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Abstract  

Temperature directly shapes insect physiology and has a preponderant effect on life 

history traits. Winter conditions in temperate and polar regions are especially challenging 

for insects. Extremely low temperatures can indeed compromise insect survival by 

promoting freezing of body fluids, but mild cold temperatures above 0 °C (i.e. chilling) can 

also lead to complex and severe physiological dysregulations. Among physiological 

damages due to freezing and chilling, insect lipids are one of the primary targets. As low 

temperatures tend to rigidify phospholipid bilayers, membranes functions are 

compromised at cold. Lipid rigidification due to cold also decreases the accessibility of fat 

stores for metabolic enzymes, and therefore their availability for basal metabolism. These 

deleterious effects, combined with low food availability in winter, result in a substantial 

nutritional challenge for overwintering insects. Consequently, lipid modifications such as 

homeoviscous adaptation of cell membranes, fluidity maintenance of fat reserves, 

cuticular lipid accumulation, and production of antifreeze glyclolipids are essential 

components of the physiological response to cold stress. The aim of the present chapter 

is to present the physiological challenges caused by low temperatures, the lipid 

modifications linked with cold tolerance in insects, and the molecular regulation of lipid 

metabolism during cold exposure.  
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1. Introduction: Insects in the cold  

Our planet shelters a wide diversity of ecosystems, in which living organisms face a 

large variety of ecological variables. Among abiotic factors, temperature has a 

preponderant effect on life by acting from the molecular scale (shaping protein 

conformation, directing chemical reactions rates, etc.; Hochachka and Somero, 1984) to 

the highest levels of biological organizations (shaping fundamental niches of species and 

population dynamics; Clark et al., 2003; Magnuson et al., 2015). Insects represent the 

most diverse and richest group of animals and are present in the vast majority of terrestrial 

ecosystems, and therefore face diverse climatic conditions. Most insects are 

poikilotherms, meaning that their body temperature is directly influenced by their 

surrounding environmental temperature (Potter et al., 2013). Their physiology and life 

history traits are therefore intimately linked to temperature. Consequently, insect species 

distribution is closely linked with the range of temperature they can tolerate, and in many 

cases distribution is most closely linked to the lowest temperatures they face in their 

habitat (Addo-Bediako et al., 2000; Bale, 2002; Kellermann et al., 2012; Kimura, 2004).  

Under actual climatic conditions, winters in temperate zones are challenging for 

insects. Exposure to low temperatures can severely decrease fitness, and in extreme 

Table 1: List of abbreviations 

Term Abbreviation 

Adipokinetic hormone  AKH 

AMP-activated protein kinase  AMPK 

Critical minimal temperature  CTmin 

Crystalline phase  Lα 

Gel phase  Lβ 

Glycerolphospholipid   GPL 

Hexagonal phase  HII 

Juvenile hormone  JH 

Lysophospholipids  LPL 

Phosphatidylcholine  PC 

Phosphoethanolamine  PE 

Polyunsaturated fatty acid  PUFA 

Tryacilglycerid  TAG 

Unsaturated fatty acid  UFA 
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conditions, low environmental temperatures can promote freezing of body fluids. 

Intracellular freezing is usually lethal in insects, but ice formation in the extracellular space 

can also directly cause cellular damage by physically disrupting membrane structure or 

tissue integrity. Extracellular freezing can also damage cells indirectly by increasing the 

concentration of osmolytes. This “freeze concentration” leads to an increase of osmotic 

pressure, resulting in fluid movement from the cell, and therefore cellular dehydration (for 

reviews on the physiology of freezing injuries see Rozsypal, 2022; Toxopeus and Sinclair, 

2018). Historically, insect cold tolerance strategies are divided between “freeze intolerant” 

species that succumb to ice formation in their body and “freeze tolerant” insects that 

survive extracellular ice formation (Lee, 1989, 2010; Salt, 1961). Freeze intolerant 

species accumulate metabolites in winter such as antifreeze proteins, glycolipids and high 

concentration of low molecular weight cryoprotectant compounds. These metabolites 

decrease hemolymph melting point, which enter a supercooling state and therefore 

prevent ice formation (Lee, 2010). Oppositely, freeze tolerant insects usually initiate ice 

formation using ice-nucleating agents (proteins, crystalloid compounds or micro-

organisms; Lee, 2010). Ice nucleating agents allow to control the formation of ice crystals, 

and therefore prevent their further propagation, and help to avoid intracellular freezing. 

However, numerous insect species suffer from cold damage well before freezing 

temperatures: for instance, the tsetse fly Glossina pallidipes shows signs of 

neuromuscular dysfunctions at quite high temperatures (21 °C; Terblanche et al., 2007). 

Thus, freeze intolerant species can be further divided into additional sub-categories: 

“freeze avoiding” species that can survive down to their supercooling point, “chill tolerant” 

species that succumb at temperatures below 0 °C but above the supercooling point, and 

“chill susceptible” insects that suffer cold injuries at mild cold temperatures, above 0 °C 

(Overgaard and MacMillan, 2017).   

While freezing directly compromises cell and tissue integrity due to physical damage 

by ice crystals, chilling causes complex physiological perturbations that compromise 

homeostasis and survival (Colinet et al., 2012; Enriquez et al., 2018; Overgaard et al., 

2007). Cold, by its thermodynamic effect, slows the rates of chemical reactions and can 

cause a depolarization of membrane potential, leading to neuromuscular dysfunction, 

also known as chill coma (Overgaard and MacMillan, 2017). Cold acts on the strength of 
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noncovalent interactions, therefore altering the structural integrity of macromolecules 

such as proteins (Todgham et al., 2007), nucleic acids (Lubawy et al., 2019) and cellular 

membranes (Hazel, 1989). When unfolded (denatured) proteins accumulate, it can form 

aggregates, which could be one of the causes of chronic chilling injuries (Rozsypal, 2022). 

These deleterious effects can compromise the function of essential proteins such as 

enzymes (Privalov, 1990) and cytoskeleton components (Cottam et al., 2006). As 

phospholipid bilayers, cell and organelle membranes are by nature sensitive to 

temperature, and their fluidity is dictated by temperature, with membranes being fluid at 

permissive temperature and rigidifying with decreasing temperature. The effects of low 

temperatures on membrane biophysical properties are presented in detail in part 2.a. 

Such deleterious effects on macromolecules can have aftereffects on metabolic pathways 

such as aerobic respiration pathways (Michaud and Denlinger, 2007), contributing to the 

global loss of homeostasis.   

Beside temperature, a major limiting factor for insect overwintering survival is nutrient 

availability. Indeed, winter periods often correlates with food deprivation, and insects that 

overwinter in a quiescent or dormant state cannot feed, meaning that their survival relies 

on their own resources (Hahn and Denlinger, 2007; Sinclair, 2015), mainly 

triacylglycerides (TAGs) stored in lipid droplets. Lipid reserves not only serve during cold 

exposures, but also play major roles to meet energetic demands during warming waves, 

to resume activity (for insects overwintering in a motile life stage), or complete 

development (for insect overwintering at juvenile stages; Hahn and Denlinger, 2007; 

Sinclair, 2015). However, as for membranes lipids, low temperatures also affect 

biophysical properties of lipid droplets by decreasing their fluidity, compromising their 

accessibility for enzymatic hydrolysis and therefore their uptake for basal metabolism.  

To face these physiological challenges, insects possess a vast arsenal of adaptations 

and plastic responses (acclimation, or diapause, which is presented in chapter 12) to 

counteract negative effects of cold temperatures. In addition to producing protective 

molecules such as antifreeze proteins, glycolipids and cryoprotectants, insects reshuffle 

membrane and lipid droplet composition in winter to increase their fluidity, a phenomenon 

known as homeoviscous adaptation (see part 3.a). Several exhaustive reviews are 
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available on the physiology of cold tolerance in insects (see: Hayward et al., 2014; 

MacMillan and Sinclair, 2011; Overgaard and MacMillan, 2017; Rozsypal, 2022), and the 

aim of the present chapter is therefore to highlight that among physiological damages due 

to low temperatures, and the corresponding underlying mechanisms to counteract these 

injuries, lipid metabolism plays a central role. Lipids are indeed among the primary targets 

of cold injuries and are consequently preponderant in the responses to cold temperatures. 

The current chapter will address how insect lipids are impacted by low temperatures and 

highlight the roles lipid plays in insect cold tolerance physiology.   

 

2. Effects of cold temperatures on lipids and physiological consequences in 

insects  

a. Biophysical properties of lipids at low temperature   

Cell membranes are essential to organismal organization and physiology by providing 

cells and organelles a physical barrier that helps regulate water, solute and ion diffusion. 

Biological membranes consist of a glycerophospholipid (GPL) bilayer in which many 

molecules (mainly proteins) are embedded (Gennis, 1989). Membranes are highly 

dynamic structures from which many molecular pathways are initiated (Casares et al., 

2019). GPLs are composed of a glycerol residue covalently linked to two non-polar 

(hydrophobic) fatty acids and one esterified phosphate group. This phosphate group is 

linked to a hydrophilic, polar headgroup which can vary in composition (Figure 1a). In 

insect cells, the main polar groups are choline, (forming phosphatidylcholines – PC) and 

ethanolamine (forming phosphoethanolamines – PE). GPLs have highly diverse 

structures, and aside from PC and PE other hydrophilic moieties are present in insects 

(but in lower abundance) such as phosphatidylglycerol, phosphatidylinositol or 

phosphatidylserine (Hammad et al., 2011; Jones et al., 1992). Fatty acid chains are also 

diverse as they can change in length and unsaturation ratio. Some GPLs also have one 

of the fatty acid chains cleaved, forming Lysophospholipids (LPLs; e.g. 

lysophosphatidylcholine; lysophosphatidylethanolamine).  
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Figure 1: (a) Glycerophospholipid (GPL) organization. GPLs are composed of two non-polar (hydrophobic) 

fatty acids covalently linked to a glycerol residue which is esterified to a phosphate group. This phosphate 

group is linked to a hydrophilic, polar headgroup which can vary in composition (here a choline is 

represented). 

(b) Alteration of biophysical properties of biological membranes by temperature. At permissive temperatures 

GPL bilayers show a disordered packing, giving the membrane a fluid state known as the liquid crystalline 

phase (Lα). At low temperatures, GPLs are more tightly organized, resulting in a rigid gel phase (Lβ). 

Oppositely, high temperatures allow lipids to show a loose organization which can lead to a transition into a 

hexagonal phase (HII). The HII phase can also be promoted by conditions of low humidity. 

(c) Alteration of membrane integrity due to low temperatures. Changes of phases within the bilayer can induce 

zones of phase-transition that can promote a lateral separation of the phospholipid bilayer at the interface 

between gel and fluid domains. The HII phase can provoke membranes fusion, which initiate pore formation. 

These alterations can compromise the permeability of membranes and cause fluid and solutes to leak from 

the cells. 
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The formation of a GPL bilayer is mainly due to a hydrophobic effect: due to their 

hydrophobic nature, fatty acid chains are excluded from water and aggregate together 

within the bilayer structure, while the hydrophilic polar headgroups interact with water 

molecules and form the membrane surfaces (Gennis, 1989; Singer and Nicolson, 1972). 

Other noncovalent interactions act between GPL, such as van der Waals forces or 

hydrogen bonding, but these are relatively minor factors in comparison to hydrophobic 

forces (Gennis, 1989). These membrane bilayers are fluid structures, meaning that lipids 

and other molecules are moving within the bilayer. Lipids rotate around their own axis, 

diffuse laterally within their layer, and also move from one layer to another, a movement 

known as transbilayer flip-flop (Gennis, 1989). The fluidity of the membrane is essential 

for the functioning of enzymes and other proteins embedded in the bilayer. Because of 

their composition, membranes are highly thermosensitive, as their biophysical properties, 

defined by their viscosity (fluidity) and also their phase state, are directly dependent on 

temperature (Hazel, 1989).   

At permissive temperatures, fatty acid carbon chains can show isomeric 

conformations such as gauche rotamers (i.e. a 60° rotation around a carbon-carbon single 

bond; Kučerka et al., 2011) that result in a disordered packing of GPLs, giving the bilayer 

a fluid state referred to as the liquid crystalline phase (Lα; Figure 1b). When temperature 

decreases, fatty acid chains tend to assume a trans conformation, which requires less 

energy, at the expense of rotamers forms. This conformational change leads to a more 

compact, tight organization of GPLs and therefore promotes a rigidification of the bilayer 

(Fernandez-Puente et al., 1994). TAGs contained in lipid droplets are similarly affected 

by low temperatures. GPL rigidification can lead to the transition to a rigid, highly ordered 

gel phase (Lβ; Figure 1b; Hazel, 1995). Decreasing temperature also causes an increase 

in membrane thickness, due to the highly organized configuration of GPL within the 

bilayer (Kučerka et al., 2011; Rozsypal, 2022). Oppositely, at high temperatures, the 

molecular geometry of lipids can change for to “conical shape”, which in extreme cases 

can promote a phase transition to a highly disorganized inverted hexagonal phase (HII; 

Figure 1b) which is incompatible with the integrity of the GPL bilayer (Hazel, 1995). HII 

phase can in turn promote membranes fusion, which could initiate pore formation (Jahn 

et al., 2003), compromising the permeability of membranes and causing fluid and solutes 
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to leak from the cell (Figure 1c; Rozsypal, 2022). In addition to high temperature, transition 

to HII phase can also be induced by low hydration of molecules, a condition which can be 

caused by ice formation in freeze tolerant insects for instance (Rozsypal, 2022).   

 

b. Physiological consequences of lipids structures rigidification  

These losses of membrane integrity can lead to cascading effects on insect 

homeostasis. In non-stressful conditions, hemolymph ionic concentration is regulated by 

secretion of K+ rich fluids in Malpighian tubules and simultaneous Na+ ions and water 

reabsorption in proctodeum (Des Marteaux and Sinclair, 2016; Harrison et al., 2012; 

Maddrell and O'Donnell, 1992). Membrane rigidification and GPL phase perturbation can  

greatly compromise the activity of transmembrane proteins such as ion channels or 

transporters (Cossins, 1994; Hazel, 1989; MacMillan and Sinclair, 2011), which will alter 

membrane ionic permeability. Furthermore, modification of membrane fluidity can cause 

non-uniform phase changes within the bilayer, resulting in phase-transition zones that 

can lead to a lateral separation of the GPL bilayer at the interface between gel and fluid 

domains, which can compromise membrane permeability to fluids and solutes (Figure 1c 

Clerc and Thompson, 1995). This lateral separation will further contribute to dysregulation 

of the balance between passive and active ionic transfer across the membrane, promoting 

a loss of ionic homeostasis (Koštál, 2010). In the cold, ionic imbalance leads to increased 

Na+ concentration in the gut and other organ lumens, which increases osmotic pressure 

and causes water to leak into organs, and therefore a low hydric content in the 

hemolymph, resulting in hyperkalemia (Figure 2; Coello Alvarado et al., 2015; Des 

Marteaux and Sinclair, 2016; MacMillan et al., 2015). Loss of hydric and ionic 

homeostasis further exacerbates the depolarization of cell membrane caused by cold, 

which perturbs action potentials in muscular and nervous cells. Furthermore, membrane 

rigidification and depolarization result in the dysfunction of synaptic Ca2+ channels, which 

control neurotransmitter releases (Figure 2; Findsen et al., 2016). The combined effects 

of these dysregulations lead to a loss of neuromuscular system coordination, contributing 

to chill coma induction (Figure 2; MacMillan and Sinclair, 2011). Furthermore, membrane 

depolarization is a step of apoptosis initiation (Bortner et al., 2001). Loss of water and  
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Figure 2: Summary of low temperature effects on lipids and their physiological consequences 

(a) Low temperatures promote the rigidification of membranes, impeding their biological 

functions, such as the activity of transmembrane proteins. The fluidity of stored lipids in lipid 

droplets (triacylglycerides, TAG) is also decreased in the cold. (b) These alterations lead to 

cascading effects such as dysregulation of the balance between active and passive ionic and 

water transfer across the membrane, which can cause a loss of water balance and ionic 

homeostasis. These physiological modifications, combined with membrane rigidification can 

lead to membrane depolarization, perturbing action potentials and release of 

neurotransmitters. Rigidification of mitochondria double membranes compromise their activity. 

Alteration of mitochondria function, together with the low accessibility of TAG by hydrolases 

due to lipid droplets rigidification, can lead to a deficit in ATP production. All these 

dysregulations lead to a global loss of homeostasis, which can result in neuromuscular 

dysfunction leading to chill coma or death. 
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ionic homeostasis can therefore promote death by apoptosis in insect cells subjected to  

cold stress (Yi et al., 2007).  

Mitochondria activity is also compromised by low temperatures (Colinet et al., 2017; 

Kukal et al., 1989), probably due to rigidification of their double membranes. Alteration of 

mitochondria function, together with the low accessibility of TAG by hydrolases due to 

lipid droplets rigidification, can lead to a deficit in ATP production (Figure 2 Colinet, 2011; 

Coulson et al., 1992; Dollo et al., 2010), which can contribute to the disruption of metabolic 

homeostasis. Metabolism dysregulation also leads to an accumulation of deleterious 

molecules such as reactive oxygen species, creating an imbalance between reactive 

oxygen species production and elimination, leading to oxidative stress (Lopez-Martinez 

et al., 2008). Oxidative stress can further compromise mitochondria integrity and damage 

proteins, and can also degrade nucleic acids, by promoting mutation or deletion, which 

could lead to damage in tissues (Imlay, 2003).  

3. Lipids modifications linked with insect cold tolerance  

3.a - Homeoviscous adaptation  

One of the most conserved physiological responses of ectotherms to low 

temperatures is homeoviscous adaptation of cell membranes (Hazel, 1995). The term 

homeoviscous adaptation incorporates all modifications of the GPL bilayer composition 

that adjust membrane fluidity and guarantee its function at different temperatures (Hazel, 

1995; Sinensky, 1974). Such adjustments not only maintain membrane fluidity but also 

its phase, a phenomenon known as homeophasic adaptation (Hazel and Eugene 

Williams, 1990). Several changes in GPLs have been identified that impact membrane 

fluidity, including changes at the headgroup level, in the composition of fatty acid chains 

or in the nature of lipids embedded in the bilayer. These adjustments can be categorized 

as:   

i. Modifications of GPL headgroups  

ii. Increased unsaturation (or polyunsaturation) of fatty acid carbon chains  

iii. Shortening of fatty acid carbon chains length (increase of the C16/C18 ratio)  
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iv. Increased proportion of LPL  

v. Increased proportion of cholesterol in the cell membrane  

i. Modifications of GPL headgroups  

GPL polar headgroup modifications, typically an increase of PE proportion at the 

expense of PC, is a common adjustment of homeoviscous adaptation. PE and PC are the 

most abundant GPLs in insects. While PC is classically defined as having a cylindrical 

shape, which give bilayers a tight and compact organization (therefore poorly fluid), PEs 

have a conical shape that disorganizes GPLs and increase membrane fluidity (Figure 3).  

Downer and Kallapur (1981) demonstrated with wide angle X-ray diffraction that 

mitochondria acclimated to 31°C (which have a high PE/PC ratio) keep membranes in the 

fluid Lα state when exposed to 0°C, while mitochondria acclimated to 45°C (which have a 

low PE/PC ratio) have membranes that transition to the rigid Lβ phase at 0°C. The ratio 

between PC and PE therefore greatly influences membrane fluidity, and for each range 

of temperature there is an optimal PE/PC ratio guaranteeing proper fluidity and 

functioning (Hazel, 1995). Consequently, increased PE/PC ratio in cell membranes is a 

typical modification linked with adaptation to cold, acclimation, diapause or winter season 

in insects (Colinet et al., 2016; Cooper et al., 2012; Cooper et al., 2014; Goto and Katagiri, 

2011; Hodková et al., 1999; Koštál et al., 2011; Michaud and Denlinger, 2006; Overgaard 

et al., 2008; Tomčala et al., 2006; Trenti et al., 2022). However, some studies showed 

sex specific changes in the PE/PC ratio (in D. suzukii this ratio increase in acclimated 

females but decrease in acclimated males; Enriquez and Colinet, 2019a), or no 

modification following rapid cold hardening (i.e. a rapid acclimation process known to  

increase cold tolerance in insects; MacMillan et al., 2009). Oppositely, in the freeze 

tolerant larvae of the gall fly Eurosta solidaginis the proportion of PC increase at the 

expense of PE during winter (Pruitt and Lu, 2008). In that case, the ordering effect of PC 

in membrane bilayer could prevent the transition to the HII phase that can occur due to 

dehydration of the cell cause by extracellular ice formation, which is consistent with 

homeophasic adaptation. In addition to PE, other GPLs can replace PC in the bilayer, 

including phosphatidylglycerol or phosphatidylserine which increase during cold 

acclimation in D. suzukii (Enriquez and Colinet, 2019a).  
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Figure 3: Modifications of lipid structures linked with homeoviscous adaptation of cell membranes. (a) 

overview of lipid structure modifications (b) effects on GPLs organization. PE have a conical shape, contrary 

to PC that show a cylindrical shape. Increased proportion of PE at the expense of PC increases space 

between GPLs, disordering the organization of GPLs bilayer, increasing membrane fluidity. Similarly, 

insertion of cis double bonds in fatty acids carbon chains disorders the organization of the bilayer. An 

increased proportion of C16 fatty acids in GPLs leads to modifications of non-covalent interactions between 

GPLs, which tend to increase the membrane fluidity. LPL have one of the cleaved fatty acid. This cleavage 

gives GPLs an “inverted cone” shape which participate to the disorganization of GPLs bilayer. Insertion of 

cholesterol molecules into the bilayer reduce mobility of the surroundings GPLs, ordering the membrane 

and decreasing its fluidity. This ordering effect could give cholesterol a role in maintaining membrane 

structure during freezing, preventing membrane phase separation and leakage caused by cold. 

GPL: glycerophospholipid; PC: phosphocholine; PE: phosphoethanolamine; UFA: unsaturated fatty acid; 

PUFA: polyunsaturated fatty acid; LPL: Lyso-phospholipid. 
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ii. Increased unsaturation (or polyunsaturation) of fatty acid carbon chains 

A major mechanism of homeoviscous adaptation in response to low temperatures is 

increased unsaturation (or polyunsaturation) of fatty acid carbon chains in GPL and TAG 

(Figure 3). Unsaturation of fatty acids is due to desaturase enzymes which insert a cis 

double bond, provoking a 30° curvature in the carbon chain. Unsaturated GPL have a 

largely conical shape and participate in disordering GPL organization, increasing the 

fluidity of membrane and TAG stored in lipid droplets. Brankatschk et al. (2018) indeed 

showed that D. melanogaster larvae with high level of unsaturated fatty acids were 

characterized by increased membrane fluidity at cold (determined from C-Laurdan 

emission measurements of liposomes prepared from lipid extracts of larvae). In other 

drosophilids, unsaturation of GPL fatty acids decreases the melting point temperature of 

membranes in cold acclimated flies, which could participate to decreasing their coma 

onset temperature (critical minimal temperature, CTmin; Slotsbo et al., 2016). Similarly, 

the transition temperature of TAG decreases in diapausing or cold adapted Drosophila 

flies (Ohtsu et al., 1993) and in Cydia pomonella moths collected in winter (Rozsypal et 

al., 2014). Increases in unsaturation or polyunsaturation of GPL and TAG are commonly 

linked with diapause, acclimation, acclimatization or adaptation to cold in insects and 

hexapods (Bashan and Cakmak, 2005; Bennett et al., 1997; Enriquez and Colinet, 2019a; 

Joanisse and Storey, 1996; Koštál and Šimek, 1998; Michaud and Denlinger, 2006; Ohtsu 

et al., 1993; Thiry and Hoffmann, 1986; Trenti et al., 2022; van Dooremalen and Ellers, 

2010). However, in some insects, such as drosophilids, the effects of cold on fatty acid 

unsaturation is variable, as several studies reported no major changes in unsaturation of 

fatty acid (Colinet et al., 2016; MacMillan et al., 2009; Ohtsu et al., 1999; Overgaard et 

al., 2008), while others reported increase unsaturation and polyunsaturation in response 

to cold (Cooper et al., 2012; Cooper et al., 2014; Enriquez and Colinet, 2019a; Goto et 

al., 2010; Overgaard et al., 2005; Overgaard et al., 2006). In other taxa of insects, 

examples of fatty acid unsaturation absence due to low temperatures can also be found. 

For instance, in diapausing eggs of Aedes albopictus the unsaturation of GPLs and TAGs 

does not change in comparison with non-diapausing eggs (Batz and Armbruster, 2018), 

and similarly no changes are observed in cold acclimated Sarcophaga similis (Goto and 

Katagiri, 2011). No major changes in unsaturation are found in Locusta migratoria 
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following cold acclimation (Bayley et al., 2020; Gerber et al., 2021), nor in cold acclimated 

prepuae of the moth Cymbalophora pudica (Koštál and Šimek, 1998). Finally, during 

winter unsaturation of fatty acid can even decrease, for instance in thoracic muscles from 

P. apterus (Hodková et al., 1999).  

  

iii. Shortening of fatty acid carbon chains length (increase of the C16/C18 ratio)  

A widespread response to low temperatures is the shortening of fatty acid carbon 

chains length: the position and length of carbon chains influence hydrophobic effects 

between the two fatty acids of GPL. Consequently, shortening of carbon chains reduces 

hydrophobic effect and van der Waals forces between fatty acid chains (Kučerka et al., 

2011) and therefore increases membrane fluidity (Figure 3). Increased cold tolerance due 

to fluctuating thermal regimes, adaptation to cold, diapause or acclimation is also often 

correlated with a shortening of fatty acid carbon chains length in insects, characterized in 

an increase of the C16/C18 ratio (Bahrndorff et al., 2007; Bashan et al., 2002; Colinet et 

al., 2016; Hodková et al., 1999; Ohtsu et al., 1999; Ohtsu et al., 1998; Overgaard et al., 

2006; Thiry and Hoffmann, 1986; Trenti et al., 2022). However, fatty acid chain length 

does not change in cold acclimated S. similis (Goto and Katagiri, 2011) nor differ between 

tropical and subpolar drosophilid species (Slotsbo et al., 2016), and the C16/C18 ratio 

even decreases in response to acclimation in D. suzukii (Enriquez and Colinet, 2019b).  

  

iv. Increased proportion of LPL  

In response to cold, the number of LPLs tends to increase in cell membranes (Figure 

3). LPL are GPL in which one of the fatty acids has been cleaved by the action of a 

phospholipase A. This cleavage gives LPL an “inverted cone” shape, which disrupts the 

tight organization of GPL, increasing membrane fluidity. An increased proportion of LPLs 

within the GPL bilayer is known to play a role in the responses to low temperatures during 

thermal fluctuations in the model species Drosophila melanogaster (Colinet et al., 2016), 

during cold acclimation in D. suzukii (Enriquez and Colinet, 2019a) and during seasonal 

acclimatization in the bug Pyrrhocoris apterus (Koštál et al., 2013). Also, in Ceratitis 
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capitata flies, individuals showing the capacity to quickly recover after a chill coma are 

characterized by an increased proportion of LPLs (Pujol-Lereis et al., 2016).  

  

v. Increased proportion of cholesterol in the cell membrane  

After GPLs, cholesterol is the most abundant lipid within animal cell membranes. In 

contrast to GPL modifications presented previously, the presence of cholesterol is known 

to rigidify membrane bilayers. Cholesterol molecules reduces the rotamerisation 

capabilities of their surrounding GPLs, which tend to reduce their mobility and therefore 

the bilayer fluidity (Crockett, 1998; Yang et al., 2016). This rigidification capacities could 

give cholesterol a role in maintaining membrane fluidity during heat stress. Indeed, in 

mitochondria muscle cells from the desert locus Schistocerca gregaria acclimation at 

45°C increase the proportions of cholesterol molecules embedded in the GPL bilayer, in 

comparison with mitochondria acclimated at 31°C, which increase the temperature of 

phase transition of mitochondria membranes (Downer and Kallapur, 1981; Kallapur et al., 

1982). However, by interacting with fatty acyl chains of GPLs, cholesterol could also 

prevent membrane phase separation and leakage caused by low temperatures (Crockett, 

1998; Mocé et al., 2010). In mammals, an abundance of cholesterol in spermatozoid 

membranes is indeed correlated to their resistance to cold shock and cryopreservation 

(Mocé et al., 2010). In insects yet, studies linking cholesterol to cold tolerance are scarce. 

Insects cannot synthetize cholesterol de novo, but Shreve et al. (2007) showed that D. 

melanogaster fed with medium supplemented in cholesterol resulted in an increased 

proportion of cholesterol in cell membranes, which in turn correlated with increased cold 

tolerance and cold acclimation capacity. However, in the gall fly E. solidaginis even if 

cholesterol levels increase in the hemolymph during winter acclimatization, the proportion 

of cholesterol embedded in membranes from Malpighian tubules does not increase (Yi 

and Lee, 2005). Similarly, in the woolly bear caterpillar Pyrrhactia isabella cholesterol 

levels remain stable during cold acclimation in tissues such as Malphighian tubules and 

cells from the midgut, but decrease both in the hemolymph, and in fat body cell 

membranes (Yi and Lee, 2016). As insect sterols originated from their diet, other sterols 

such as phytosterols can replace the role of cholesterol in insect membranes, as in D. 
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melanogaster where ergosterol is an abundant membrane sterol (Rietveld et al., 1999). 

In the firebug P. apterus winter is characterized by an increase concentration of 

phytosterols, but it is not clear which proportion of these sterols are incorporated in cell 

membranes, and what role they play in insect cold tolerance (Koštál et al., 2013). Thus, 

there is still a lack of knowledge on the function of cholesterol or other sterols in the 

responses to temperature changes in insects, which should be tackled in future studies.   

An analysis of the body of literature that investigated lipid modifications linked with low 

temperatures reveals that homeoviscous adaptation plays a major role in insect 

overwintering, and that cold tolerance is linked with preservation of membrane fluidity, 

which helps to maintain insect cell viability at cold (Lee et al., 2006). However, some 

insect species show limited evidence of homeoviscous adaptation, like the locust L. 

migratoria (Bayley et al., 2020; Gerber et al., 2021). This lack of GPL modifications in 

response to cold can be due to the fact that this species overwinter as eggs and not at 

the adult stage (Wang and Kang, 2003), making GPL adjustments unnecessary for adults, 

which were the subject of these studies. Also, insects do not necessarily require all the 

adjustments previously presented to adjust membrane fluidity. This can be illustrated by 

taking insects from the genus Drosophila as an example. Indeed, in D. melanogaster low 

temperatures induces modifications of GPL headgroups and increase C16/C18 ratio but 

do not increase fatty acid unsaturation (Colinet et al., 2016). However, in D. suzukii cold 

similarly reshuffles GPL headgroups but decreases the C16/C18 ratio while increasing 

unsaturation of fatty acid chains (Enriquez and Colinet, 2019b). These discrepancies can 

be due to numerous different factors such as differences in experimental set ups or 

different range of temperatures used, but it is more likely that the precise adjustments 

used for homeoviscous adaptation vary across species. The several adjustments linked 

with homeoviscous adaptation could therefore be used alternatively in organisms to reach 

a similar outcome: guaranteeing membrane fluidity at cold temperatures.  

 

3.b – Lipids as energetic resources during cold stress and acclimation 

 Overwintering is a challenging time for insects, as they are faced with the dual 

threats of abiotic environmental stress (e.g., low temperature, lack of water, limited 



   
 

17 
 

oxygen, etc.) and lack of food availability (Hahn and Denlinger, 2011; Overgaard and 

MacMillan, 2017). The inability of most insects to eat in the winter puts significant energy 

strain on them, and the role of lipid metabolism in coping with the energetic challenges of 

overwintering is covered in Chapter 12. Here, we will address the role of lipid metabolism 

in supporting the energetic costs of cold acclimation and recovery from cold stress. This 

chapter is not intended to be an exhaustive review but will instead focus on general 

principles and key examples.  

 At low temperatures, excitable membranes become depolarized, leading to a 

collapse of neuromuscular function and eventual loss of ion homeostasis (See section 

2.b; Overgaard and MacMillan, 2017). This loss of ion homeostasis eventually contributes 

to cold injury by activating cell death programs. Thus, repairing cold injury requires 

restoring cellular osmotic gradients and reestablishing membrane polarity. The bulk 

movements of water and ions required to restore homeostasis are energetically costly, 

and indeed, recovery from cold stress is often accompanied by elevated metabolic rate 

relative to conditions before the cold stress (Lalouette et al., 2011; MacMillan et al., 2012). 

The timing of this “metabolic overshoot” corresponds with the time required to recover 

hemolymph Na+ content (MacMillan et al., 2012), suggesting that the primary reason for 

this increased metabolic rate is to restore ion and water balance. However, it is worth 

noting that elevated metabolic rate during recovery from cold stress is not universal; in 

the freeze tolerant midge Belgica antarctica, in the absence of cold hardening, larvae 

have reduced metabolic rates during recovery (Teets et al., 2019), presumably due to 

impaired oxygen transport and/or mitochondrial function. Nonetheless, it is clear that cold 

stress is energetically costly, and in many cases lipid reserves fuel this increased demand 

for energy (see below).  

 In addition to restoring ion gradients, many of the molecular processes involved in 

resisting or repairing cold-induced damage to macromolecules are energetically costly. 

For example, heat shock proteins are molecular chaperones that are involved in 

numerous abiotic stress responses (even cold, despite their name), and recovery from 

cold stress elicits rapid upregulation of these genes (Joplin et al., 1990; Rinehart et al., 

2007; Sinclair et al., 2007). In the case of heat stress, the energetic costs of activating the 
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heat shock response reduce energy availability for reproduction, and the number of heat 

stress events is proportional to declines in fecundity (Krebs and Loeschcke, 1994). While 

direct measurements have not been made for cold, it is well established that heat shock 

divert energy from essential functions like growth and reproduction, so expression after 

cold likely carries an energetic cost (Feder and Hofmann, 1999; Sørensen et al., 2003). 

Indeed, elevated expression of heat shock proteins sometimes corresponds with reduced 

lipid reserves (Teets et al., 2011), suggesting that lipid may be fueling energetically costly 

repair processes like heat shock protein activation. In some cases, heat shock proteins 

and other protective mechanisms are often upregulated in an anticipatory manor to 

increase resistance to cold injury (Teets and Denlinger, 2013). Beyond these canonical 

stress response pathways, cold acclimation often involves wholesale changes in 

transcript abundance; for example, cold acclimation in D. melanogaster results in nearly 

1/3 of the transcriptome to be differentially regulated (MacMillan et al., 2016). These 

large-scale changes in gene expression likely carry energetic costs, although the extent 

to which lipid metabolism provides energy inputs for cold acclimation has not been 

quantified. However, it is important to note that cold acclimation can also cause 

compensatory changes in body composition. For example, D. melanogaster reared at 

18°C have significantly higher lipid reserves than those reared at 30°C (Klepsatel et al., 

2016), so they may be able to accommodate the energetic costs of cold acclimation.    

 The energetic costs of cold injury are often reflected by a depletion in lipid reserves 

during or after cold stress. In D. melanogaster, exposure to 0°C beyond 24 h rapidly 

depletes TAGs, such that less than half the initial reserves are present after 48 h of cold 

exposure (Chen and Walker, 1994). In the same species, cold exposure also causes TAG 

depletion during a recovery. Exposure to 0°C for 4 h, which is nonlethal, leads to ~25% 

reduction in TAG content, and these deficits are permanent and still apparent 10 days 

after cold exposure (Klepsatel et al., 2016). However, another study in D. melanogaster 

indicated that TAG depletion after cold exposure is only transient (Marshall and Sinclair, 

2010), and it is unclear why these discrepancies exist. Outside of D. melanogaster, similar 

depletions in lipid reserves following cold stress have been observed in the parasitic 

wasps Aphidius colemani and A. ervi (Colinet et al., 2006; Ismail et al., 2010), as well the 

freeze-tolerant midge B. antarctica (Teets et al., 2011; Teets et al., 2019). Similarly, in the 
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freeze-tolerant fly Chymomyza costata, recovery from both chilling and freezing cause 

large increases in metabolic rate, and while lipid content was not directly measured, 

calculations indicate that as much as half of total lipid reserves could be depleted during 

recovery (Štětina et al., 2018). In freeze-tolerant larvae of E. solidaginis, repeated freeze-

thaw cycles promote the conversion of long-chain TAGs to acetylated TAGs (see details 

below), which causes a net reduction in energy density and a concomitant decrease in 

spring reproductive output (Marshall and Sinclair, 2018). This depletion of long-chain 

TAGs results in decreased egg production in the spring (Marshall and Sinclair, 2018), 

indicating that lipid depletion in response to cold stress can have lasting fitness 

consequences. However, direct measures of fitness-related traits (e.g., behavior, 

reproductive output, etc.) are seldom incorporated into energetic studies of cold tolerance. 

Thus, additional work is needed to quantify the fitness effects of energy depletion caused 

by cold stress.  

 Several factors can influence the extent of lipid depletion in response to cold 

stress. First, and perhaps most intuitively, the severity and duration of cold stress 

influences rates of lipid usage. For example, in B. antarctica, lipid reserves decrease 

steadily as the total duration frozen increases, such that the amount of depletion after five 

cycles of 12 h freezing and 12 h thawing (i.e., 60 h total frozen) is the same as the amount 

of depletion observed after a continuous 60 h of freezing (Teets et al., 2011). In E. 

solidaginis, lipid metabolism is influenced by both the freezing temperature and the 

number of freezing events experienced, indicating that the severity of cold exposure and 

the number of threshold-crossing events can both influence lipid utilization (Marshall and 

Sinclair, 2018). Further, for freeze-tolerant insects, whether they are frozen or 

supercooled during a cold event can influence lipid metabolism. In E. solidaginis, 

metabolic rate is lower in frozen larvae than supercooled larvae at the same temperature 

(Irwin and Lee, 2002), presumably leading to less energy drain when larvae are frozen. 

Similarly, in the freeze-tolerant moth Pyrrharctica isabella, larvae that overwinter above 

the snow are more likely to freeze, and frozen larvae consumed less lipid, even when 

accounting for the temperature difference (Marshall and Sinclair, 2012). However, for B. 

antarctica, the opposite was observed, in which larvae that were inoculatively frozen had 

higher rates of lipid depletion than those that were supercooled at the same temperature 



   
 

20 
 

(Teets et al., 2011). Finally, cold acclimation can influence the energetic costs of cold 

exposure. In B. antarctica, 60 h of freezing at -5°C leads to ~20% depletion of lipid stores 

in summer-collected larvae (Teets et al., 2011), but winter acclimatized larvae experience 

no detectable lipid depletion after 2 weeks of freezing at -5°C. Thus, the precise 

consequences of freezing vs. supercooling on lipid metabolism can vary both across and 

within species, depending on the exact cold conditions and acclimation state.  

 While a reduction in lipid reserves is commonly observed following cold stress, this 

pattern is not a universal phenomenon. The stink bug Halyomorpha halys maintains 

consistent lipid reserves throughout winter, despite not feeding, although its protected 

overwintering habitats rarely experience subzero temperatures (Ciancio et al., 2021). 

Thus, this species may use habitat selection as a means to avoid energetic costs 

associated with low temperature stress. The tropic cockroach Gromphadorhina 

coquereliana, despite having a limited ability to survive low temperature, does not 

experience any lipid depletion in the fat body after repeated cold exposures (Chowanski 

et al., 2015). Thus, perhaps insects that seldom experience cold in their natural 

environments have not evolved energetically expensive repair processes that deplete 

lipid reserves. However, the moth P. isabella is also able to maintain lipid stores after 

repeated freeze-thaw cycles, despite experiencing considerable damage to tissues. 

Thus, lipid metabolism after cold stress varies across insect species, although differences 

in study designs and treatment conditions make it difficult to pinpoint the exact reasons 

for these discrepancies. One likelihood is that lipid metabolism during and after cold 

stress is related to life history, as outlined in Sinclair and Marshall (2018). For example, 

insects that are unable to feed and replenish lipid reserves after winter may preferentially 

use other energy sources so that they can reserve lipids for reproduction.  

 For insects that rely on lipids to fuel cold stress responses, conditions that deplete 

lipid reserves can affect the ability to survive low temperatures. While energy drain 

throughout the winter is a significant challenge for many insects (see Chapter 12), 

conditions that reduce lipid storage could leave less energy available to cope with cold 

stress (Sinclair, 2015). While the link between carbohydrate storage and cold tolerance 

is clear, given carbohydrates’ role as cryoprotectant precursors (Storey, 1997), whether 
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lipid levels directly influence cold tolerance is less clear. In the case of D. suzukii, 

starvation prior to cold stress that reduces lipid reserves concurrently raises CTmin and 

lengthens chill coma recovery time but improves survival of acute cold shock (De Ro et 

al., 2021), indicating that distinct cold tolerance traits are differentially affected by energy 

depletion. These results are consistent with other work showing that dietary composition 

influences distinct cold tolerance traits in unpredictable ways, and that the precise effect 

of diet varies across genotypes (Littler et al., 2021). In antlions (Order: Neuroptera) and 

wormlions (Order: Diptera), starvation has no effect on cold tolerance, although 

individuals with higher lipid content have faster chill coma recovery time (Scharf et al., 

2016). Thus, the relationship between lipid content and cold tolerance appears to be 

complex and requires further investigation across a wider range of species.   

  

3.c - Other functions of lipids in relation to cold stress 

 In addition to their roles in homeoviscous adaptation and as energy sources for 

fueling cold stress responses, lipids play some other roles in cold stress. Most of these 

minor roles have not been studied extensively, so it is unclear how commonplace they 

are across species. One potential role for lipids is to serve as a precursor for 

cryoprotectant production. The glycerol motif of TAG is potent cryoprotectant, and indeed, 

glycerol is perhaps the most commonly used low molecular weight cryoprotectant among 

insects (Storey, 1997). Thus, liberation of glycerol by lipases could increase 

cryoprotectant titers in the bloodstream. However, insects predominantly use glycogen 

as a precursor for glycerol synthesis (Storey and Storey, 2012), and it doesn’t appear that 

TAG plays a major role. Stoichiometrically, one glucose molecule can yield two glycerol 

molecules, and a single glycogen molecule can contain thousands of glucose subunits. 

Thus, glycogen is a much more efficient precursor for glycerol, as TAG (MW > ~500 g/mol, 

depending on fatty acid composition) can only produce a single glycerol molecule (MW = 

92.1 g/mol). While lipids don’t appear to be a major source of glycerol, there are other 

cases where they can be converted to cryoprotective molecules. For example, trehalose 

and proline, two potent cryoprotectants, can be derived from fatty acids (Arrese and 



   
 

22 
 

Soulages, 2010; McDougall and Steele, 1988), although the extent to which these 

processes operate in the context of cold tolerance is uncertain.  

 Another class of lipids that may be important for overwintering insects are cuticular 

lipids. The insect cuticle contains both structural lipids and a wax layer of free lipids that 

serves an important waterproofing function (Lockey, 1988). Cold stress is often 

accompanied by limited water availability, and when insects are in chill coma, they are at 

increased risk of desiccation due to an inability to drink water (which may be frozen 

anyway) and an inability to select humid microhabitats (Sinclair et al., 2013). Increased 

cuticular lipids are observed as part of the diapause program in several species (Ala-

Honkola et al., 2020; Benoit and Denlinger, 2007; Urbanski et al., 2010), although it 

appears the primary benefit is to increase resistance to desiccation during dormancy. 

Similarly, in the high-elevation species D. nepalensis, cold acclimation increases cuticular 

hydrocarbon deposition (Parkash and Lambhod, 2021), although it is once again 

presumed that this response is to promote cross-tolerance to desiccation. Thus, in several 

species, cuticular lipids appear to be involved in the overwintering program, although it is 

unclear whether they play a role in cold tolerance.  

 Finally, some insects have evolved novel classes of lipids that play important roles 

in cold hardiness. In E. solidaginis, acetylated TAGs make up a staggering 36% of the 

total lipid pool in overwintering larvae (Marshall et al., 2014). Most animals rely exclusively 

on long-chain TAGs, and acetylated TAGs have only been observed in extremely trace 

amounts in animals. Larvae of E. solidaginis often overwinter above the snowpack in 

goldenrod stems, which provide little insulation, and are thus among the most freeze-

tolerant insects that have been described (routinely surviving below -55°C; Lee et al., 

1995). Thus, it is proposed that acetylated TAGs, which have lower viscosity than long-

chain TAGs, may be more accessible for energy metabolism at extremely low 

temperature (Marshall et al., 2014). Furthermore, these lipids accumulate in droplets in 

the fat body, and the fat body of E. solidaginis is one of a few known insect tissues that 

can survival internal ice formation (Bennett and Lee, 1997), suggesting that these unique 

lipids may play a role in intracellular freezing tolerance. The freeze-tolerant beetle, Upis 

ceramboides, also has synthesizes a novel xylomannan glycolipid that consists of fatty 
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acid and saccharide components (although it is not clear if the lipid and saccharide are 

covalently linked), and this compound produces significant thermal hysteresis activity 

(Walters et al., 2009). This compound was the first non-protein thermal hysteresis agent 

to be isolated, and it has since been found in several other insect species, indicating that 

glycolipids may play a previously unappreciated role in regulating ice formation in insects 

(Walters et al., 2011).  

 

4 - Molecular regulation of lipid metabolism during cold exposure 

 While the molecular regulation of metabolism in relation to diapause is well-

described in some species (e.g., Hahn and Denlinger, 2011; Reynolds et al., 2012; 

Sinclair and Marshall, 2018), the regulation of lipid metabolism during cold acclimation 

and in response to stress has received less attention. Nonetheless, select studies have 

identified some of the key lipid metabolism enzymes and genes that directly respond to 

low temperature. Cold acclimation involves large-scale changes in both the transcriptome 

(MacMillan et al., 2016) and proteome (Colinet et al., 2013), and many of these changes 

prepare insects to cope with the physiological challenges of cold stress, including 

maintenance of ion homeostasis, preservation of protein structure and function, and 

synthesis of low molecular cryoprotectants to protect against cold injury. Indeed, some of 

the changes in lipid metabolism discussed above are supported by changes at the 

molecular level, and we will detail those changes in this section.  

 At the biochemical level, changes in the activities of select lipid metabolism 

enzymes accompany seasonal acquisition of cold tolerance. Two gall-forming insects, the 

moth Epiblema scudderiana and the fly E. solidaginis, have opposite changes in lipid 

metabolism, with the freeze-avoidance E. scudderiana depleting lipid reserves over the 

winter while the freeze-tolerant E. solidaginis preserves lipids (Joanisse and Storey, 

1996). These changes are reflected by changes in enzyme activity in E. solidaginis, as 

enzymes involved in fat oxidation (hydroxyl-CoA dehydrogenase, carnitine-palmitoyl 

transferase, and acetoacetyl-CoA thiolase) all decrease in E. solidaginis over the winter 

to preserve lipid reserves. However, in E. scudderiana, enzyme activities are more 

variable and not as well-correlated with lipid reserves. Further, in E. solidaginis, cold 
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hardy larvae have higher activity of AMP-activated protein kinase (AMPK) (Rider et al., 

2011), a signaling molecule that shifts metabolism from ATP consumption to ATP 

conservation during hypometabolic states. Activation of AMPK also suppresses lipid 

biosynthesis, and its activation in the winter ins consistent with reduced activity of 

enzymes associated with lipid biosynthesis (e.g., ATP -citrate lyase and malic enzyme) 

(Joanisse and Storey, 1996). AMPK is also phosphorylated in direct response to cold 

stress in the beetle Tribolium castaneum (Jiang et al., 2019), suggesting this enzyme may 

play a general role in regulating lipid metabolism at low temperatures.  

 At the gene level, several studies have shown that desaturases likely play an 

important role in mediating responses to cold stress (reviewed by Cossins et al., 2002). 

Desaturases catalyze the formation of double bonds in polyunsaturated fatty acids and 

thus play an important role in homeoviscous adaptation (discussed above). In the cricket 

Acheta domesticus, progressively decreasing temperatures lead to a 66% increase in Δ12 

desaturase activity, the specific enzyme responsible for linoelic acid biosynthesis, and 

accordingly, increases in linoleic acid are sometimes observed in overwintering insects 

(Rozsypal et al., 2014). At the transcript level, desaturase genes are upregulated during 

cold acclimation in both the onion maggot Delia antiqua (Kayukawa et al., 2007) and D. 

suzukii (Enriquez and Colinet, 2019b). Also, in D. melanogaster, a desaturase gene is 

upregulated during recovery from cold stress (Zhang et al., 2011), suggesting 

desaturases play roles in both preparatory processes and in direct response to cold 

stress. While functional studies on desaturase enzymes in the cold are lacking in insects, 

in the worm Caenorhabditis elegans combined suppression of two desaturase genes 

reduces the degree of cold acclimation (Murray et al., 2007). However, the effect size of 

this manipulation is small, suggesting that other non-desaturase processes are 

responsible for the majority of protection at low temperature.  

 Select studies have also identified other players involved in lipid metabolism at low 

temperature. Adipokinetic hormone (AKH) is one of the primary neuroendocrine 

regulators of lipid metabolism in insects, and while a direct role for this hormone in cold 

stress has not been identified, genes encoding its receptor (AkhR) are activated by low 

temperatures. AkhR transcripts are upregulated in both D. suzukii after 9 d of cold 
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acclimation at 10°C (Enriquez and Colinet, 2019b) and after three days of decreased 

temperatures (from 34 to 25°C) in brood of Apis melifera (Ramirez et al., 2021), 

suggesting increased sensitivity to AKH may be required to maintain lipid metabolism at 

low temperatures. AKH is also involved in regulating supercooling capacity in some 

insects. In the beetle Ceruchus piceus, AKH signaling is shut down in the winter, and 

exogenous application reduces supercooling capacity by causing the mobilization of ice 

nucleating lipoproteins (Xu et al., 1990). In contrast, juvenile hormone (JH) causes a 

reduction in ice nucleating activity, indicating that the opposing actions of JH and AKH 

regulate circulation of ice nucleating lipoproteins. In the rice stem borer Chilo 

suppressalis, cold acclimation leads to upregulation of two transcripts encoding lipase 

genes (Ma et al., 2020), potentially to liberate glycerol for cryoprotection. In addition to 

these genes involved in preparatory cold acclimation processes, genes involved in 

glycerolipid metabolism are rapidly upregulated during recovery from cold shock in the 

flesh fly Sarcophaga bullata (Teets et al., 2012). Finally, during rapid cold hardening, a 

short-term cold acclimation response that does not require changes in gene expression, 

lipid storage droplet proteins are rapidly phosphorylated after 2 h of 0°C (Teets and 

Denlinger, 2016), which would promote lipolysis. However, the functional significance of 

this phosphorylation event is unclear. Together, the above studies suggest that lipid 

metabolism is regulated at several levels during cold stress, but work is needed in 

additional taxa to establish the generalizability of these results.   

 

Conclusions and Perspectives 

 Lipid metabolism plays a central role for overwintering insects (Figure 4). In 

addition to its well-established role for long-term energy storage during diapause (See 

Chapter 12 and Hahn and Denlinger, 2011), lipid metabolism contributes in many other 

ways to survival at low temperature. Changes in cell membrane lipid composition facilitate 

homeoviscous adaptation, which permits membrane function and fluidity at low 

temperatures (Sinensky, 1974). Homeoviscous adaptation is commonly observed among 

overwintering insects, although the manner in which it is achieved can vary from species 

to species (i.e., changes in headgroups, fatty acid composition, and/or cholesterol 
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content), suggesting multiple evolutionary origins for homeoviscous adaptation. Lipids 

also play an important role in fueling energetically costly stress defense mechanisms in 

the cold, and indeed, the frequency and severity of cold stress during winter can have a 

significant impact on energy reserves available when the growing season resumes. Some 

especially cold-adapted species have also developed novel classes of lipids that function 

as antifreezes or that can be mobilized as energy sources during periods of freezing. 

Finally, the expansion of molecular research in recent years has supported an essential 

role for lipid metabolism in cold stress, as gene expression related to lipid metabolism is 

involved in both cold acclimation and recovery from cold stress. However, as with much 

of insect biology, diversity in study systems and methodology makes it challenging to 

draw general conclusions, so carefully designed, phylogenetically informed studies of lipid 

metabolism during cold stress are needed in future research.  

Figure 4: Modification of lipids during winter, and physiological repercussions. Maintenance of lipid 

structures fluidity allow membranes functioning (homeoviscous adaptation) and guarantees the 

availability of lipid reserves at cold temperatures. Increased cuticular lipid deposits could protect from 

dehydration during long term cold exposures. Lipid reserves can serve as precursors for synthesis 

of cryoprotectant molecules, such as saccharose, proline or glycol, and as fuel for the activation of 

the repairing machinery, such as production of heat shock proteins for instance. All these 

adjustments help to the maintenance of cellular homeostasis. Lipid reserves are also of major 

importance at the end of winter, as they will allow insects to resume their activity and reproduce. 
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