
A probabilistic approach to estimating timber harvest1

location2

Jakub Truszkowski1,2,†, Roi Maor3, Raquib Bin Yousuf4, Subhodip Biswas4,3

Caspar Chater3, Peter Gasson3, Scot McQueen5, Marigold Norman6, Jade4

Saunders6, John Simeone7, Naren Ramakrishnan4, Alexandre Antonelli1,2,3,8,*,5

and Victor Deklerck3,*6

1Department of Biological and Environmental Sciences, University of7

Gothenburg, Gothenburg, Sweden8

2Gothenburg Global Biodiversity Centre, Gothenburg, Sweden9

3Royal Botanic Gardens, Kew, Richmond, UK10

4Department of Computer Science, Virginia Tech, Arlington, Virginia 22203,11

USA12

5Forest Stewardship Council International, Technology and Information Unit,13

Bonn, Germany14

6World Forest ID, Thomas Circle NW, Suite 700, Washington DC 20005, USA15

7Simeone Consulting, LLC, Littleton, New Hampshire, USA16

8Department of Plant Sciences, University of Oxford, Oxford, UK17

*Co-senior authors18

†Corresponding author: jakub.truszkowski@bioenv.gu.se, tel: +4673478260319

November 22, 202420

21

1



Abstract22

Determining the harvest location of timber is crucial to enforcing international23

regulations designed to protect natural resources and to tackle illegal logging and24

associated trade in forest products. Stable Isotope Ratio Analysis (SIRA) can be used to25

verify claims of timber harvest location by matching levels of naturally-occurring stable26

isotopes within wood tissue to location-specific ratios predicted from reference data27

(‘isoscapes’). However, overly simple models for predicting isoscapes have so far limited28

the confidence in derived estimates of timber provenance. In addition, most use cases29

have limited themselves to differentiating between a small number of pre-determined30

location options. Here, we present a new SIRA data analysis pipeline, designed to infer31

the harvest location of a focal tree out of a continuous, arbitrarily large area. We use32

Gaussian Processes to robustly estimate isoscapes from reference wood samples, and33

overlay with species distribution data to compute, for every pixel in the study area, the34

probability of it being the origin of the examined timber. This is the first time, to our35

knowledge, that this approach is applied to determining timber provenance, providing36

probabilistic results rather than a binary outcome. Additionally, we include an active37

learning tool to identify locations from which additional samples would maximize the38

improvement to model performance, allowing for optimisation of field efforts. We39

demonstrate our approach on a set of SIRA data from seven oak species in the USA as a40

proof of concept. Our method can determine the harvest location up to within 520 km41

from the true origin of the sample and outperforms the state-of-the-art approach.42

Incorporating species distribution data improves accuracy by up to 36%. The43

future-sampling locations proposed by our tool decrease the variance of resultant44

isoscapes by up to 86% more than sampling the same number of locations at random.45

The method we present here greatly advances the toolset available for verification of46
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timber harvest location, will empower authorities worldwide in enforcing anti-deforestation47

legislation and will help protect natural resources.48

Keywords: stable isotopes, origin traceability, timber provenance, illegal logging, isoscapes,49

Gaussian Processes50

1 Introduction51

Unsustainable exploitation of natural resources is the largest driver of terrestrial biodiversity loss52

after land-use change (D́ıaz et al., 2019) and a major conservation challenge globally. To53

prevent a sixth mass extinction (Barnosky et al., 2011), nearly 200 nations have recently agreed54

on a new set of targets and goals under the Kunming-Montreal Global Biodiversity Framework.55

In particular, Target 5 of the agreement includes the objective to ”ensure that the use,56

harvesting and trade of wild species is sustainable, safe and legal, preventing57

overexploitation” (2022 UN Biodiversity Conference, 2022). Meeting this ambitious target will58

require overcoming a key element of unsustainable use of natural resources: the illegal harvest59

of threatened tree species.60

Legal frameworks have been established to combat illegal logging and trade in illegally harvested61

timber, such as the Convention on the International Trade in Endangered Species (CITES), the62

US Lacey Act (amended 2008), the UK Timber Regulation (2021), the EU Deforestation63

Regulation (EUDR; 2023) and the Australian Illegal Logging Prohibition Act (2012). The new64

policies place additional traceability and reporting requirements on companies trading in wood65

and agricultural products (Dormontt et al., 2015). For example, the EUDR requires operators66

to record and report the coordinates of production location (forest or farm), and enforcement67

officials will be expected to scrutinize those claims of harvest location. Despite the68
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comprehensive legislation already in place and the international commitments under current69

adoption, enforcement of such regulations remains a challenge. Illegally harvested timber is70

shipped under false declarations of origin or mixed into legal shipments, and methods for71

verifying geographical location have so far only been able to determine the correct location out72

of a few pre-determined options, mostly at country-level resolution (Watkinson et al., 2022a;73

Horacek et al., 2009; Muñoz-Redondo et al., 2021). This challenge is greatly intensified by the74

new EUDR legislation adopting precise geographical location (GPS point or polygon for plot of75

land) as a determinant of the legal status of timber.76

1.1 Stable Isotope Ratio Analysis to verify provenance77

Well-established scientific techniques enable measurement of the chemical, anatomical and78

genetic features of plants from a tissue sample (Deklerck, 2023), with ever increasing precision79

and availability. When compared against a robust physical reference collection, these attributes80

of the tissue can be used to (in-)validate declared species and origin claims, and support81

enforcement officials in their efforts to detect, for example, illegally harvested timber or fraud in82

supply chains.83

Stable isotope ratio analysis (SIRA) is one of the most promising technologies in this context.84

Several elements within biological tissues (mainly Hydrogen, Oxygen, Carbon, Sulfur, Nitrogen)85

have multiple naturally-occurring stable isotopes, whose ratios vary predictably across space, in86

correlation with environmental conditions (West et al., 2010; Siegwolf et al., 2022; Gay et al.,87

2022; Pederzani and Britton, 2019). The heavy isotopes of these elements do not undergo88

radioactive decay, and their proportion can be readily detected by mass spectrometry (Boner89

et al., 2007). The isotopic composition of elements incorporated into the tissues of a plant is90

determined by soil properties, climate, metabolic fractionation and other biotic and abiotic91
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conditions characteristic of the species and the habitat in which the individual grows (Siegwolf92

et al., 2022; Camin et al., 2017; Horacek et al., 2009; van der Sleen et al., 2017; Gay et al.,93

2022). Hence, differences in stable isotope ratios among individuals correspond to the94

environment they grew in, and can be used to discriminate between plants from different95

geographic areas.SIRA has proven useful in determining risk of illegally harvested material in a96

wide variety of contexts, for example, forest products (Watkinson et al., 2020; Boner et al.,97

2007), wildlife trafficking (Bowen et al., 2005; Koehler et al., 2019; Wunder and Norris, 2008;98

Vander Zanden et al., 2015), ivory trade (Van der Merwe et al., 1990; Ziegler et al., 2016),99

agricultural products (Camin et al., 2016; Saadat et al., 2022), fish/seafood (Cusa et al., 2022;100

Silva et al., 2021; Kroetz et al., 2020), precious metals (Kirk et al., 2003), and natural and101

synthetic illegal drugs (Kurashima et al., 2004; Casale et al., 2005), but without the spatial102

discrimination required by the new timber legislation.103

1.2 Modelling approach104

Current modelling practices for the use of SIRA to verify harvest location of both legally and105

illegally harvested forest products require improvement. The use of SIRA is currently limited by106

the simplistic models used, as well as by the limited number of reference samples used as input107

data for such models. Reference sampling campaigns are costly and budgetary needs are often108

underestimated, with sampling locations often taking into account relative ease of sampling109

rather than areas that yield a gain in model prediction accuracy (Schmitz et al., 2019). There110

has been considerable development of isoscapes (”isotope landscapes”), given that stable111

isotopic variation is a continuous spatial variable in nature (West et al., 2010). These isoscapes112

are geospatial maps that show the isotopic variation of the material of interest (West et al.,113

2010). While the potential of isoscapes for determining forest product origins has long been114
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recognized, few rigorous methods exist to achieve this task. The existing methods use simple115

prediction strategies such as linear regression (Watkinson et al., 2020, 2022b), which do not116

fully leverage the information contained in isotope ratio data.117

Gaussian Process (GP) regression, which is closely related to kriging in geostatistics literature,118

is a class of flexible regression models which use the values in sampled points to estimate the119

values in surrounding points (Li and Heap, 2008; Deklerck, 2023; Williams and Rasmussen,120

2006). A key advantage of GP regression is that it can quantify the uncertainty of its own121

predictions based on the inferred spatial covariance structure of the samples. The importance of122

quantifying the uncertainty of predictions is increasingly recognized in safety-critical (Jankowiak123

et al., 2020) and forensic (Su and Srihari, 2010; Swofford and Champod, 2022) machine124

learning applications. Additionally, GP regression facilitates inference of a sparsely sampled125

variable of interest from variables that are highly correlated with it but more densely sampled126

(Adhikary et al., 2017; Kanankege et al., 2018). In the context of plant harvest location127

estimation, this translates to inferring stable isotope ratios from atmospheric drivers (such as128

precipitation, temperature and water vapor pressure) known to influence the stable isotope129

signal in wood (Horacek et al., 2009; Siegwolf et al., 2022). This then provides a powerful tool130

for predicting the isotopic composition in areas that have not yet been sampled. However,131

previous work on timber isoscapes used GP regression primarily as a spatial interpolation132

technique without a probabilistic interpretation (Gori et al., 2018; Watkinson et al., 2022a).133

Others used approximate GP models to derive variance estimates for origin determination in134

animals (Ma et al., 2020; St. John Glew et al., 2019).135

Here, we develop GP-based probabilistic machine learning models to infer timber harvest136

location by directly modelling timber isoscapes from SIRA data, with the aid of atmospheric137

predictors and species distribution data. We show that probabilistic modeling greatly enhances138
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the utility of SIRA in estimating the geographical origin of timber, and, assisted by a reference139

dataset (Gasson et al., 2021), can be used to guide future sample collection by identifying140

sampling locations that will minimize prediction uncertainty.141

2 Materials and Methods142

2.1 Data sets143

We use data from 87 trees of the genus Quercus, sampled across the contiguous United States,144

as described in (Watkinson et al., 2020). Stable isotope ratio measurements were done145

following the protocol described in (Boner et al., 2007). Each entry contained stable isotope146

ratio measurements of oxygen δ18O (ratio between 18O and 16O), hydrogen δ2H (ratio between147

2H and 1H), carbon δ13C (ratio between 13C and 12C) and sulfur δ34S (ratio between 34S and148

32S) as well as the GPS coordinates of the sampled tree. As stable isotope ratios are largely149

driven by environmental conditions such as precipitation, temperature, humidity and so on,150

publicly available datasets for these factors are used to aid the inference of isoscapes. We used151

the following atmospheric data: δ2H and δ18O isotopic composition of precipitation (Bowen and152

Revenaugh, 2003), water vapor (Borbas, 2015) (found to be associated with δ13C by153

(Watkinson et al., 2020)), reflected shortwave radiation (NEO, 2023) and precipitation154

(multi-satellite) (Huffman et al., 2020), both of which were found to be associated with δ34S155

(Watkinson et al., 2020). For each of those data types, we used monthly means averaged over156

a number of years to minimize the impact of weather patterns in specific years (see (Watkinson157

et al., 2020) for precise year ranges).158

To inform the priors (probability distributions representing the prior belief on possible tree159

locations) of the models we develop, we used species inventory data across the natural range of160
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each species within the United States (Wilson et al., 2013), downloaded from:161

https://www.fs.usda.gov/rds/archive/Catalog/RDS-2013-0013 on 09/12/2022. This162

data is available as species-specific raster layers of tree abundance at 250m resolution. We then163

used the function project() of the R package terra (Hijmans, 2022) to bilinearly aggregate164

abundance data so that it matched the spatial resolution of other spatial data in the pipeline.165

2.2 Model architecture166

Figure 1 presents an overview of the data sets and components comprising our model and167

output. We use a rectangular grid to represent the study area. Grid points are placed every168

0.125 degree latitude (≈ 14 km) and every 0.06 degree longitude (≈ 4.3-6.0 km), which allows169

us to approximate spatial probability distributions with high accuracy. For every isotope ratio170

(IR), we fit a GP regression model to the training data to obtain the posterior mean and171

variance of the isotope ratio for every point of the grid (see Appendix for the full detail on172

implementation).173

Gaussian Processes are a class of flexible regression models, which enable the modeler to174

quantify the uncertainty about specific predictions. A GP regression model assumes that the175

responses (in our case, isotope ratios) at different locations are jointly normally distributed176

(Gaussian). The model is defined by three elements: (1) the mean, for which we use a177

constant, (2) the covariance function for which we use the Matern function (Williams and178

Rasmussen, 2006) with separate scaling parameters for latitude and longitude and (3) the noise179

parameter. The choice of mean and covariance functions reflects prior knowledge and modelling180

assumptions about the regression problem. The covariance function expresses the amount of181

information about unobserved locations contained in nearby observed values. The function182

parameters as well as the noise parameter are estimated by maximizing the likelihood of the183
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training data, in contrast to standard kriging approaches in geostatistics literature, which use184

approximate techniques based on summary statistics. We use GPyTorch (Gardner et al., 2018)185

to efficiently find the maximum likelihood parameter estimates.186

The input to the GP consists of the coordinates and/or the climate variable values at the grid187

point. For a combination of observed stable isotope ratios (yO, yH , yC , yS) (meaning δ18O, δ2H,188

δ13C, δ34S), we compute the likelihood of this observation at every point in the grid, using the189

four GP regression models estimated in the previous step. This likelihood is the product of190

likelihoods for each isotope ratio as we assume independence between isotopes. Given the prior191

and the likelihood, we compute the posterior probability of each grid point being the harvest192

location of the sample by multiplying the prior and the likelihood and normalizing so that the193

probabilities sum up to 1. For ease of interpretation, the output is a map with highest-posterior194

density (HPD) regions indicated for several probability levels (15%, 30%, 50%, 75%, 90%,195

95%).196

To incorporate atmospheric data into the isoscape we use monthly averages of the atmospheric197

variables listed in Section 2.1. We use a linear covariance term to model the covariance198

component corresponding to the variation in the respective atmospheric variables. The linear199

covariance function models a linear relationship between the atmospheric variable and the200

response and is mathematically equivalent to Bayesian linear regression (Williams and201

Rasmussen, 2006). The overall covariance function is then the sum of the spatial and linear202

terms and can be seen in Appendix A.203

We use the spatial density maps developed by (Wilson et al., 2013) to design two prior204

distributions for sample origin that account for the spatial distribution of oak species. The first,205

which we call the density prior, holds that the probability of a sample originating at a grid cell is206

proportional to the basal area (average amount of area occupied by tree stems per unit of207
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space) recorded at the grid cell. The second, which we call the range prior, assigns equal208

probability to every grid cell where above-zero basal area has been recorded. In addition, both209

priors allow for a small probability that a sample might occur outside its observed range - we set210

that probability to 0.01 and diffuse it uniformly over all grid points within the contiguous United211

States where the species does not occur according to (Wilson et al., 2013).212

2.3 Performance evaluation213

We perform 5-fold cross-validation on the data set and report the average values of all214

performance metrics over all data points. Samples with incomplete or ambiguous species215

information and samples collected in botanical gardens outside of their species’ native range are216

excluded from the test sets, but not from the training sets, resulting in a total of 74 test217

samples across the 5 folds. We report performance of our models as well as our implementation218

of the approach by (Watkinson et al., 2020) averaged across the five cross-validation folds.219

Rigorously evaluating the performance of our models is a non-trivial task as each model220

produces a distribution over possible locations, rather than a single location. For this reason, we221

have defined several metrics to investigate different aspects of probabilistic harvest location222

prediction:223

1. Predictive log-likelihood and log-posterior: We report the log-likelihood and the224

log-posterior of observing the sample at its true origin. Both of those measure how well225

the model fits the test data.226

2. Mode distance: We report the great circle distance between the true location and the227

mode of the posterior distribution, i.e. the highest scored location according to the228

model. This metric measures the accuracy of the highest-scored locations, but it does not229
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account for the amount of uncertainty in model predictions.230

3. Mean absolute error (MAE): To investigate how distant our predicted locations are from231

the truth, we report the expected distance between the true location and a location232

sampled randomly from the posterior distribution returned by our model233

MAE =

∫
x∈A

d(xt,x)p(x|ȳ, S)dx

where d() is the great circle distance between the two points and p(x|ȳ, S) is the234

posterior probability of x being the harvest location. A perfect prediction would have the235

distance of 0. This metric will favour predictions concentrated around the true location236

over equally dispersed predictions concentrated elsewhere. It will also favour less dispersed237

predictions generally. For the method of Watkinson et al., which only outputs a region of238

plausible locations, we assume a uniform distribution within the region highlighted by the239

model. In practice, isoscapes often predict similar isotope ratio values at distant locations,240

so even a statistically efficient method might yield a high MAE value.241

4. Area scored higher than the true location (ASH): The behaviour of MAE is influenced by242

the shape of the posterior distribution, which favours unimodal over multimodal shapes.243

We report the total surface area corresponding to the points that the model considers244

more plausible than the true origin of the sample.245

ASH =

∫
x∈A

I [score(x|ȳ, S) > score(xt|ȳ, S)] dx

where I(.) is the indicator function that yields 1 when the statement is true and 0246

otherwise. For all GP models, the score is the posterior probability of harvest location,247
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whereas for the method of Watkinson et al. we take the score to be the negative of the248

minimum value of the threshold that results in the true location being included in the249

highlighted region. In contrast to MAE, this metric is likely to give a low value to a250

posterior distribution that is concentrated in several small areas as long as one of those251

areas contains the true location. For example, if the true location could be a county in252

New York or a county in West Virginia, this would give a low ASH but high MAE as the253

two counties are far apart.254

2.4 Guiding future sampling efforts255

Field sample collections are time-consuming and expensive. We can optimize future field256

collections using informed prediction of where additional sample points are most needed for257

increasing origin estimation accuracy. The isoscape variance estimates provided by GPs can be258

used to guide future sampling efforts, which in turn will maximize the performance of the259

model. This approach is known as active learning in the machine learning literature. Here, we260

propose a strategy to minimize the error of our isoscape estimates by carefully choosing future261

sampling locations.262

Early attempts at efficient active learning in GPs involved collecting samples at points with263

highest response variance or, equivalently, picking a set of points that maximizes the entropy of264

responses (Cressie, 2015). Unfortunately, this approach tends to recommend collecting samples265

on the boundaries of the study area, which is wasteful as the newly collected samples improve266

isoscapes in a smaller fraction of the study area than if they were placed away from the267

boundary. This motivated researchers to propose several criteria for optimizing268

sampling (Guestrin et al., 2005; Ramakrishnan et al., 2005). Here, we adopt an approach similar269

to that of (Guestrin et al., 2005) with a few modifications designed to address the large size of270
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our spatial grid, which renders their original method computationally intractable for our data set.271

We seek to maximize the average reduction in predictive variance across our study area that can272

be achieved by adding a sample to the training set. With S the set of sampled locations and G273

the set of grid points, we define the information gain (IG) associated with adding a new point274

(x∗) to the training data set as275

IG(x∗) =
∑
x∈G

[
(log(σ2(x|S))− log(σ2(x|S ∪ {x∗}))

]
(1)

where the predictive variances are computed using Equation A.4. The algorithm then picks the276

point in the grid that yields the highest IG. Importantly, the predictive variances depend only on277

the sampling locations and not on the sampled values, so it is possible to sequentially propose278

multiple sampling points before collecting the samples. Our method sequentially proposes279

sample collection points until a user-specified number of samples is reached. We assume that280

samples can only be collected in locations where at least one of the species is present. Thus,281

grid points that lie outside every species range are excluded from the procedure. Our active282

learning strategy requires repeatedly computing a large number of predictive variances for283

varying training sets. To reduce computation time, we randomly downsample our grid to 15000284

points before running the analysis. In addition, we assume that the reduction in variance is285

negligible for grid points situated more than 15 degrees away from the newly sampled point (x∗)286

in longitude or more than 7.5 degrees in latitude.287
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3 Results288

3.1 Model accuracy and comparison289

The plausible location areas identified by our models consisted of points within an average290

distance of 520-870 kilometers from the true location of the oak tree samples, depending on291

model settings. Even with a relatively small training data set of 69− 70 training samples292

(depending on the cross-validation fold), our model is able to exclude the vast majority of the293

study area from consideration as a possible source of the focal sample. All our models294

outperform the state-of-the-art method for determining timber harvest location (Watkinson295

et al., 2020) in most or all metrics. Table 1 shows performance metrics for all the models on296

the test data set.297

Incorporating species distribution information improves prediction performance for every model298

and every metric examined except the log-likelihood, which is computed independently of the299

prior. Informative priors improve MAE by 16% to 35% and ASH by 15% to 57% with most300

improvement for the pure spatial model and least for the spatial+atmospheric model. The more301

informative density prior gives better accuracy than the range prior according to all the metrics.302

Predicted probability maps for a few test points are shown in Fig. 2 and 3.303

The spatial-only GP model gives the closest location predictions to the true location of the tree304

samples, except when a flat prior is used. In general, the spatial-only model and the combined305

spatial+atmospheric model give similar results on all metrics and outperform the306

atmospheric-only model in almost all settings. Somewhat surprisingly, the combined model does307

not outperform the spatial-only model. This might be due to the relatively small dataset used308

here or the choice of atmospheric predictors, and remains to be tested as we continue to expand309

our reference databases. The predictions of atmospheric GP models appear qualitatively310
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different from those from the purely spatial GP, perhaps because atmospheric model predictions311

emphasize geographical areas with distinct climate patterns, such as Appalachia or the Gulf312

Coast. Unsurprisingly, the purely spatial GP identifies areas that are more spatially cohesive but313

do not share any obvious physical features.314

3.2 Guiding future sampling efforts315

We investigated the performance of our active learning strategy on the US oak data set. For316

the spatial-only model, we let our method propose 10 new sampling locations to add to the317

training data set in the first cross-validation fold and computed the predictive variances before318

and after including the proposed locations.319

The resulting isoscape standard deviation maps are shown in Figure 4. Our active learning320

strategy proposes sampling locations in currently undersampled regions with high predictive321

variance and sampling in those areas results in a visible improvement. The highest decrease in322

predictive variance was observed for δ2H while the lowest decrease was observed for δ18C. Most323

of the chosen locations are close to, but not at the boundary of, the allowed sampling area.324

To investigate the efficiency of our active learning procedure, we compared isoscape variances325

resulting from active learning with those resulting from adding the same number of points326

sampled randomly from the allowed sampling area. We generated 100 such variance maps and327

compared the average variance (across the allowed sampling area) of those maps with the maps328

in Fig. 4. Appendix B shows the average predictive variances as a function of the number of329

points added for both random and active learning sampling strategies. We see that our active330

learning strategy results in a substantially faster decrease in predictive variances. After adding331

10 samples, the reduction in variance achieved by our active learning method is between 64%332

(δ13C) and 86% (δ18O) greater than the average reduction achieved by the same number of333
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random samples.334

4 Discussion335

4.1 Harvest location estimation336

To halt illegal logging, to enforce timber regulations and to protect biodiversity in forested337

landscapes, we need to be able to accurately estimate timber harvest location. Although several338

examples exist of applying SIRA for timber origin questions (Gori et al., 2018; Watkinson et al.,339

2020; Kagawa and Leavitt, 2010), these approaches do not take full advantage of (1)340

atmospheric and species distribution datasets available or (2) state-of-the-art probabilistic341

machine learning models. In addition, many SIRA use-cases limit themselves to a classification342

problem (country X versus country Y) compared to a continuous assignment problem (true343

harvest location). In response to growing evidence of fraud in supply chains, legislation344

increasingly requires operators to trace back to plot (for example the EU Deforestation345

Regulation). Consequently, determining the true harvest location will likely become increasingly346

important. In this work we present a new computational pipeline which aims at taking347

advantage of both (1) and (2) while predicting the harvest location as a continuous variable.348

The accuracy of our models depends on the specific modelling approach and the data sets used.349

Using prior information about species distribution results in a considerable increase in accuracy350

regardless of which model is used by all metrics considered. The impact of adding species351

distribution data appears to be greater for the spatial-only model than models that use352

atmospheric information. This could be due to climate patterns influencing both species353

distributions (habitat suitability) and the values of the atmospheric variables that we354

incorporated in our models, which renders species distribution information more redundant once355
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atmospheric variables have been included in the model.356

Within timber tracing literature, our method bears the most resemblance to the work357

of (Watkinson et al., 2020), which uses linear regression to predict isoscapes based on358

atmospheric data. Their approach assumes a constant variance across the study area. In359

contrast, our method estimates the predictive variances based on the spatial covariance360

structure learned from the reference data, which enables us to translate differences in sampling361

density across regions into varying levels of confidence in isoscapes across space. Our method362

also assumes a linear relationship between atmospheric predictors and isoscapes, but our GP363

formulation implicitly integrates over plausible values of regression parameters, which should364

lead to more robust predictions compared to standard linear regression. In addition, our365

approach makes use of species distribution data, which yields substantially improved predictions366

compared to uninformative priors. Finally, our approach enables us to propose locations for367

further sample collection that maximize the utility of the samples.368

The estimation of spatial covariance structure has recently attracted attention in animal stable369

isotope studies. (Ma et al., 2020) recently proposed a method that uses probabilistic370

precipitation isoscapes derived from a GP (Courtiol et al., 2019), which are then calibrated to371

produce isoscapes for the species of interest. (St. John Glew et al., 2019) introduced a model372

combining spatial and environmental effects using a novel likelihood approximation for isoscape373

estimation, though the main focus of their work is isoscape modelling, not origin estimation.374

These approaches differ from ours in that 1) they rely on Laplace approximations for isoscape375

estimation rather than exact likelihood maximization; 2) they use ordinary least-squares376

regression to account for atmospheric predictors, whereas our method uses a Bayesian approach377

via a linear covariance term; and 3) they do not aim to actively improve isoscapes through378

additional sampling. A common feature between these models and ours is using a grid to379
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compute the posterior distribution of origins, which to the best of our knowledge was first380

considered by (Wunder, 2010).381

Our current best performing model can estimate the harvest location for Quercus species to 520382

km across the east of the United States. Future field expeditions will lead to an improvement,383

especially if the identified priority locations are targeted (see 4.2). The presented model will be384

adapted to other use cases, with a focus largely on endangered tropical species which are under385

high logging pressure.386

We expect that our models will be more accurate once more timber samples become available.387

The size of the current data set of wood samples available to this study (87 samples) is quite388

small relative to the area of the contiguous United States, which inevitably results in large389

predictive variance in many areas. In addition to reducing uncertainty about undersampled390

areas, larger data sets (in the range of hundreds to thousands of samples collected from across391

the US) should also enable researchers to use more complex GP models, including models with392

heterogeneous noise (Binois et al., 2018), or deep GP models where the covariance function is393

modelled by a neural network (Wilson et al., 2016).394

4.2 Guiding future collection efforts395

Under the World Forest ID Programme (Gasson et al., 2021), tens of thousands of tree samples396

are being collected globally, and are being analysed by different techniques, including SIRA, to397

build georeferenced databases which can be used to identify timber harvest origin. Our active398

learning approach can be used to inform future sample collection efforts and increase model399

accuracy that can be achieved within a fixed sampling budget. This will be especially important400

in tropical regions, where reaching sampling sites can be difficult, time intensive and expensive.401

A good sampling design can substantially improve model performance (Contina et al., 2022),402
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and our method can be used to adapt sampling efforts as more data is analysed. Our current403

approach focuses on minimizing predictive variances without considering the impact of newly404

sampled points on model parameters. Extending our approach to non-myopic sampling (Krause405

and Guestrin, 2007), which considers the impact on model parameters, would constitute an406

interesting future research direction. Another avenue for improving our approach would be to407

augment our IG criterion to reflect the varying investment in collecting samples as a function of408

the time, logistics, and financial cost of reaching the desired sampling location.409

5 Conclusion410

The accurate estimation of geographic origin of globally traded wood products is a critical step411

in combating illegal logging and associated trade, by supporting authorities’ ability to verify412

claims made by traders at any supply chain node. In this work we presented a novel analytical413

pipeline that brings together and incorporates multiple data types and algorithms. This414

methodology is able to accurately predict timber product origin and can be used to optimize415

future field sampling to further increase accuracy and precision. We hope that this work will416

inspire more efforts to expand reference collections of wood samples, and that governments and417

companies will more routinely use the technological tools at their disposal to have more418

oversight over their supply chains and promote a more sustainable use of natural resources.419
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Table 1: Mean test set performance for all the models used in the study. Best values across all
models are shown in bold and underlined whereas values that are not significantly different from
the best values (Wilcoxon signed-rank test, p=0.05) are shown in bold. The Spatial-only GP
combined with the density prior gives the highest predictive log-likelihood and log-posterior and
the lowest MAE and ASH values for all priors used. The Spatial-only model outperforms the other
models when range or density priors are used, while the Atmospheric+Spatial model performs
best in terms of MAE and ASH when flat priors are used. The inclusion of species distribution
information decreases MAE and ASH values for all models used. All of our models outperform
the earlier method of Watkinson et al. (Watkinson et al., 2020) on most or all metrics.

model prior log L mode distance (km) MAE (km) log-posterior ASH (km2)
Spatial-only flat -6.964 433 809 -9.582 470000
Spatial-only range -6.964 435 600 -9.537 327000
Spatial-only density -6.964 400 520 -9.059 203000
Atmospheric-only flat -7.362 531 870 -9.972 576000
Atmospheric-only range -7.362 505 606 -9.797 450000
Atmospheric-only density -7.362 534 567 -9.428 311000
Atmospheric+Spatial flat -7.149 408 794 -9.518 382000
Atmospheric+Spatial range -7.149 399 627 -9.431 315000
Atmospheric+Spatial density -7.149 463 536 -8.978 213000
Watkinson et al. NA NA 886 859 NA 691000

Michael B Wunder and Ryan D Norris. Improved estimates of certainty in stable-isotope-based613

methods for tracking migratory animals. Ecological applications, 18(2):549–559, 2008.614

Stefan Ziegler, Stefan Merker, Bruno Streit, Markus Boner, and Dorrit E Jacob. Towards615

understanding isotope variability in elephant ivory to establish isotopic profiling and616

source-area determination. Biological Conservation, 197:154–163, 2016.617

29



Samples from known origins Environmental predictors 

Reference data

Estimation of 
isoscapes using
Gaussian 
Processes 

Isoscapes

Isotope ratiosDistribution (if known)

Sample from unknown origin Origin estimate

prior posterior

Inference of origin 
probability using 
isoscapes as 
likelihood surfaces

O  H  C   S

O  H  C   S

likelihood

1.

2.

Figure 1: Model workflow. We use a training set of isotope ratios from trees collected at known
locations and atmospheric data layers (”Reference data”). We fit a Gaussian process regression
model to infer isoscapes and associated variance estimates, and compute the likelihood of observ-
ing the IR value for each element across the study area. To estimate the source of material with
uncertain provenance (”Samples from unknown origin”), the isoscapes are then combined with
prior information on the geographical distribution of the species, to yield a probability distribution
of origin for the sample. We visualize predicted probability maps by plotting highest-posterior
density regions for several probability levels (15%, 30%, 50%,75%,90% and 95%, dark blue to
light green).
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(a) Spatial-only GP (b) Climate-only GP (c) Climate+spatial

Figure 2: Harvest location predictions from the three models for 5 points from the test set using
the range prior. Darker shades denote areas with higher posterior probability with thresholds set
so that the total probability of the colored area is equal to a specified value (see color chart).
The red cross indicates the actual location of the tree.
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(a) Spatial-only GP (b) Climate-only GP (c) Climate+spatial

Figure 3: Harvest location predictions from the three models for 5 points from the test set using
the density prior. Darker shades denote areas with higher posterior probability with thresholds
set so that the total probability of the colored area is equal to a specified value (see color chart).
The red cross indicates the actual location of the tree.
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(a) Before active learning (b) After active learning

Figure 4: Maps showing predictive standard deviations for the four isotopes before and after
adding 10 sample locations proposed by our active learning method for the spatial-only model.
Standard deviations are only shown within the allowed sampling area, which is the union of ranges
for the species in our data set. The red dots show the proposed locations. Our method proposes
locations in areas with high predictive variance, particularly for δ2H and δ34S. Adding the proposed
locations leads to a marked reduction of variance in the neighboring areas.
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A More detail on Gaussian Processes618

In the following, we give a brief overview of GPs. For an in-depth discussion, see Williams and619

Rasmussen (Williams and Rasmussen, 2006).620

GPs provide a flexible framework for regression, which enables the modeler to quantify the621

uncertainty of specific inferences. A GP is a random process such that all of its marginals are622

jointly normally distributed (Gaussian). Let x = [xlon, xlat] be the GPS coordinates of a sample.623

For any set of positions x1,x2, . . . ,xn, the responses y1, y2 . . . , yn at those positions are624

assumed to be jointly normally distributed625



y1

y2

...

yn


∼ N





m(x1)

m(x2)

...
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,



k(x1,x1) k(x1,x2) . . . k(xn,xn)

k(x2,x1) k(x2,x2) . . . k(x2,xn)

...
...

. . .
...

k(xn,x1) k(xn,x2) . . . k(xn,xn)


+ σ2I


(A.2)

where:626

1. The mean function m(x) describes the a priori expected value of the response y at627

location x. We use the constant mean mc(x) = θm for all x, where θm is a parameter to628

be estimated from the data.629

2. The covariance function k(x1,x2) describes the a priori covariance between responses at630

locations x1 and x2. This is also a parameterized function. Popular choices of k are the631

squared exponential kse(x1,x2) = A exp(−|x1 − x2|2/ρ2), or the Matern632

function (Williams and Rasmussen, 2006), which both reflect the common assumption633

that similar predictor values will lead to similar response values. In this work, we use the634

Matern function with separate scaling parameters for latitude and longitude to model635
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spatial covariance.636

3. The noise parameter σ2 models measurement error.637

4. I is the n× n identity matrix.638

We write y, m and K to denote the responses, means and the covariance matrix of the training639

data, respectively, so that we can write Eq. A.2 as y ∼ N (m, K + σ2I). The choice of mean640

and covariance functions reflects prior knowledge and modelling assumptions about the641

regression problem. The function parameters as well as the noise parameter σ are estimated by642

maximizing the likelihood of the training data. We use GPyTorch (Gardner et al., 2018) to643

efficiently find the maximum likelihood parameter estimates.644

After parameter estimation, the GP regression model can be used to predict responses at645

previously unseen data points. Let S be the locations and responses comprising the training646

data set. Since the responses at training and test points are assumed to be jointly Gaussian, the647

conditional distribution of the response at a test point x∗ given the training data is also648

Gaussian with mean649

µ(x∗|S) = m(x∗) + k∗(K + σ2I)−1(y −m) (A.3)

where k∗ = [k(x∗,x1), k(x
∗,x2), . . . , k(x

∗,xn)] is the vector of a priori covariances between650

responses at x∗ and training data points. The posterior variance of y∗ is given by651

σ2(x∗|S) = k(x∗,x∗) + σ2 − k∗(K + σ2I)−1k∗⊤ (A.4)

- see (Williams and Rasmussen, 2006) for a derivation.652

For a specific response value y+, its likelihood of being observed at x∗ is just the Gaussian653
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probability density with mean µ and variance σ2 found by applying Equations A.3 and A.4654

p(y∗ = y+|x∗, S) =
1√

2πσ2(x∗|S)
exp

(
−(y+ − µ(x∗|S))2

2σ2(x∗|S)

)
(A.5)

For a sample ȳ = (yO, yH , yC , yS) of observed isotope ratio values (meaning δ18O, δ2H, δ13C,655

δ34S) , the Bayes’ theorem gives the posterior distribution of possible harvest locations:656

p(x|ȳ, S) =
p(x)

∏
i∈{O,H,C,S} pi(yi|x, S)∫

x∈A p(x)
∏

i∈{O,H,C,S} pi(yi|x, S)dx
(A.6)

where the probabilities pi are computed from the GP models for the respective isotopes using657

Equation A.5 and A is the study area. The integral in the denominator is computed by658

averaging the probabilities over the spatial grid.659
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B Active learning performance660

Figure 5: Average predictive variances for δ18O,δ2H,δ13C and δ34S as a function of the number
of samples added to the base training data set; blue - active learning strategy; red - random
sampling (shaded area denotes values within two standard deviations of the mean across nr = 100
simulations).
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