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The growth of microbial populations in nature is dynamic, as the cellular physiology and environ-
ment of these populations change. Population dynamics have wide-ranging consequences for ecology
and evolution, determining how species interact and which mutations fix. Understanding these dy-
namics is also critical for clinical and environmental applications in which we need to promote or
inhibit microbial growth. We first address the latest efforts and outstanding challenges in mea-
suring microbial population dynamics in natural environments. We next summarize fundamental
concepts and empirical data on how population dynamics both shape, and are shaped by, evolu-
tionary processes. Finally, we discuss the role of tradeoffs in microbial population dynamics, which
may reveal physiological constraints and help to maintain ecological diversity. We find that current
evidence for tradeoffs in population dynamics is limited, but that consideration of the evolutionary
context of these tradeoffs is necessary for designing future experiments that can better address this
problem.
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WHAT ARE THE POPULATION DYNAMICS OF
MICROBES IN NATURAL ENVIRONMENTS?

The focus of microbiology has shifted in the last decade
from the study of tractable but simplified laboratory en-
vironments to the properties of microbes in their natu-
ral environments [1–3]. Evidence suggests that micro-
bial populations in these environments are highly dy-
namic: individual taxa can grow 20-fold over the course
of a week in the surface ocean [4] or fluctuate fourfold
each day in the human gut microbiome [5]. Current
estimates of minimum doubling times for most known
microbes range from tens of minutes to tens of hours
(Fig. 1a) [6]. However, we are still beginning to assem-
ble a detailed quantitative picture of what these popu-
lation dynamics look like [7]. Since natural populations
are always dispersed in space and contain genetic vari-
ation even within species, here we focus on the growth
of microbial populations aggregated at a particular spa-
tial and phylogenetic resolution. While understanding
the variation of population dynamics across short spa-
tial scales or between closely-related lineages (including
genetically-identical single cells) is an important prob-
lem, it is beyond the scope of the work we discuss here.

There are three main scenarios for a population’s
growth: positive net growth (Fig. 1b), as occur for strains
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colonizing new environments such as the infant gut [8]
or germ-free animal models [9]; negative net growth
(Fig. 1c), as has been observed for microbial taxa in
anaerobic wastewater treatment [10]; or approximately
zero net growth such that abundance remains constant
(Fig. 1d), which is the only scenario feasible over long
times. Zero net growth can arise either because birth
rates and death rates are balanced at every time point
(solid line in Fig. 1d), or because birth and death occur
asynchronously, such that the population spends some
short periods of time undergoing net birth and other pe-
riods undergoing net death, while maintaining zero net
growth over long times (dashed line in Fig. 1d). Indeed,
there is the possibility of different short-time behavior
for all of these long-time scenarios (solid versus dashed
lines in Fig. 1b,c). It is often useful to break down these
short-time dynamics into discrete phases, each of approx-
imately constant growth rate (Fig. 1e) [11]. We can then
describe the trajectory of growth, a high-dimensional ob-
ject, as a lower-dimensional set of traits (e.g., growth
rates, lag times, etc.) corresponding to discrete growth
phases [12, 13].

Measuring the population growth rate and distinguish-
ing the three scenarios (Fig. 1b–d) is in principle straight-
forward given time-series data of absolute abundances.
Unfortunately, measuring the absolute abundance of mi-
crobial strains in natural environments remains difficult
since traditional omics methods only provide relative
abundance [14], despite recent advances to calibrate these
protocols for absolute abundance by adding foreign cells
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FIG. 1. Fundamental aspects of microbial population dynamics. (a) Distribution of minimum doubling times for
∼200,000 prokaryotic genome sequences from the EGGO Database [6], as predicted from the codon usage bias of each genome.
(b) Schematic abundance trajectory (solid line) for a microbial population with positive net growth rate, given by the slope of
the log abundance over time (d logN/dt). An alternative trajectory with short-time variation in net growth rate but the same
total change in abundance is plotted on top (dotted line). (c) Similar to panel (b), but for a population with negative net
growth rate. (d) Similar to panel (b), but for a population with zero net growth rate. (e) Schematic time series of abundance
for a microbial population with zero net growth rate on long timescales, but with short-time cycles of birth and death. In the
right-hand panel, a zoomed-in view of a single growth cycle where the dotted lines mark discrete phases of growth, along with
a general differential equation for the absolute abundance N according to its time-dependent birth rate b(t) and death rate
d(t). (f) Same as panel (e) but showing the time series of two abiotic resource concentrations (dark green and yellow green)
that drive microbial growth in panel (e). The differential equation describes the dynamics of the resource concentration Ri as
it is depleted by biomass growth, according to the biomass yield Yi (new biomass produced per unit resource).

or DNA sequences to the sample [8, 10, 14–16]. However,
the more fundamental obstacle to measuring growth dy-
namics is insufficient time resolution. For example, the
gut microbiome of a single person can be sampled at
best every six hours [5] (although an average time series
of resolution every two hours can be reconstructed from
replicate samples at a single time point [17]), but this
frequency is insufficient to capture short growth phases
of 2–3 cell divisions. One possible solution to these prob-
lems has been to simulate natural environments in the
laboratory [18], where direct absolute abundance mea-
surements are easier.

An alternative strategy to the time-series approach re-
lies instead on inferring the instantaneous birth rate of
a population from a covariate property measured from a
single “snapshot” in time. For example, the age distribu-
tion in a population of plants or animals at a single time

point can be used to estimate birth rate [19]. In the case
of microbes, Korem et al. [20] used a mechanistic model
of cell division to identify the ratio of maximum to mini-
mum read coverage over the genome (known as the peak-
to-trough ratio) as a proxy for growth rate. This method
performed well for Escherichia coli in lab environments,
and the method has since been extended to work with
draft genomes [21, 22] and lower read coverage [23, 24],
but neither of these implementations performed as well
in additional experiments with Synecococchus [25] and a
diverse marine community [24, 26]. One key limitation
of the peak-to-trough ratio is that it cannot be converted
into a growth rate unless the period of DNA replication
is known [20], which may vary across species and envi-
ronments.

Since the instantaneous birth rate is a global regulator
of many cellular processes, snapshot methods also have
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tried to correlate birth rate with other cell properties such
as gene expression [27], proteome allocation [28], or other
omics data [29]. For these methods to measure growth
rate in natural environments, they must be trained with
measured growth rates from these habitats. Such bench-
marking data sets are currently lacking, but they will
have to use time series of absolute abundance [26] or other
methods that already provide calibrated growth rates.
Insight into the growth rate of natural populations also
comes from environmental biogeochemistry, using nutri-
ent turnover rates in sediments [30] or by adding isotope-
labeled nutrients as chemical tracers [31, 32].

A final category of methods for determining population
dynamics aims not to infer instantaneous birth rates in
samples, but rather to infer properties of growth from
evolved patterns in genomes. One such method uses the
accumulation of mutations in a genome as a clock to de-
termine the historical birth rate of the species, assuming
that mutations occur only during cell divisions and are
largely neutral [33]. Other methods of this type infer the
maximum potential birth rate of a species. The best ge-
nomic pattern here appears to be codon usage bias [6, 34].
Figure 1a shows an example of this data. However, when
tested in benchmark marine species, the predicted max-
imum birth rate falls short of matching the birth rate
measured from absolute abundance data [26]. This may
be because of qualitative differences between the environ-
mental conditions used for the training data [34] and the
species’ true natural environments, or because the organ-
ism simply grows at rates much slower than their max-
imum due to nutrient limitation or other inhibiting fac-
tors. Besides codon usage bias, rRNA copy number pro-
vides another genomic pattern which can show a moder-
ate correlation with birth rate in literature data [35, 36],
but mostly fails to predict the actual birth rate measured
by isotope-labeled heavy water in a soil community [36].

What causes population growth to vary with time?
Changes in the supply of resources are a likely factor
in many systems. For example, populations may grow
fast right after a pulse of resources, but then deceler-
ate and eventually stop growth once they deplete the
resources (Fig. 1f). Understanding population dynamics
in natural environments therefore requires understanding
resource dynamics as well. One major question here is
whether natural resource dynamics are more “chemostat-
like” — where the rate of resource influx is fast com-
pared to the rate of population birth and death, lead-
ing to an approximately constant resource abundance —
or more “batch-like,” where the resource influx is slow
compared to population growth (i.e., resources arrive in
infrequent pulses) [37]. Identifying which nutrients are
limiting growth is also an important question, especially
for the problem of promoting or inhibiting growth of mi-
crobial populations. For example, recent work has sug-
gested that nitrogen is the primary limiting nutrient of
microbes in mammalian guts [38], but it is also possi-
ble that multiple nutrients could simultaneously co-limit
growth [39]. Whereas nutrients control the population

dynamics from the bottom-up, other biological players
in the environment like phages, predators, and host im-
mune systems can serve as top-down controls of micro-
bial populations. This is particularly relevant for micro-
bial pathogens, whose death rate, for example, has been
found to depend strongly on the activity of host phago-
cytes [40].

WHAT IS THE FEEDBACK BETWEEN
MICROBIAL POPULATION DYNAMICS AND

EVOLUTIONARY PROCESSES?

As with all aspects of biology, we must understand mi-
crobial population dynamics in the context of evolution-
ary processes. On one hand, population dynamics affect
key aspects of evolution (Fig. 2a): the population size
determines the supply rate of new mutations and other
sources of genetic variation (e.g., horizontal gene trans-
fer), as well as the strength of demographic fluctuations
(genetic drift) of that variation. Population dynamics
also determine how selection acts on genetic variation,
by setting both the total selection “budget” — the over-
all magnitude of selection on a mutation over a time pe-
riod, which is proportional to the number of generations
over which that mutation competes with its ancestor [41–
43] — and the allocation of that selection budget across
traits affected by the mutation (Fig. 2b,c). For example,
strain A (blue) in Fig. 2b undergoes more generations
during growth phase II than in phase III, and hence has
greater selection on mutations affecting traits for phase
II (Fig. 2c), while strain B (red) undergoes more genera-
tions in phase III and hence has greater selection on that
phase. Different patterns of resource supply and mor-
tality also play major roles. For example, Letten and
Ludington [37] recently demonstrated in a model that
population dynamics with constant resource supply and
mortality (chemostat-like conditions) select for different
compositions of strains than population dynamics with
pulsed resource supplies and mortality (batch-like condi-
tions).
However, population dynamics not only shape, but are

also shaped by, evolution, as mutations affecting growth
traits fix. For example, evolution could change the length
or growth rate of different growth phases (Fig. 2a). What
patterns of population dynamics should we expect to
emerge from evolution? Evolution occurs in two main
steps (Fig. 2a). First, genetic variation in growth traits
is supplied to the population, usually through sponta-
neous mutations, horizontal gene transfer, or migration,
but there can also be cryptic genetic variation whose
phenotypic effects are revealed after a change in envi-
ronment. Evolved trait patterns can be strongly influ-
enced by biases in the supply of growth trait variation
alone. For example, growth phases may evolve to be
short compared to lag phases if there are more muta-
tions that affect growth rates than mutations that affect
lag times. Previous studies have measured the supply
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FIG. 2. Feedback between microbial population dynamics and evolution. (a) Schematic diagram for the feedback
between population dynamics (left panel) and evolutionary processes (right panel). In the ancestral population (grey growth
curve on the left, grey cell on the right), there is a supply of new genotypes (grey and orange cells) through spontaneous
mutations, horizontal gene transfer (HGT), or migration, but only one of them (orange cell) survives subsequent processes of
selection, genetic drift, and clonal interference to reach fixation while the others go extinct (grey crosses). The population
dynamics set key parameters of this process such as the population mutation rate, strength of genetic drift, and selection. But
the outcome of genetic evolution (right panel) also influences the population dynamics in turn (left panel), by changing the
population growth traits. For example, the evolved population (orange curve, left panel) may have shorter lag time compared to
the growth of the ancestor (grey curve). (b) Schematic growth curves for two species with different patterns of growth phases.
Strains A (blue line) and B (red line) both have the same lag phase (marked as I), but strain A experiences greater growth in
the first phase of exponential growth (II), whereas strain B has more growth in the second phase of exponential growth (III).
(c) Schematic of the total budget and allocation of selection pressure for the two growth curves in panel (b). The height of
the bars represent the total magnitude (“budget”) of selection on a spontaneous mutation that appears on the backgrounds of
strains A and B. The composition of the bars shows the contribution of each growth phase (Roman numerals) to selection on
a mutant. (d) Simulated growth curve under the Monod model of growth rate g(R) = gmax ·R/(R+K) for an ancestral strain
where the half-saturation concentration K is approximately equal to the initial resource concentration R0 [43]. We mark the
two phases of the growth dynamics: phase I where growth is approximately at the maximum growth rate, and phase II where
the growth rate decelerates to zero as the resource is depleted. As a bar plot on the right, the selection budget for a mutation
that increases the maximum growth rate gmax and decreases the half-saturation concentration K, both by 1%. (e) Same as
panel (d) but for an evolved microbial strain that has a much lower half-saturation concentration K/R0 ≈ 0.01. In this evolved
strain the population dynamics have changed such that the phase of deceleration (II) is almost negligible due to the low value
of the trait K. As such there is little selection allocated to this phase, as shown in the bar plot on the right.

of variation in growth traits for various combinations of
traits, including lag times, growth rates, and yields for
gene deletion strains of E. coli [44–47] and Saccharomyces
cerevisiae [48], a collection of yeast hybrids [49], and a set
of E. coli strains with point mutations in the adenylate
kinase protein [50].

In general, these measurements show that mutations
are almost always pleiotropic, affecting multiple phases
of growth simultaneously. A key question about these

measurements is whether mutation effects for different
traits are correlated, especially in the form of a trade-
off, which we discuss in the next section. However, these
data sets are relatively limited in scope and number due
to the difficulty of performing high-throughput measure-
ments of growth traits for large mutant libraries; since
current omics methods for growth dynamics are insuf-
ficiently accurate (as discussed in the previous section),
these measurements typically require imaging or tracking
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optical absorbance or fluorescence in microplates. Im-
proving these methods or otherwise expanding the scale
of these experiments is a critical need for future work.
We also expect mechanistic models that can predict how
mutations affect growth traits— for example, based on
whole-genome metabolism [51] or intracellular resource
allocation [52] — to play a crucial role in addressing
questions beyond the practical constraints of empirical
measurements.

Given a supply of genetic variation in growth traits,
that variation is then shaped by selection, genetic drift,
and other population genetic processes (e.g., clonal inter-
ference) into the evolved patterns of traits (Fig. 2a). Lab-
oratory competition experiments can empirically mea-
sure aspects of these processes, but they are especially
amenable to mathematical models, since they generally
do not depend on molecular or cellular details. In par-
ticular, competition experiments and models have de-
termined the total budget and allocation of selection
across different traits (Fig. 2b,c), such as lag times versus
growth rates [41, 47, 53], maximum growth rates versus
deceleration rates [43, 54], and secondary growth phases
such as fermentation versus respiration in yeast [42, 55].

How much of the evolved population dynamics is due
to the mutation supply versus selection on the growth
traits? Evolution experiments in both E. coli [56, 57] and
S. cerevisiae [58, 59] found significantly different amounts
of evolutionary change on different growth traits under
selection, suggesting that the mutation supply was lim-
ited for some of those traits. However, practical limi-
tations on measurements, as aforementioned, have con-
strained the scale of these experiments. Thus we still
need more data of growth traits within and between
evolved populations, ideally over long evolutionary tra-
jectories, to comprehensively address this question.

Altogether, population dynamics and evolution form
a feedback loop (Fig. 2a) [42]: population dynamics set
constraints for evolution over short times, but then evo-
lution changes those constraints over long times. Previ-
ous work on the evolution of the half-saturation concen-
tration K (concentration of a limiting nutrient at which
growth rate is half its maximum) in the Monod growth
response provides a useful example [43]. Initially, the
trait K determines the population dynamics by control-
ling the phases of maximum growth and deceleration,
which shapes evolution by determining the allocation of
selection for mutations to each of these phases (Fig. 2d).
But as the trait K evolves to lower concentrations, the
population dynamics change as well: the phase of decel-
eration becomes shorter, until the population dynamics
are almost entirely at maximum speed (Fig. 2e). This
means there is little selection on additional mutations to
K.

ARE THERE TRADEOFFS IN MICROBIAL
POPULATION DYNAMICS?

When considering patterns of evolved growth traits for
microbial populations, tradeoffs between these traits are
one of the most important possibilities. For example, one
species could grow faster but another species could use re-
sources more efficiently (rate-yield tradeoff) [60], or one
species could grow faster when resources are abundant
while another species could grow faster when resources
are scarce (rate-affinity tradeoff) [54, 61]. Species could
also have tradeoffs between their growth on different re-
sources altogether [55, 62, 63].
Tradeoffs matter for two main reasons. First, they

can reflect an underlying physiological or biophysical
constraint of cells. For example, the rate-yield trade-
off has been hypothesized because of a thermodynamic
constraint in energy metabolism [60]. Another common
scenario is if cells have only a fixed amount of resources
to invest in metabolism for two different nutrients, then
different genotypes can have different investment strate-
gies, creating a tradeoff between growth on those differ-
ent nutrients. The second reason tradeoffs in popula-
tion dynamics matter is that they can underlie complex
ecological interactions between genotypes. In particu-
lar, growth tradeoffs enable the exploitation of distinct
spatial or temporal niches — such that different species
have growth advantages at different points in space or
time — which can allow those species to stably coex-
ist [54, 60, 62]. These mechanisms are especially im-
portant to ecology because they may explain the main-
tenance of species diversity on few resources. However,
growth tradeoffs can produce other complex ecological
dynamics as well, including multistability, non-transitive
selection, and higher-order interactions [41, 42, 53].
There are several different forms of tradeoffs when con-

sidering microbial population dynamics, depending on
what type of variation (genotypic or environmental) one
considers and at what biological scale. We enumerate
the possibilities and their interpretations in Box 1 and
Fig. 3. In general, tradeoffs across spontaneous muta-
tions (Fig. 3a,d) or environments (Fig. 3g) are most rele-
vant for revealing underlying constraints, while tradeoffs
across genotypes within populations (Fig. 3b,d) are nec-
essary for realizing complex ecological dynamics such as
stable coexistence.
What tradeoffs in microbial population dynamics are

actually realized? Existing data shows that tradeoffs
across genotypes occur sometimes but are not widespread
among closely-related genotypes. A rate-affinity tradeoff
in population growth rates at high and low concentra-
tions of resources has been reported in a few systems [67],
while other studies have actually found synergies across
genotypes [68] or no correlation at all [43]. Tests for
rate-yield tradeoffs [57, 69–75] and tradeoffs between lag
times and growth rates [49, 50, 68, 70, 76] have also found
mixed results (e.g., Fig. 3f).
We believe there are two major causes for the incon-
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FIG. 3. Types of tradeoffs in microbial population dynamics. (a) An example set of genotypes (grey cells) that vary by
spontaneous mutations (lightning bolts) on the same background genotype (different colors). (b) An example set of genotypes
(colored cells) that all co-occur in the same population (grey box). (c) An example set of genotypes (cells of different colors) that
occur in independent populations (colored boxes). (d) Schematic procedure for measuring a tradeoff across genotypes (colored
ovals) in a single environmental condition (grey box). For each genotype, the two growth traits X and Y are identified from
the strain’s growth curve (grey line). (e) Schematic of data showing a tradeoff across genotypes between two traits X and Y .
(f) Measured growth rate (x-axis) and reciprocal lag time (y-axis) for a set of E. coli genotypes that differ by single mutations in
their adenylate kinase protein [50]. The grey dot marks the ancestral strain. (g) Schematic procedure for measuring a tradeoff
across environments (colored shapes) for a single genotype (grey oval). For each environmental treatment, two traits X (here
shown as initial growth rate in first phase) and Y (here shown as lag time after a shift to a second growth phase) are estimated
from the growth curve (grey line). (h) Schematic of data showing a tradeoff across environments between the two traits X and
Y . (i) Measured growth rate before nutrient shift to acetate (x-axis) and reciprocal lag time after shift to acetate (y-axis) for
E. coli under six different pre-shift carbon sources (colors) [64].

clusive status of many tradeoffs. First, tradeoffs do not
necessarily translate across biological scales. Some of the
proposed tradeoffs in microbial growth, such as rate-yield
and rate-affinity, were initially formulated for molecular-
or cellular-scale processes such as metabolic pathways,
but traits at those scales do not directly correspond to
growth traits for whole cells or populations [43, 65]. Sec-
ond, many discussions of tradeoffs have conflated dif-
ferent types of genetic variation (Box 1 and Fig. 3a–
c), whose interpretations are quite different. Trade-
offs across spontaneous mutations (Fig. 3a) should di-
rectly reflect underlying physiological constraints, but
tradeoffs across genotypes within or between populations
(Fig. 3b,c) depend on both the supply of spontaneous mu-

tations and the selection on these traits (Fig. 2a). For
example, even if there is a tradeoff across spontaneous
mutations, there may be no tradeoff in evolved popula-
tions if selection favors generalist trait combinations over
specialists. Moreover, a tradeoff across lineages within
evolved populations can emerge in the absence of a trade-
off across spontaneous mutations, if the trait combina-
tions of the lineages are selectively neutral with respect
to each other [47].

Future work on this topic will therefore require high-
throughput measurements of growth traits (rather than
uptake or metabolic traits) across well-defined sets of ge-
netic variants, ideally in systems where libraries of spon-
taneous mutants and evolved lineages can be directly
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Box 1: Types and interpretations of tradeoffs in microbial population dynamics. A tradeoff between two quantitative
traits X and Y of population dynamics is a negative correlation in the values of those traits across some set of samples. Here
we focus on traits that directly describe the population dynamics of microbes (e.g., lag time and doubling time), but some
previous studies have focused on traits at molecular or cellular scales (e.g., rates of metabolic pathways or nutrient uptake) on
the assumption that they correlate with traits of population growth [65]. However, this is often not the case [43], so one must
be cautious about extrapolating tradeoffs or other patterns across biological scales.

There are two major types of tradeoffs in population growth traits, which differ in the variation across samples they represent
and hence their interpretations.

1. Genotypic tradeoffs. In this case one considers traits across a set of samples representing different genotypes (Fig. 3a–
c). We test existence of a tradeoff between two growth traits (e.g., lag time and minimum doubling time of a growth
curve, Fig. 3d) by measuring the traits for all genotypes in the set. A genotypic tradeoff exists if there is a negative
correlation between those traits across genotypes (Fig. 3e). Tradeoffs of these types in population dynamics traits appear
to be rare, at least across closely-related sets of genotypes. One can choose the set of genotypes in various ways, but
there are three most common types of genetic variation, each having a different meaning for a tradeoff.

(a) Tradeoff across spontaneous mutations (Fig. 3a). Here the samples are spontaneous mutations on the
background of a single reference genotype. This represents the genetic variation that arises spontaneously in a
population during evolution (Fig. 2a), and therefore it is an important determinant of the mutations that actually
fix in the population. Since this set of genotypes is not biased by selection or other evolutionary processes, a tradeoff
here is indicative of an underlying constraint. For example, if X and Y are growth rates on two different carbon
sources, then a tradeoff across spontaneous mutations may occur because the different mutants reflect different
investments of a fixed pool of cellular resources into metabolism of each carbon source. Figure 3f shows growth
rates and reciprocal lag times across a set of E. coli strains with point mutations in the adenylate kinase protein [50];
while some subsets of these mutations exhibit tradeoffs, the whole set does not at a statistical level, suggesting there
is no underlying constraint on both lag and growth after starvation.

(b) Tradeoff across standing variation within a population (Fig. 3b). These genotypes are those that co-occur
within a single evolving population at a single point in time. This set of genotypes reflects both the supply of
spontaneous mutations (i.e., the pattern of traits in Fig. 3a) and the outcome of selection and other evolutionary
processes (Fig. 2a). Tradeoffs here can therefore be due to tradeoffs at the level of spontaneous mutations or
tradeoffs induced by selection, or both. As a result, one cannot deduce underlying constraints from tradeoffs at this
level. Since this set represents genotypes that actually co-occur in a population at the same time, these tradeoffs
represent opportunities for coexistence or other ecological dynamics associated with tradeoffs (e.g., multistability,
non-transitive selection, higher-order interactions) [41, 42, 53, 54].

(c) Tradeoff across independent populations (Fig. 3c). These genotypes come from independently evolving
populations. Like the previous case, these genotypes represent the combined outcome of mutation supply and
selection, but because these genotypes do not co-occur in the same population, they may demonstrate a different
pattern of traits compared to those within populations (Fig. 3b). This could be due to stochastic differences in the
number of accumulated mutations between populations [47], but it could also be due to environmental variation
that exists between the populations. As a result, tradeoffs across this type of variation are usually difficult to
interpret.

2. Environmental tradeoffs. These tradeoffs correspond to negative correlations of traits for a single genotype across
multiple environmental trajectories or treatments (Fig. 3g,h). Note that this requires defining traits X and Y in a
way that matches across the environmental variation. As with tradeoffs across spontaneous mutations, tradeoffs across
environments can also represent underlying constraints. For example, Basan et al. [64] found an environmental tradeoff
for a single E. coli strain between its growth rate X in various carbon sources and the reciprocal lag time Y after shifting
to a different carbon source (Fig. 3i), which they explain in terms of a constraint on the underlying metabolic regulation.

We finally note that individual cells and populations are characterized by more than just two traits, and so one must consider
the possible effects of dimensional reduction when evaluating two-dimensional tradeoffs as discussed here. In particular, if
there is no tradeoff between two traits, there could still be another type of constraint that is only apparent when considering a
higher-dimensional set of traits [55]. Even if there is a tradeoff between two traits, the consequences for ecology and evolution
may be unclear from that data alone as there can be hidden variation in a third trait also under selection. The dimensionality
of trait space relevant for mutations and selection remains an important topic for research [66].

compared. In particular, this would be valuable for col-
lections of strains or species that are already known to
coexist in the same community, so we can test how much
of this coexistence can be explained by any growth trade-
offs [41, 53, 54, 62].

OUTLOOK

Understanding the population dynamics of microbes
in natural environments holds the promise of helping us
control microbial growth in clinical and environmental
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systems — for example, promoting the growth of com-
mensal bacteria or inhibiting the growth of a pathogen.
However, future progress will hinge on our ability to make
these measurements more accurate and systematic; we
expect this will require a combination of experimental
innovations as well as insights from modeling, especially
in terms of identifying better snapshot biomarkers of cel-
lular birth and death. We have also learned a great deal,
both theoretically and empirically, about how ecology
and evolution may give rise to these observed population
dynamics. Here we also look forward to improvements in
high-throughput growth phenotyping, especially for large
mutant libraries and within-community strain libraries,
as well as multiscaling modeling that can predict muta-
tion effects on growth traits. Altogether these steps will
help us toward our ultimate goal of a quantitative and
predictive theory of microbial population dynamics.
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