 272 

in the little owl (Le Gouar et al., 2011), the link between reduced telomere length and survival 273 

prospects of nestlings needs to be established. Finally, this result is counter-intuitive in our 274 
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study population of little owl since the population is expanding and not decreasing (Bersuder 275 

& Wassmer, 2020), contrary to other populations (Andersen et al., 2017). Whether 2017 is a 276 

transient year with unknown bad conditions for chicks or is actually the start of a longer 277 

adverse period for our population is currently unknown. Thus, the effects of yearly variations 278 

in food availability, intra-nest competition or density on telomere length need to be addressed 279 

in future studies. 280 

Little owl female nestlings had longer telomeres than male ones. This has several 281 

implications for our understanding of sex-differences in telomere dynamics and of its meaning 282 

in terms of sex-biased life history. Differences in telomere length in relation to sex has been 283 

previously illustrated in several taxa (reviewed in Barrett & Richardson, 2011), and particularly 284 

in birds with sex-biased body size or investment in reproduction, producing no consistent 285 

male-female differences (e.g. Caprioli et al., 2013; Remot et al., 2020; Saulnier et al., 2022 for 286 

no sex differences) (e.g. Bauch et al., 2020 for sex differences). In our study, sex-differences 287 

in RTL were observed at the nestling stage, with longer telomeres in the females. A previous 288 

study showed that females were slightly but consistently of bigger size (Tschumi et al., 2019), 289 

however it is not the case in our population. Yet, we did not investigate nestlings growth rates, 290 

which can be different even if the final size and/or body mass is similar (e.g. Criscuolo et al., 291 

2008). Higher growth rates are usually associated with shorter telomeres (Geiger et al., 2012; 292 

Monaghan & Ozanne, 2018) and generally the larger sex is growing at a slower rate in sexually 293 

dimorphic bird species (e.g. Teather & Weatherhead, 1994).This may potentially account for 294 

our sex-difference in telomere length as females may dilute the growth-body maintenance 295 

trade-off over a longer period. However, we also found that, independently of sex, nestlings 296 

in better body condition had in general longer telomeres. Thus, it is either unlikely that little 297 

owl nestlings had to face such a growth-body maintenance trade-off, or that our result is 298 
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driven by high quality individuals that can sustain growth without showing any associated cost 299 

in terms of telomere loss. Given that body mass is a determinant of survival from hatching to 300 

fledging in little owl (Tschumi et al., 2019), nestling telomeres rather acts as a proxy of 301 

individual quality (Angelier et al., 2019). In addition, our results do not match with the idea 302 

that the heterogametic sex (i.e. females) would be more prone to telomere erosion than the 303 

homogametic one (i.e. males) due to the unguarded expression of deleterious alleles of sex 304 

chromosomes for telomere maintenance (see Barrett & Richardson, 2011; Remot et al., 2020 305 

for a deep discussion related to telomere dynamics). One alternative explanation lies on 306 

optimal parental care towards the offspring sex with the highest chance of survival 307 

(Hasselquist & Kempenaers, 2002). It has been shown previously that females have a higher 308 

survival probability from hatching to fledging, independent of any variation in body mass 309 

(Tschumi et al., 2019). However, it is not known whether this sex-difference persists in older 310 

individuals. In that context, the parents would favour female individuals, meaning that within 311 

little owl broods females may, on average, benefit from better access to food resources due 312 

to specific parental investment. This may lead to an attenuated body maintenance (i.e. 313 

telomere length) and growth rate trade-off. Still, further study in our case is needed to 314 

determine whether adaptive brood sex ratio actually occurs, since it may result from non-315 

adaptive additional effects (e.g. sex specific mortality, see Bortolotti, 1986; Hasselquist & 316 

Kempenaers, 2002). 317 

The hypothesis that RTL is an indicator of quality is further supported by the fact that, 318 

in the largest clutches, the last hatchling of little owl presented the shortest telomeres. Even 319 

if our sample size is small (i.e., 6 clutches with 5 eggs), our data are in accordance with the 320 

brood size reduction hypothesis that predicts a lower investment with laying order. Still, our 321 

data would restrict such an effect to the last laid egg. We cannot distinguish between effects 322 
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of the laying order per se on RTL (see introduction) and postnatal effects. Postnatal effects 323 

may arise from selective parental care as discussed above. Last-hatched nestling may also 324 

suffer from intra-brood competition. Indeed, in a brood, larger nestlings have a competitive 325 

advantage compared to smaller nestlings for feeding (“Competitive advantage hypothesis”, 326 

Anderson et al., 1993). A previous experiment testing the effect of competitive disadvantage 327 

within a brood, based on the size of the nestlings cross-fostered among clutches, highlighted 328 

an interesting increased telomere attrition of less competitive nestlings without affecting 329 

body mass growth (in European starlings, Nettle et al., 2015).  330 

Finally, our study only suggested non-significant effects of nest surroundings. In other 331 

studies, local habitat types around nests and also the heterogeneity of habitats available have 332 

been shown to affect reproductive output in our species (Thorup et al., 2010; Michel et al., 333 

2017). Moreover, it has been shown that the home range size is dependent on the 334 

environment around the nest and also is different between males and females (Michel et al., 335 

2017). Thus, it may be important to consider the habitat at a fine scale. Future studies should 336 

explore how environmental quality, food resources, parental care, chick growth, intra-brood 337 

competition and sex-specific susceptibility to stressors are intertwined factors that determine 338 

offspring telomere length and how all these factors affect population dynamics of little owls. 339 
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ESM 590 

 591 

Amplification of telomere repeats using q-PCR methodology 592 

The protocol for DNA extraction from feathers provided us with sufficient amount of DNA to 593 

run both sexing and telomere determinations. One to three feathers per individual were selected 594 

and a 0.5-1 cm piece from each feather were cut in small pieces with a sterilized scissor. After 595 

digestion, feather quills will remain unlysed. For samples containing unlysed quills, we 596 

centrifuge briefly and we transfer the supernatant to another tube before proceeding with step 597 

4 of the standard protocol. 598 

Individual relative telomere length (RTL) were obtained following the qPCR methodology 599 

previously used in several bird species by our group (e.g. Criscuolo et al. 2009, Bize et al. 2009, 600 

Criscuolo et al. 2020, Chatelain et al. 2021). DNA quantity and quality were assessed based on 601 

spectrophotometer absorbance (Nano-Drop 1000, Thermo Fisher Scientific, Waltham, MA, 602 

USA, ratios A260/280 and A260/230) and gel migration. Individual DNA were all diluted to a 603 

concentration of 5.0 ng/µL, and further used for RTL determination by qPCR. To control for 604 

variation in DNA concentrations among diluted samples (due to potential pipetting errors), 605 

which may induce a methodological bias to the final RTL values, we amplified, for each 606 

individual, a genomic DNA sequence, defined so far as non-variable in copy numbers. The gene 607 

used in our species was RAG-1 gene (recombination activating protein 1 gene, NCBI number 608 

EU348872.1). Amplifications were conducted in two 384 wells-plates filled by a calibrated 609 

automated liquid handling workstation (Epmotion, Eppendorf, Montesson, France), using one 610 

distinct plate for control gene and telomere amplifications, due to the different qPCR conditions 611 

due to primers sequences properties. Conditions of amplification were 2 min at 95°C followed 612 

by 40 cycles of 15 s at 95°C, 30 s at 56°C and 1 min at 72°C (control gene) and of 2 min at 613 

95°C followed by 30 cycles of 15 s at 95°C, 30 s at 56°C and 30 sec at 72°C, (telomere 614 

sequence). Reactions were done in a master mix prepared for each primer set, with 5 µL GoTaq 615 

QPCR Mix (Promega, Madison, WI, USA). We used 10 ng of DNA (in a volume of 2 µL), to 616 

which we added the telomere primers at a concentration of 200 nM or the control gene primers 617 

at 400 nM (for a final reaction volume of 10 µL in each well, completed with ultra-pure water). 618 

In both plates (control gene and telomere sequences) we amplified individuals’ DNA samples 619 

plus three quality control references. A DNA golden sample (as a mix of22 individual samples 620 

randomly chosen) that was used as the reference value of 1 for RTL calculations. A dilution 621 

curve obtained from the amplification of a randomly chosen reference sample that was serially 622 

diluted (from 10 to 0.625 ng/mL). Dilution curves enable us to assess quality of control gene 623 

and telomere sequences qPCR amplifications (i.e. efficiency values (control gene 0.999; 624 

telomere sequences 0.993) and r² (0.993 and 0.995, respectively) of the dilution curves). A 625 

negative control sample (ultra-pure water) to control for putative contaminations of non-bird 626 

DNA. All runs ended by a fusion curve to verify the absence of non-specific amplifications. 627 

RTL values were calculated following Pfaffl (2001), shortly as the ratio between Telomere (T) 628 

and Control gene (S) Cq values, controlled for their respective amplification efficiencies and 629 

expressed relatively to the golden sample T/S value of 1. All samples were run in duplicates 630 

and intra-individual repeatability of RTL, evaluated using the Intra Class Coefficient 631 

(Eisenberg et al., 2020), was of 0.769. 632 
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Table S1. Top models set for models of SMI. For continuous variables, each value 634 

represents the estimate of the effect; for categorical variables, there is a “+” when the variable 635 

is retained in a model.  636 

df = degree of freedom. delta = difference of AICc with the model with the lowest AICc.  637 

 638 

Intercept 

Nestling 

number 

Proportion of 

meadows and 

orchards Sex df AICc delta 

125.8  14.44  4 1057.3 0.00 

145.3 -3.52   4 1058.0 0.70 

136.7 -2.66 11.93  5 1058.1 0.82 

132.3    3 1058.3 0.93 

125.3  14.32 + 5 1058.9 1.59 

 639 

Figure S1. Forest-plot of estimates for the average model from Table S1. Reference level 640 

for sex is females.  641 

 642 
 643 

  644 
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Table S3. Top models set for models of RTL. For continuous variables, each value 645 

represents the estimate of the effect; for categorical variables, there is a “+” when the variable 646 

is retained in a model.  647 

df = degree of freedom. delta = difference of AICc with the model with the lowest AICc.  648 

 649 

Intercept 

Proportion of 

meadows and 

orchards 

Nestling 

age 
Cohort Rank Sex SMI df AICc delta 

-0.82   + + + 0.0049 12 103.8 0.00 

-0.86    + + 0.0046 9 104.6 0.81 

-1.16  0.019 + + + 0.0047 13 104.6 0.83 

-0.84 -0.17  + + + 0.0055 13 104.9 1.12 

-0.86   + +  0.0046 11 105.3 1.46 

-1.23 -0.20 0.021 + + + 0.0054 14 105.3 1.48 

 650 
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