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Highlights

• Mobile genetic elements such as plasmids and phages transfer genes between microbes, shaping
the diversity and function of microbial communities. Hence, understanding the processes that
govern the structure and dynamics of microbe-plasmid interactions is a fundamental goal of
microbial ecology.

• Addressing this goal is challenging because communities are governed by processes that operate
simultaneously at multiple levels of community organization.

• Complex adaptive systems theory, implemented via agent-based evolutionary modeling and
extended by network analysis, is a promising framework to overcome these challenges.

• Using model comparison in combination with empirical data (experimental or from nature),
researchers can quantify the relative importance of the key processes that shape the structure
and function of microbial communities.

Key words: agent-based models | community dynamics | ecological networks | microbial ecology |
mobile genetic elements

Abstract

Plasmids shape microbial communities’ diversity, structure, and function. Nevertheless, we lack a
mechanistic understanding of how community structure and dynamics emerge from local microbe-
plasmid interactions and co-evolution. Addressing this gap is challenging because multiple processes
operate simultaneously at multiple levels of organization. For example, immunity operates between
a plasmid and a cell, but incompatibility mechanisms regulate coexistence between plasmids. Con-
ceptualizing microbe-plasmid communities as complex adaptive systems is a promising approach
to overcoming these challenges. I illustrate how agent-based evolutionary modeling, extended by
network analysis, can be used to quantify the relative importance of local processes governing
community dynamics. These theoretical developments can advance our understanding of plasmid
ecology and evolution, especially when combined with empirical data.
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Microbe-plasmid communities are complex and adaptive

Plasmids fuel microbe evolution, shaping microbial communities [1]. Because microbial commu-
nities affect ecosystem functions, from nutrient recycling in oceans to host physiology to disease
transmission, microbe-plasmid interactions have far-reaching consequences. A hallmark example is
the spread of antibiotic resistance (ABR) genes [2]. Consequently, understanding how ecological
and evolutionary processes shape the structure (see Glossary) and dynamics of microbe-plasmid
interactions is a fundamental goal of microbial ecology.

Addressing this goal is challenging because, in nature, multiple physiological, ecological, and evolu-
tionary processes operate simultaneously at multiple interaction levels, generating complex net-
works (Figure 1, Key Figure) [3–6]. “Network thinking” [7] is necessary for two reasons. First, due
to indirect effects, community functions depend on network structure rather than isolated pairwise
interactions. For instance, the structure of plasmid genetic similarity networks can define the dy-
namics of ABR gene transmission across animal hosts [8]. Similarly, the structure of microbe-phage
networks affects HGT [9]. Network structure also affects the response of microbial communities to
perturbations [10], although this has not been studied in plasmids. Second, network structures con-
tain signatures for the processes that generated them [11,12] (Figure 1). For example, the structure
of sequence-similarity networks can result from mosaicism [7], and the structure of bacteria-plasmid
networks is shaped by ABR-carrying plasmids [13]. In addition to being complex, microbe-plasmid
communities consistently evolve at ecological time scales [6,14]. Therefore, interaction networks
dynamically evolve and affect the processes that generate them [12] (Figure 2). Nevertheless, how
these complex communities assemble and evolve has been understudied. Therefore, we currently
lack a fundamental, mechanistic understanding of (i) how local processes govern the emergence of
diversity and network structures; and (ii) the subsequent consequences of structure for functions
such as plasmid transmission and community stability.
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Figure 1. Levels of interaction of microbe-plasmid communities and their relevant processes.
Multiple factors and processes—operating simultaneously at various levels of complexity—govern the
emergence of community dynamics, diversity, and interaction networks. A representative example for
each level is depicted inside the dashed boxes in panels (A)-(C). The color of each bacteria and plasmid
represents a strain. The color of the dashed boxes corresponds to the interaction level processes noted.
(A) Microscopic rules that operate at the single microbe-single plasmid level govern processes at higher
interaction levels. For example, in (B), the prevalence of the red plasmid in the pink bacteria depends on
its prevalence in the green one; for example, because the green bacteria is a reservoir host [15]. In (C),
coinfection of the gray bacteria by the blue and cyan plasmids is possible if the plasmids do not exclude
each other via immunity. (D) The entire interaction network must be considered to fully understand
community dynamics and structure because multilevel processes result in nonlinear indirect effects and
higher-order interactions. (E) Network structure and community dynamics determine ecological outcomes
and functions (a few examples are stated).
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Complex adaptive systems can be studied using models

These questions can be addressed experimentally. For instance, compensatory mutations maintain
plasmid diversity [16], and plasmid copy number accelerates the evolution of ABR [1]. However,
conducting evolutionary experiments that capture the emergence of diverse interaction networks
is typically not feasible. Moreover, studying competing hypotheses requires multiple experiments,
which can be costly. Models can guide experiments and are valuable because they focus on a few key
processes. For instance, the spread of plasmids across microbial populations depends primarily on
transmission rates, fitness cost to the host, and positive selection (e.g., antibiotics) [17]. I argue that
addressing the aforementioned knowledge gaps requires evolutionary models. Such models enable
studying communities as complex adaptive systems (CAS) in which macroscopic patterns emerge
from microscopic rules that operate on the system’s agents (Box 1). I consider plasmid entities
and microbial cells as the fundamental agents on which microscopic rules, and therefore selection,
operate (Figure 2). Alternative views at finer (genes as agents) or coarser (plasmid and microbe
strains as agents [12]) scales are possible as long as the organizational scale matches the question
at hand. The scale I focus on is analogous to community ecology, whereby agents are comparable
to individuals in macro-organisms, and strains are analogous to species [18]. Community ecology
has a rich history of studying mechanisms that underlie the emergence of diversity and structure,
and drawing on this research can be beneficial to microbial ecology.

Studying microbe-plasmid communities as CAS enables the development of a predictive framework
to understand the relative importance of the various processes determining their co-evolutionary
and eco-evolutionary dynamics. For example, plasmid evolution is governed by multiple ‘lifestyle
modes’ such as invasion, genome adaptation, and host range and persistence—each of which is
governed by different processes and rules [14]. Although I focus on plasmids, my arguments are
relevant for other transmissible mobile genetic elements (MGEs), such as temperate phages [19].
Additionally, some of the ideas I raise are inspired by work on lytic phages, and I mention those
where appropriate. I first synthesize knowledge on the microscopic rules that govern the structure
and dynamics of microbe-plasmid communities at increasing interaction levels (Figure 1, Figure
2A). I then suggest methodology to study the emergence of structure.
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Box 1. Complex adaptive systems

In complex adaptive systems (CAS), macroscopic patterns emerge from the collective behavior of
agents that interact and adapt according to a set of microscopic rules [20]. Macroscopic patterns
can be described at the system level, such as the structure of species interaction networks, nutrient
fluxes, and community stability (Figure 1A). Microscopic rules refer to local interactions between
the system’s components (e.g., conjugation, immunity, competition) and to factors that affect
these components (e.g., mutation, trait distributions) (Figure 2A).

The word ‘adaptive’ indicates that evolutionary processes change and select components based on
emerging patterns; that is, components adapt in response to emerging dynamics and interactions
[21]. For instance, plasmids evolve mechanisms that allow them to increase host range when
new microbial strains appear. Evolution requires trait heterogeneity; therefore, there should be
diverse components. In a seminal paper, Levin [21] argued that CAS require sustained diversity of
systems components (e.g., many plasmid/microbe strains). Diversity can be an initial condition;
for example, one can initialize a model with a high diversity of agents. However, diversity can also
be an emerging property [12,22,23]. For example, in host-parasite systems, frequency-dependent
selection that provides an advantage to rare variants is a driving force generating and maintaining
parasite and host diversity and emerges from competition between parasite variants for hosts [23].
CAS are characterized by dynamical feedback between macroscopic patterns and microscopic
rules (Figure 2). Such feedback leads to non-linearity; that is, local interactions can change as
the system evolves. For example, a plasmid’s ability to infect a microbe can be reduced if that
microbe evolves a defense mechanism due to an interaction with another plasmid.

Evolutionary ABMs are a tool to model CAS. Studies in microbial ecology, which aim to identify
fundamental principles that dominate community dynamics and structure [24] or raise hypotheses
to explain the structure of communities (e.g., phage-bacteria interaction networks [11]) implicitly
consider microbial communities as CAS. However, there is a paucity of studies using evolutionary
ABMs in a CAS framework to test specific hypotheses. An example of this approach is shown in
Figure I.

Theory

Model 1: no coexistence

Compare models to each other
Compare models to empirical data

Model outputs:
Plasmid and gene diversity
Network structure
Trait distributions

Microscopic rules
Macroscopic patterns

Model 2: coexistence
with no effect

Model 3: coexistence
with reduced fitness

Figure I. Figure I. Using evolutionary ABMs. Given a theory, multiple models can be explicitly
coded and compared. In the three models presented, plasmids move between cells via conjugation.
Plasmids cannot coexist (model 1), can coexist with no effect on host fitness (model 2), or can
coexist while reducing host fitness (model 3). Model outputs can be compared to quantify
effects and test hypotheses. In addition, comparison to empirical data can aid in identifying key
microscopic rules that operate in nature. Knowledge gained from these comparisons can improve
existing theory (dashed line).
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Microbe-plasmid interactions are shaped at multiple levels of interaction com-
plexity

Plasmids are extra-chromosomal double-stranded DNA molecules. While they can be transferred to
microbial cells via vertical transmission, horizontal gene transfer (HGT) is a significant force
driving their persistence. Plasmids contain backbone genes that encode essential functions allowing
them to control their replication and transmission (e.g., via conjugation), though some cannot
self-mobilize) [25,26]). These processes exploit host machinery, reducing host growth rates and
incurring fitness costs. Therefore, microbes contain non-adaptive (e.g., restriction-modification)
and adaptive (e.g., CRISPR) immune mechanisms [27]. Immunity (microbes) and the ability to
evade immunity (plasmids) are traits under constant selection pressure, which mediate the ability
of plasmids to infect microbial cells. Therefore, immunity is a key molecular mechanism mediating
co-evolutionary dynamics and interactions.

However, some plasmids contain accessory genes that encode additional traits that affect their host
cell. Accessory genes, such as those providing increased nutrient uptake rates in nutrient-poor envi-
ronments, can confer an advantage to the host [5]. If the plasmid carries beneficial accessory genes,
the benefits to the host can outweigh the costs [5]. The fitness cost imposed by plasmids, coupled
with potential plasmid loss during cell division (Figure 2A) and the fact that beneficial accessory
genes can integrate into the host chromosome, should hamper plasmid persistence. This reasoning
contradicts their frequently observed long-term persistence, sometimes even in the absence of pos-
itive selection [28]—a puzzle termed the “plasmid paradox”. Multiple ecological and evolutionary
solutions to this paradox have been described, including high transmission rates, compensatory
mutations that ameliorate plasmid cost, and variation in plasmid cost across microbial strains [29].

The microscopic rules operating at the single microbe-single plasmid level manifest in processes at
higher interaction levels. These processes, in turn, feed back to affect the local rules. In nature,
plasmids are embedded in diverse microbial communities (Figure 1B). Variation in host competence
and susceptibility can affect plasmid persistence. For example, Hall et al. [15] have shown that
the plasmid pQBR57 was not maintained in monocultures of Pseudomonas putida populations (a
non-favorable host). However, when co-cultured with P. fluorescens (a favorable host), the plasmid
was present in P. putida because P. fluorescens served as a reservoir species. Supported by a
mathematical model, these experimental results indicate that inter-strain transmission can promote
plasmid persistence in an unfavorable host species. In a later study, Kottara et al. [30] found
that pQBR57 was more prevalent in the focal host P. fluorescens SBW25 in a monoculture than
when cultured in a mixture containing other Pseudomonas strains. In the presence of non-focal
host strains, the infectivity of pQBR57, a broad host range plasmid, is diluted in the focal host.
Barriers to conjugation or other mechanisms of HGT can arise due to incompatibility between a
plasmid and a microbe (e.g., immunity) or factors such as spatial distribution. Therefore, at the
multimicrobe-single plasmid level, plasmid host range and barriers to HGT are two key factors
determining microbe-plasmid interactions.

Multiple plasmid types can exist in the same cell (Figure 1C). From the plasmid perspective, coin-
fection drives competition for host resources [31]. This intense selective pressure could lead to the
evolution of exclusion mechanisms. For instance, plasmids can prevent the entry, or hamper the
reproduction, of competing plasmids via multiple mechanisms such as surface exclusion or anti-
plasmid CRISPR immunity [32,33]. Moreover, plasmids from the same incompatibility group (Inc)
have similar replication machinery, preventing them from stably coexisting within the same host
cell [26]. On the other hand, coinfection can lead to fitness benefits for all resident plasmids. Coin-
fection can also result in gene exchange via recombination, driving plasmid evolution [1]. From the
host perspective, within-cell plasmid interactions can alter fitness costs (epistasis) [34]. Hence, the
cost of harboring multiple plasmids can differ from the additive cost of harboring each alone [35,36].
While the molecular processes of plasmid coinfection have been studied [37], its ecological under-
pinnings and outcomes are only now being explored [4,38,39]. For example, coinfecting plasmids
can co-transfer or reduce each other’s conjugation rates via “fertility inhibition” [31,39].
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Figure 2. Microbe-plasmid communities as complex adaptive systems. (A) Main processes and
interactions (microscopic rules). (i) Upon microbe replication, plasmids are vertically passed to the
daughter cells with possible plasmid loss. (ii) Conjugation is a common mechanism of plasmid-controlled
movement between cells. (iii) Plasmid transmission or long-term persistence fails (red line) if the recipient
cell has a plasmid of the same incompatibility group or if the recipient cell or its resident plasmids are
immune. Identical dark purple segments depict matching incompatibility or immunity. (iv) Plasmids
replicate and can mutate upon replication. (v) Plasmids can recombine to exchange genes. (vi) The
fitness of a cell bearing a plasmid with a beneficial gene (depicted in green) can be greater than that of
microbes not bearing the plasmid when the environment is unfavorable (depicted by red in the gradient).
(vii) Plasmids can have different costs in different microbes. The orange plasmid is costly in the blue
bacteria, and the purple plasmid in the gray. (B) and (C) are matrix representations of, respectively,
modular (blue rectangles depict two modules) and nested networks that encode infections of microbes
by plasmids. (D) Model output as a temporal multilayer network (each layer is a time step). Interlayer
edges (dashed) connect agents to themselves in the next layer, and their width is proportional to the
change in agent frequency (only three are shown for clarity). Notice how the identities of agents and
interactions change over time. This evolution of topology cannot be captured using monolayer networks.

The multimicrobe-multiplasmid level is the most relevant, yet challenging, to study

Given that all the processes above operate in tandem, multimicrobe-multiplasmid systems (Figure
1D) are the most relevant and informative for understanding the dynamics of microbe-plasmid
communities. Nevertheless, they are also the most challenging to study due to their high diversity
and complexity and because they encompass all the processes at lower interaction levels. While this
level of interaction encompasses the most significant knowledge gap, its investigation will allow a
thorough understanding of how microbe-plasmid community dynamics operate in nature. Ample
evidence for this claim comes from community ecology. In a multihost-multiparasite community,
indirect effects cascade across host-parasite interaction networks to affect parasite interactions [40]
and the evolution of both hosts and parasites [41]. Moreover, in ecological communities, higher-
order interactions are abundant and strongly affect community dynamics [42]. For instance, a
microbe strain can serve as a source population to a plasmid that also infects another microbe strain
[15].

The high diversity that characterizes microbes and plasmids implies variation in trait distributions
[43,44]. In microbes, variation in susceptibility to infection and the ability to support plasmid repli-
cation (competence) underlies their differential abilities to support plasmid population and plasmid
transmission [15,30]. For example, plasmid costs vary between strains, indicating variation in host
competence [45]. Plasmids exhibit variation in traits such as the range of hosts they can infect [15,30]
and their ability to mobilize themselves [25]. For instance, some plasmids possess conjugation ma-
chinery genes, while those lacking such genes can “hitchhike” on the former [25,35]. Current studies
rarely accommodate the vast microbe and plasmid strain and trait diversity observed in nature.
Considering diversity is important, because coinfection and multimicrobe transmission result in
nonlinear effects [30,34]. Under conditions of high plasmid diversity, there is an immense poten-
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tial for plasmid-type combinations in microbe cells and, subsequently, variation in the outcomes
of plasmid-plasmid interactions. For instance, plasmid transfer rates can be reduced or enhanced
in the presence of a coinfecting plasmid in the microbe population [38]. Similarly, high microbial
diversity can support plasmid persistence on non-preferred hosts [15].

Box 2. A network approach to studying microbe-plasmid interactions

Networks are an ideal framework to describe and analyze the complexity of systems with many
interacting entities and are often used in microbial systems [7,8,46]. Network structure influences
stability and function [10], and provides a signature for the processes that generate the network.

A host-parasite network is an ecological network describing ‘who infects whom’. These are bipartite
networks where interactions are allowed between nodes from two distinct sets (hosts and parasites)
but not within each set. In community ecology, host-parasite networks have been extensively
studied [40]. In microbial ecology, microbe-phage infection networks—a private case of host-
parasite networks—have been studied, focusing on two structural properties: modularity and
nestedness [11,47,48]. In a modular network (Figure 2B), microbes and phages are partitioned
into groups of densely-interacting strains—a structure describing patterns of specialization and
niche construction—and modules represent bacterial niches on which phages can grow [12]. In
a nested network (Figure 2C), specialist microbes are infected by subsets of phages that, in
turn, infect the more generalist microbes, and specialist phages infect subsets of the microbes
infected by the more generalist phages [11]—a structure describing patterns of specialization. The
emergence of these structures is affected by spatial and phylogenetic scales [49] and microbe-phage
coevolutionary dynamics (arms-race) [48].

In CAS, the network structure at each time step depends on the one(s) before forming a temporal
network. Network evolution can be described using multilayer networks [50,51]. Each layer
contains nodes and intralayer links representing the structure at a particular time. Interlayer links
connect nodes at different layers and encode processes that operate between layers according
to the research question [52]. For instance, if the number of microbial cells is a primary factor
in determining microbe-plasmid interactions, then interlayer edges can encode changes in the
frequency of strains (Figure 2D).

Although it is possible to analyze temporal dynamics without interlayer edges [12], their inclusion
can reveal hidden patterns. One example comes from the malaria parasite Plasmodium falciparum.
A vast pool of gene variants in local parasite populations can generate concomitant diversity of
parasite genomes. Competition for hosts structures these combinations in a way that limits their
genetic overlap. This ‘limiting similarity’ is expected to result in a modular structure in which
strains from the same module occupy the same niche in host immune space. While modules were
not apparent in static networks [23], they were observed in temporal multilayer networks in which
interlayer links describe the competitive effect of a parasite strain at one time on other strains at
the next time point [51].

Modeling evolving microbe-plasmid communities

A central question in plasmid ecology regards spreading dynamics in microbial populations because
plasmids carry ABR genes. Therefore, the dominant approach to modeling microbe-plasmid inter-
actions has been population-level models (PLMs) [17,53]. PLMs use differential equations to model
the average state of a population in time. They can incorporate interactions between plasmids and
microbes and between plasmids (e.g., coinfection [39]), and are primarily designed to quantify the
effects of different parameters (e.g., loss and transmission rates) on plasmid spread. However, PLMs
cannot be used to model CAS because they describe population averages rather than agents. In
addition, strain diversity is provided at the onset and does not evolve.

Incorporating evolution is possible using evolutionary agent-based models (ABMs) in which mi-
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crobes and plasmids are agents. In this framework, diversity and interaction structure emerge from
rules encoded in the model [12,23,53,54] (Figure 2). Moreover, ABMs allow the explicit representa-
tion of individual stochastic variation while being computationally tractable [55]. This is particularly
important for plasmids because some only exist in low copy numbers [56]. Evolutionary ABMs are
process-based models [57], which explicitly implement theory to test competing hypotheses (Box
1). For example, one can test the effect of different kinds of plasmid-plasmid incompatibility mech-
anisms on microbe-plasmid interactions by comparing the output of models that include different
rules. Moreover, process-based models allow for generating projections, which can then be com-
pared to empirical data. This, in turn, enables the development of predictive models. Nevertheless,
developing ABMs that include eco-evolutionary and co-evolutionary dynamics is challenging due
to the multiple interaction levels and processes involved (as described above). Incorporating these
processes may require many parameters. As with any modeling approach, researchers should focus
on the parameters (and interaction levels) most relevant to their hypotheses. ABMs also require
advanced computing skills and take longer to run. These may be the primary reasons why ABMs
have rarely been used to describe microbe-plasmid dynamics [53,58,59].

Analyzing emerging structures using networks

ABMs generate, as in nature, highly diverse communities with complex interaction networks that
change in time [12] (Box 2). Some community functions can be analyzed directly from model
outputs. For instance, it is possible to quantify the number of microbial strains that evolved
ABR. However, it is particularly insightful to study the emerging networks for two reasons. First,
comparison of model outputs with empirical data can aid in identifying processes that shape natural
communities. For instance, two prevalent structural properties in bacteria-phage networks are
modularity and nestedness [47,48] (Figure 2B,C). These patterns have dynamical implications
for phage transmission [12,48,49], but the processes that lead to their emergence are still a matter of
debate (Box 2). In plasmids, a recent experiment at a multimicrobe-single plasmid level showed that
the number of plasmid interactions and their strength (plasmid prevalence) depends on the effect
of the plasmid on microbe growth rate [60]. Another study at the multimicrobe-multiplasmid level
showed that ABR-carrying plasmids infected more bacterial species, increasing the connectivity of
the plasmid-bacteria network [13]. Second, even when studying functions directly, the mechanism
behind them requires an understanding of the network (Figure 1E). For instance, phage outbreaks
that are observed in model outputs result from particular evolving network structures, which were
also identified in empirical data [12].

The temporal dynamics inherent to CAS generate evolving networks. A solution to this challenge is
multilayer networks [50] (Figure 2D, Box 2). In a temporal multilayer network, each layer represents
the structure of the community at a given time point (layer). A dedicated analysis incorporating
the structure within and between the layers can reveal temporal patterns of evolutionary changes
hidden in static networks [51]. For example, the evolution of microbe susceptibility to plasmids
can be captured by quantifying temporal changes in the number of plasmids to which a microbe is
connected. A particular insightful network property is modularity. In multilayer networks, unlike
in monolayer networks, modules can cross layers and therefore contain microbes and plasmids from
multiple time points [51]. Modules then delineate groups of microbes and plasmids that interact
strongly with each other in time. Hence, module birth and death dynamics can indicate an intrinsic
evolutionary time scale.

Concluding remarks

Conceptualizing microbe-MGE interactions as CAS will advance our understanding of the mecha-
nisms that govern their structure. This theoretical understanding is a fundamental step in predicting
and controlling the function of microbial communities—for example, engineering communities with
a particular microbial composition that minimizes the spread of foreign genes. Previous works have
focused on modeling the transmission dynamics of plasmids to understand the spread of ABR genes
in low diversity systems [17]. However, strain transmission is ultimately a result of ecological and
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evolutionary rules that operate at the agent level in highly diverse communities. A combination of
process-based ABMs and network analysis is a promising approach to close this gap by investigat-
ing emergent evolutionary and transmission dynamics (see Outstanding Questions). Process-based
models are particularly beneficial because they allow identifying the key factors that govern the
emergence of variation in specific traits. For instance, does variation in the susceptibility of mi-
crobes to plasmids result from fast plasmid adaptation or under-developed immunity? In addition,
models are general and, therefore, applicable to MGEs other than plasmids.

Theoretical results should be tested with evolutionary experiments. While it is extremely challenging
to reach the high diversity and complexity described by models in experimental systems, it may
not always be necessary [15,30,60,61]. Evolutinoary ABMs can guide future research by allowing
researchers to focus on mechanisms relevant to the interaction levels they investigate. Finally, a
comparison of model outputs to natural systems is also necessary. Advanced metagenome techniques
that allow comprehensive sampling of the mobilome and microbiome [13,44] should prove useful for
that purpose. Shifting the theoretical approach from modeling non-evolving communities to CAS
should lead, in my opinion, to a conceptual leap in studies of microbe-MGE communities.

Outstanding questions

• Can we identify key processes that underlie the composition and structure of communities
observed in nature or in controlled experiments? For instance, when does HGT contribute
to diversity more than variation in plasmid copy number?

• Under which conditions do plasmid stability mechanisms (those that solve the plasmid
paradox) evolve? Are those affected by microbe-plasmid interaction structure?

• Can we predict the emergence of network structures such as modularity and nestedness via
local processes?

• Is there a fundamental difference in the rules that govern the community structure of MGEs
with different life histories (e.g., plasmids vs temperate or lytic phages)?

• What is the relative importance of neutral processes (e.g., variation in abundance and pure
population dynamics) vs selection in the assembly of microbe-plasmid communities?

• Can we identify the relative importance of factors / rules that determine evolving community
functions? For example, microbes evolving the ability to acquire plasmids vs plasmids’ ability
to evolve multiple copies in degerming spread of ABR.
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Glossary

• Co-evolutionary dynamics: Temporal changes in the genetic composition and associated
phenotypes of interacting agents (e.g., plasmids and microbes).

• Eco-evolutionary dynamics: Temporal changes in macroscopic patterns (e.g., diversity)
that result from the interplay between ecological (e.g., population dynamics) and evolution-
ary (e.g., mutation) processes.

• Higher-order interactions: Effect of an agent on the interaction between two (or more)
other agents. For instance, when the infection of a cell by a plasmid is facilitated or impeded
by a plasmid already residing in the cell.

• Horizontal gene transfer (HGT): The movement of genes between organisms not via
cell division. Main HGT mechanisms are transduction, transformation and conjugation.
HGT typically involves entities such as phages or plasmids that carry the genes between
organisms.

• Interaction levels: The hierarchical organization of the way community members interact:
from an interaction between a single microbial cell and a single plasmid entity to interactions
between multiple microbes and plasmids.

• Interaction structure: Also termed network structure. The pattern by which network links
are distributed across nodes. In the context of networks, ‘interaction’ is a network link: a
plasmid infecting a microbe.

• Macroscopic patterns: The collective properties, dynamics, and behavior that emerge
from local interactions and processes. For example, the diversity of the microbiome emerges
from processes such as mutation, HGT and microbe-plasmid interactions.

• Microscopic rules: Interactions and processes that operate between the system’s agents.
For instance, rate of mutation, the number of copies a plasmid can produce, and the ability
of a plasmid to penetrate a microbial cell.

• Modularity: A network structure in which the network is partitioned into groups (modules)
of nodes (e.g., strains) that interact strongly with each other and weakly with nodes from
other groups.

• Nestedness: In ecological networks, nestedness is a structure in which specialists interact
with proper subsets of the species interacting with the more generalists.

• Nonlinear effects: Broadly speaking, a nonlinear effect occurs when the outcome of
microbe-plasmid interactions is not proportional to the values of their traits, and therefore
typically cannot be directly predicted. When community dynamics are nonlinear, interac-
tions change as the system evolves.

• Process-based models: Models that explicitly represent knowledge or hypotheses regard-
ing the factors and processes that determine the relationships between agents and their
evolution. This is in contrast to phenomenological models (e.g., Lotka Volterra-type mod-
els), in which the mechanism underlying the relationship between variables is not explicitly
stated. Process-based models are encoded using simulations of dynamical processes. Note
that like with any other kind of model, not all factors that operate can, or should be,
represented.

• Strain: A genetically-unique microbe or MGE. It is generally assumed that strains differ in
some phenotype relevant for the system.
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