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The growth of microbial populations in nature is dynamic, as the cellular physiology and envi-
ronment of these populations change. Understanding the growth dynamics of these populations has
wide-ranging consequences for their ecology and evolution; it may also be critical for clinical and
environmental applications in which we need to promote or inhibit microbial growth. Here we review
the latest efforts to measure population dynamics of microbes in natural environments. We then
address the role of population dynamics, especially tradeoffs in growth traits, in mediating ecological
coexistence of multiple species. Finally, we discuss how population dynamics and evolutionary pro-
cesses form a feedback loop that ultimately shapes the evolved patterns of growth we observe. We
identify the major gaps in our current knowledge for each of these topics and what future work will
be required to close them. We conclude with a brief outlook on the future of microbial population
dynamics research.

I. WHAT ARE THE POPULATION DYNAMICS
OF MICROBES IN NATURAL

ENVIRONMENTS?

The focus of microbiology has shifted in the last decade
from the study of tractable but simplified laboratory en-
vironments to the behavior of microbes in their natu-
ral environments [1–5]. Evidence suggests that microbial
populations in these environments are highly dynamic:
individual taxa can grow 20-fold over the course of a week
in the surface ocean [6] or fluctuate fourfold each day in
the human gut microbiome [7]. However, we are still be-
ginning to put together a quantitative picture of what
these growth dynamics look like in detail [8].

There are three main scenarios for a population’s
growth: positive net growth (Fig. 1a), as occur for strains
colonizing new environments such as the infant gut [9];
negative net growth (Fig. 1b), as has been observed for
microbial taxa in anaerobic wastewater treatment [10];
or approximately zero net growth such that their abun-
dances remain constant (Fig. 1c), which is the only sce-
nario feasible over long times. Zero net growth can arise
either because birth rates and death rates are balanced
at every time point (Fig. 1d), or because birth and death
occur asynchronously, such that the population spends
some short periods of time undergoing net birth and
other periods undergoing net death, while maintaining
zero net growth over long times (Fig. 1c). Indeed, there
is the possibility of different short-time scale behavior
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for all of these long-time scenarios (Fig. 1a,b). It is often
useful to parameterize these short-time dynamics accord-
ing as discrete phases of growth, each of approximately
constant growth rate (Fig. 1f,g) [11]. We can then de-
scribe the high-dimensional growth dynamics as a lower-
dimensional set of traits corresponding to each discrete
growth phase [12, 13].

Distinguishing these scenarios is in principle straight-
forward given time-series data of absolute abundances.
Unfortunately, measuring the absolute abundance of mi-
crobial strains in natural environments remains diffi-
cult [14] despite recent advances [9, 10, 14–16]. However,
the more fundamental obstacle to measuring growth dy-
namics is insufficient time resolution. For example, the
human gut microbiome of a single individual can be sam-
pled at best every six hours [7] (although an average time
series of resolution every two hours can be reconstructed
from replicate samples at a single time point [17]), but
this frequency is insufficient to capture short growth
phases of 2-3 cell divisions.

An alternative strategy to the time-series approach re-
lies instead on inferring the instantaneous birth rate of
a population from a covariate property measured from a
single “snapshot” in time. For example, a snapshot of
the age distribution can be used to estimate birth rate
in plants or animals [18, 19]. In the case of microbes,
Korem et al. [20] used a mechanistic model of cell divi-
sion [21] to identify the peak-to-trough ratio (PTR) of
genome read coverage as a proxy for growth rate. This
method performed well for E. coli in lab environments,
and the method has since been extended to work with
draft genomes [22, 23] and lower read coverage [24, 25],
but neither of these implementations performed as well
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in additional experiments with Synecococchus [26] and a
diverse marine community [25, 27]. One key limitation
of PTR is that it cannot be converted into a growth rate
unless the period of DNA replication is known [20, 21],
which may vary across species and environments.

Since the instantaneous birth rate is a global regulator
of many cellular processes, snapshot methods also have
tried to correlate birth rate with other cell properties
such as gene expression [28], proteome allocation [29], or
other omics data [30, 31]. For these methods to measure
growth rate in natural environments, they will have to
be trained with measured growth rates from these habi-
tats. Such benchmarking data sets are currently lacking,
but they will have to come from time series of absolute
abundance [27] or other methods that already provide
calibrated growth rates. Insight into the growth rate of
natural populations also comes from environmental bio-
geochemistry, using isotope-labeled nutrients as chemical
tracers [32, 33].

A final category of methods for determining growth
dynamics aims not to infer instantaneous birth rates in
samples, but rather to infer properties of growth from
evolved patterns in genomes. One such method uses the
accumulation of mutations in a genome as a clock to de-
termine the historical birth rate of the species, assuming
that mutations occur only during cell divisions and are
largely neutral [34]. Other methods in this class infer
the maximum potential birth rate of a species, rather
than the birth rate realized during its evolutionary his-
tory. The best genomic pattern here appears to be codon
usage bias [35–37]. Figure 1e shows minimum doubling
times predicted by this method, which span about two
orders of magnitude from 10 minutes to 100 hours across
all isolates from genome databases [37]. However, when
tested in benchmark marine species, the predicted max-
imum birth rate falls short of matching the birth rate
measured from absolute abundance data [27]. This may
be because of significant differences between the environ-
mental conditions used for the training data [35, 36] and
the species’ true natural environments, or because the
organism simply grows at rates much slower than their
maximum due to nutrient limitation. Besides codon us-
age bias, rRNA copy number provides another genomic
pattern which can show a moderate correlation with birth
rate in literature data [35, 38, 39] but mostly fails to pre-
dict the actual birth rate measured by isotope-labeled
heavy water in a soil community [39].

What causes population growth to vary with time?
Changes in the supply of resources are a likely fac-
tor. For example, populations may grow fast imme-
diately after a pulse of resources, but then decelerate
and eventually stop growth once the resources deplete
(Fig. 1f,g,h,i). Understanding population dynamics in
natural environments therefore requires understanding
resource dynamics as well. One general classification we
aim to determine is whether natural resource dynam-
ics are more “chemostat-like” — where the rate of re-
source influx is fast compared to the rate of population

growth and death, leading to an approximately constant
resource abundance — or more “batch-like,” where the
resource influx is slow compared to population growth
(e.g., resources arrive in infrequent pulses) [40]. Identify-
ing which nutrients are limiting growth is also an impor-
tant question, especially for the problem of promoting or
inhibiting growth of microbial populations. For example,
recent work has suggested that nitrogen is the primary
limiting nutrient of microbes in mammalian guts [41], but
it is also possible that multiple nutrients could simulta-
neously co-limit growth [42].

II. THE ROLE OF POPULATION DYNAMICS
AND GROWTH TRADEOFFS IN ECOLOGICAL

INTERACTIONS

The dynamic nature of population growth makes inter-
actions between species in a community dynamic as well.
This raises the possibility of distinct temporal niches for
each species [43], in which one species specializes in grow-
ing at some times (e.g., while the environment is in a cer-
tain state) while the other species specializes in growing
at other times. Over long periods of time, this may allow
the two species to stably coexist, as formalized by con-
cepts such as relative nonlinearity (differential responses
to changing resource concentrations) and the storage ef-
fect [44]. These mechanisms are especially important
to ecology because they allow for coexistence of many
species on few resources [45].
The fundamental ingredient of coexistence through

these temporal niches is a tradeoff in growth traits for
the two species’ population dynamics. Growth tradeoffs
may be considered over different samples of genotypic
and environmental variation (Box 1 and Fig. 2); within-
population genotypic tradeoffs are required for coexis-
tence. What would cause these tradeoffs? Besides evo-
lution, as we will discuss in the next section, the most
commonly-considered mechanism is an underlying con-
straint. For example, if cells have only finite resources to
invest in metabolism for two different nutrients, differ-
ent genotypes will have different investment strategies,
creating a tradeoff between growth on those different nu-
trients. Two of the best-studied constraints hypothesized
to affect microbial growth are the rate-yield tradeoff for
metabolic pathways [48] and the rate-affinity tradeoff for
nutrient uptake [49].
So what tradeoffs in microbial growth are actually re-

alized? Existing data shows that tradeoffs across geno-
types occur sometimes, but are not widespread among
closely-related microbial species. Motivated by the rate-
affinity tradeoff in nutrient uptake, a tradeoff in pop-
ulation growth rates at high and low concentrations of
resources has been reported in a few systems [50], while
other studies have actually found synergies across geno-
types [51, 52] or no correlation at all [53]. Metabolic
rate-yield tradeoffs and the concept of r/K selection
have motivated testing tradeoffs in population growth
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FIG. 1. Fundamental aspects of microbial population dynamics. (a) Schematic abundance trajectory (thick line)
for a microbial population with positive net growth rate, given by the slope of the log abundance over time (d logN/dt). An
alternative trajectory with short-term variation in net growth rate but same total change in abundance is plotted on top (dotted
line). (b) Similar to panel (a), but for a population with negative net growth rate. (c) Similar to panel (a), but for a population
with zero net growth rate. (d) Decomposition of the net growth rate d logN/dt of a microbial population into birth rate b(t)
and death rate d(t). (e) Distribution of minimum doubling times for ca. 200,000 prokaryotic genome sequences from the EGGO
Database [37], as predicted from the codon usage bias of each genome. (f) Schematic time series of abundance for a microbial
population with zero net growth rate on longer timescales, but with short-term cycles of growth and death. (g) Excerpt of
the time series in panel (f), zoomed into a single growth cycle. Dotted lines mark separate the discrete phases of growth.
(h) Schematic time series of concentrations for two abiotic resources (dark green and yellow green) that drive microbial growth
in panel (f). (i) Excerpt of the time series in panel (g), zoomed into a single growth cycle.

rates and yields, with some experiments indeed detect-
ing tradeoffs [54–57] while others finding no correlation,
positive correlations, or more complex relationships be-
tween growth rate and yield [58–64]. Measurements of
lag times and doubling times have also found mixed re-
sults [46, 52, 62, 65–68] (e.g., Fig. 2f). A major prob-
lem with this topic is that tradeoffs do not necessarily
translate across biological scales: a rate-yield tradeoff for
a single pathway may not correspond to a tradeoff for
a whole cell or population. Indeed, many studies that

claim these tradeoffs do not actually measure population
growth, but rather a metabolic or intracellular process
such as uptake [69–72].

The existence of tradeoffs alone, though, is insufficient
to support coexistence of multiple genotypes; the trade-
offs must exist in the right context of population dynam-
ics [45, 73]. For example, Bloxham et al. [74] recently
found that a tradeoff in growth rates and diauxic lag
times was consistent with the coexistence of two species
in batch cultures. Future work on this topic will require
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FIG. 2. Types of tradeoffs in microbial population growth. (a) An example set of cells (grey) that vary by spontaneous
mutations to their genome (different colors). (b) An example set of cells with different genotypes (colors) that all co-occur
in the same population (grey box). (c) An example set of cells that vary by genotype (colored oval and box) and occur
in independent populations. (d) Schematic procedure for measuring a tradeoff across genotypes (colored ovals) in a fixed
environmental condition (grey box). For each genotype, the two growth traits X and Y are identified from the strain’s growth
curve (black line). (e) Schematic of data showing a tradeoff across genotypes between two traits X and Y . (f) Measured
doubling time (x-axis) and lag time (y-axis) for a set of E. coli genotypes that differ by single mutations in their adenylate
kinase protein [46]. (g) Schematic procedure for measuring a tradeoff across environments (colored shapes) for a single genotype
(grey oval). For each environmental conditions, two traits X (here: growth rate in first phase) and Y (here: lag time) are
estimated from the growth curve (black line). (h) Schematic of data showing a tradeoff across environments between the two
traits X and Y . (i) Measured doubling time before nutrient shift to acetate (x-axis) and lag time after shift to acetate (y-axis)
for E. coli under five different pre-shift carbon sources (colors) [47].

high-throughput measurements of growth traits (rather
than uptake or metabolic traits) across large strain or
species libraries. In particular, this would be valuable for
collections of strains or species that are already known
to coexist in the same community, so we can test how
much of this coexistence can be explained by any growth
tradeoffs.

III. WHAT IS THE FEEDBACK BETWEEN
MICROBIAL POPULATION DYNAMICS AND

EVOLUTION?

Over long time scales, the existence of growth tradeoffs
ultimately depends on the relationship between popula-
tion dynamics and evolutionary processes. Population
dynamics shape key aspects of evolution (Fig. 3a): for

example, the population size determines the supply rate
of new mutations and other sources of genetic variation
(e.g., horizontal gene transfer), as well as the strength
of demographic fluctuations (genetic drift) [75]. Popu-
lation dynamics also determine the total “budget” and
allocation of selection pressure across traits (Fig. 3b–e).
This is because selection on mutations is proportional to
the number of generations over which those mutations
compete [53, 73, 76], as dictated by the population dy-
namics. For example, population dynamics with long lag
times while transitioning into growth will have greater se-
lection on mutations affecting lag traits (Fig. 3b–e) [73].
Different patterns of resource supply and mortality also
play a major role. For example, Letten and Luding-
ton [40] recently demonstrated in a model that popula-
tion dynamics with constant resource supply and mortal-
ity (chemostat-like conditions) select for different compo-



5

Box 1: Types of tradeoffs in microbial growth traits. A tradeoff between two traits X and Y (e.g., lag time and
doubling time) is a negative correlation in the values of those traits across some set of samples. Often the two traits are chosen
such that they are both under positive selection, in which case the tradeoff has ecological and evolutionary consequences, but
that is not always the case. There are two major classes of tradeoffs in population growth traits, which differ in the variation
across samples they represent:

1. Genotypic tradeoffs: These tradeoffs describe negative correlations of traits across a set of different genotypes. One
can choose the set of genotypes in various ways, but there are three most common types of genetic variation: spontaneous
mutations on a specific background strain (Fig. 2a), standing variation within a population (Fig. 2b), or variation across
independent populations (Fig. 2c). In any of these cases, we test existence of a tradeoff between two growth traits (e.g.,
lag time and minimum doubling time of a growth curve, Fig. 2d) by measuring the traits in a single environmental
condition for all genotypes in the set. A genotypic tradeoff exists if there is a negative correlation between those traits
across genotypes (Fig. 2e). Such tradeoffs appear to be rare for closely-related sets of genotypes. For example, Fig. 2f
shows lag times and doubling times across a set of E. coli strains with point mutations in the adenylate kinase protein [46];
while some subsets of these mutations exhibit tradeoffs, the whole set does not at a statistical level.

2. Environmental tradeoffs: These tradeoffs correspond to negative correlations of traits for a single genotype across
multiple environments (Fig. 2g,h). Note that this requires defining traits X and Y in a way that matches across the
environmental variation. For example, Basan et al. [47] found for a single E. coli strain an environmental tradeoff between
the doubling times in different carbon sources as well as the lag time after shifting to a different carbon source (Fig. 2i).

sitions of strains than population dynamics with pulsed
resource supplies and mortality (batch-like conditions).

However, population dynamics not only shape, but are
also shaped by, evolution (Fig. 3a), as mutations affect-
ing growth traits fix. What patterns of population dy-
namics should we expect to evolve? Evolution occurs
in two steps. First, genetic variation in growth traits
is supplied to the population (Fig. 3f), usually through
spontaneous mutations, horizontal gene transfer, or mi-
gration, but there can also be cryptic genetic variation
that is revealed after a change in environment. Biases in
the supply of growth trait variation can have a major im-
pact on the evolved trait patterns. For example, growth
phases may evolve to be short compared to lag phases if
there are more mutations that affect growth rates than
affect lag times. Genotypic tradeoffs across spontaneous
mutations (Box 1, Fig. 2a) are especially important here,
because if spontaneous mutations entail a tradeoff across
two growth traits, then evolution will be constrained to
a narrower range of phenotypes, regardless of selection.
Previous studies have measured the supply of variation
in growth traits for various combinations of traits and
genetic variants, including lag times, growth rates, and
yields of E. coli [77–80] and S. cerevisiae [81] gene dele-
tion strains, a collection of yeast hybrids [68], and a set
of E. coli strains with point mutations in the adenylate
kinase protein [46] (Fig. 2f). In general, these measure-
ments show that mutations are almost always pleiotropic,
affecting multiple phases of growth simultaneously, but
generally do not show significant tradeoffs; sometimes the
are even positive correlations, in which individual muta-
tions tend to improve multiple traits simultaneously. Fu-
ture work will require more systematic measurements of
large mutant libraries in different environments, as well
as the development of mechanistic models — for example,
based on whole-genome metabolism [82] or intracellular
resource allocation [83] — to predict how mutations af-
fect growth traits.

Given a supply of genetic variation in growth traits,
the second step of evolution is selection on that variation
(Fig. 3f). While laboratory competition experiments can
empirically measure this process [84, 85], it is especially
amenable to mathematical models of population dynam-
ics, which have, for example, shown how selection acts on
variation in lag times vs. growth rates [45, 73, 80], max-
imum growth rates vs. deceleration rates [53, 86], and
secondary growth phases such as fermentation vs. respi-
ration in yeast [76]. In general, we can think of selection
as a force vector in the space of growth traits (Fig. 3f).
The aforementioned models and experimental data de-
termine the components of this selection force across dif-
ferent traits (allocation of the total selection budget men-
tioned, Fig. 3c,e). For example, in a well-mixed culture,
the yield determines the relative allocation of selection
on the lag and growth phases, but there is no component
of selection on yield itself [73].

How much of the evolved population dynamics is due
to the mutation supply versus selection on the growth
traits? Evolution experiments in both E. coli [60, 87]
and S. cerevisiae [88–90] found significant evolutionary
change in some growth traits but not others, suggest-
ing that the mutation supply was limited for some of
those traits. An important aspect of this question is that
patterns of traits may qualitatively differ across lineages
within a population (Fig. 2b) compared to lineages in
independent populations (Fig. 2c). For example, even if
there is no tradeoff across spontaneous mutations for two
traits, there can still be a tradeoff across lineages within
a single population since the traits of those lineages will
cluster along the contour of constant fitness (Fig. 3f) [91],
while lineages across independent populations will show
a positive correlation due to stochastic variation in the
number of fixed mutations (Fig. 3f) [80]. As with the
supply of mutations, we still need more data of growth
traits within and between evolved populations, ideally
over long evolution experiments.
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FIG. 3. Evolution of microbial population dynamics. (a) Schematic diagram for the influence of population dynamics
(orange arrow) on parameters of evolution (black circles) and the resulting evolutionary dynamics (genealogy of blue and grey
cells). From an ancestor (dark grey cell), cells with different genotypes appear via mutation (blue cells), but only one of them
survives to fixation (dark blue cell) while the others go extinct (grey crosses). The outcome of genetic evolution influences
the population dynamics (orange arrow) by changing the organismic growth traits, and thus changing the timing of individual
growth phases (dotted lines) in the growth curve (orange curve). The exact growth curve also depends on the input nutrients
(grey squares). (b) Schematic growth curves for two species with different patterns of growth phases. Strains A (blue line) and
B (red line) both have the same lag phase (marked as I), but strain A grows faster in the first phase of exponential growth (II),
whereas strain B grows faster in the second phase of exponential growth (III). (c) Schematic allocation of selection pressure
for the two growth curves in panel (b). The height of each bar represents the selection pressure. Both strains have equal total
height (4 generations), but different relative allocation of selection pressure to the growth phases (marked by the same roman
numerals as in panel (b)). (d) Similar to (b), but with a higher initial amount of nutrients (grey squares and triangles) and
greater resulting fold-change. (e) Similar to (c), but for the growth curves in panel (d). The total budget of selection has
increased, due to a larger number of initial resources and greater fold-change, compared in panel (c). (f) Diagram for the two
step process of evolution on microbial growth traits. First, mutation generates variation in trait space (grey cloud; left panel).
Then selection acts to fix mutations with beneficial effects, leading to a distribution of fixed mutations (transparent purple;
center-left panel) over replicate populations. Finally, after many repeated rounds of mutation and fixation, the independent
replicate populations form a distribution in trait space that is negatively correlated between populations (dark purple cloud;
center-right panel) but shows positive correlation within population (oval shapes with different color; right panel).

Ultimately population dynamics and evolution form a
feedback loop over time (Fig. 3a) [76]: population dy-
namics set constraints for evolution over short times, but
then evolution changes those constraints over long times.
Previous work on the evolution of the half-saturation con-

centration K in the Monod growth response provides a
useful example [53]. At first, the trait K sets the popu-
lation dynamics by determining the phases of maximum
growth and deceleration, which shapes evolution by de-
termining the allocation of selection for mutations to each
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of these phases (Fig. 3b–e). But as the trait K evolves to
lower concentrations, the population dynamics change:
the phase of deceleration becomes shorter and shorter,
until the population dynamics are almost entirely at max-
imum speed. This means there is little selection on ad-
ditional mutations to K.

IV. OUTLOOK

In recent years we have made great progress toward
understanding the population dynamics of microbes in
natural environments. This holds the promise of helping
us control microbial growth in clinical and environmental
systems — for example, promoting the growth of com-
mensal bacteria or inhibiting the growth of a pathogen.
However, future progress will hinge on our ability to make
these measurements more accurate and systematic; we
expect this will require a combination of experimental
innovations as well as insights from modeling, especially
in terms of identifying better snapshot biomarkers of cel-

lular birth and death. We have also learned a great deal,
both theoretically and empirically, about how ecology
and evolution may give rise to these observed population
dynamics. Here we also look forward to improvements in
high-throughput growth phenotyping, especially for large
mutant libraries and within-community strain libraries,
as well as multiscaling modeling that can predict muta-
tion effects on growth traits. Altogether these steps will
help us toward our ultimate goal of a quantitative and
predictive theory of microbial population dynamics.
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[89] Karin Kovárǒvá. Growth Kinetics of Escherichia Coli:
Effect of Temperature, Mixed Substrate Utilization and
Adaptation to Carbon-Limited Growth. PhD thesis, ETH
Zurich, Zurich, Switzerland, 1996.

[90] J. Adams, C. Paquin, P. W. Oeller, and L. W. Lee. Phys-
iological characterization of adaptive clones in evolving
populations of the yeast, Saccharomyces cerevisiae. Ge-
netics, 110:173–185, 1985.

[91] K. Gomez, J. Bertram, and J. Masel. Directional selec-
tion rather than functional constraints can shape the G
matrix in rapidly adapting asexuals. Genetics, 211:715–
729, 2019.


	How do microbes grow in nature? The role of population dynamics in microbial ecology and evolution
	Abstract
	What are the population dynamics of microbes in natural environments?
	The role of population dynamics and growth tradeoffs in ecological interactions
	What is the feedback between microbial population dynamics and evolution?
	Outlook
	Declaration of interest
	Acknowledgments
	References


