Prestige bias in cultural evolutionary dynamics

Saar Egozi1 and Yoav Ram2,3,†

1School of Computer Science, Reichman University, Herzliya, Israel
2School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
3Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
†Corresponding author: yoav@yoavram.com

February 15, 2023

Abstract

A common bias in cultural transmission is success bias, where more successful individuals are more likely to be copied. Because success may be difficult to estimate, individuals may indirectly estimate success by using prestige as a proxy for success. Here, we model prestige bias as a combination of indirect success bias and influence bias, the latter meaning that the choice of a role-model depends on the number of individuals that have already copied from that role-model. We analyze the effect of prestige on cultural evolutionary dynamics using mathematical analysis and stochastic simulations. We find analytic approximations to the stochastic role-model choice process, which facilitate further mathematical analysis and reduce the computational complexity of simulations. We also find approximations to the fixation probability and the fixation time of an invading cultural trait in different environments. We show that indirect success bias effectively plays the role of natural selection, whereas influence bias effectively plays the role of genetic drift. Influence bias also accelerates the evolutionary dynamics, as can be expected in a rich-getting-richer process. Our study extends the literature that describes and analyses cultural transmission, especially in human societies where social media is popular and thus influence bias may be expected.
Introduction

In cultural transmission, individuals transmit cultural traits (i.e., behaviors, beliefs, norms) to one another, typically by learning and demonstrating [4]. Examples for cultural traits in humans are norms, preferences, tools, ideas, and language, potentially transmitted verbally and/or by observations [2]. Although cultural transmission is common in humans, it is also observed in other animals, e.g. chimpanzees [9, 10], dolphins and whales [34], elephants [12], and even flies [1] and fish [50].

Cultural transmission may combine vertical transmission, in which parents transmit to their offspring; oblique transmission, in which adults (teachers, leaders, and even strangers) transmit to unrelated offspring; and horizontal transmission, in which peers from the same age cohort transmit to one another [2, 4]. It has been demonstrated that non-vertical cultural transmission can maintain maladaptive traits, which can be beneficial in changing environments [21].

Transmission biases may cause a cultural trait to have a disproportionate probability to be transmitted compared to its frequency in the population. Success bias occurs when individuals prefer to copy from role models that demonstrate success in some activity, such as fishing, growing yams, using medicinal plants [24], or hunting [54], and it can increase the probability of learning a successful trait [53]. Indeed, in a tournament between learning strategies conducted by [7], most winner strategies included a mixture of success-biased social learning and individual learning, implying that success-biased learning is a good strategy, but that by itself it is not enough to best other strategies, even when success is measured accurately.

[5, Ch. 5] have suggested that the evaluation of success can be divided to three categories: direct bias, indirect bias and frequency-dependent bias. A direct bias occurs when one phenotype is more attractive than other phenotypes, and is evaluated by directly testing the trait. For example, an individual observing a ping-pong match can attempt the observed paddle grips to determine which grip is better. A frequency-dependent bias occurs when the probability to copy a phenotype is higher or lower than the frequency of the phenotype among demonstrators. For example, suppose the common paddle grip is used by 60% of the demonstrators; if the this grip is adopted by 80% of copiers, then transmission is under positive frequency bias, also called conformity; if it is adopted by 40% of copiers, then transmission is under negative frequency bias, or non-conformity [15]. The effects of conformity and non-conformity on cultural evolution have been studied with both models [36, 37, 52] and experiments [3]. An indirect bias occurs when an individual uses one phenotype to determine the attractiveness of another phenotype. For example, an observer may copy the paddle grip of the ping-pong player who scored more points in the match, thus indirectly evaluating the grip by the points scored. This, however, may cause mismatches between the copied trait and the rest of the cultural or genetic repertoire of the individual [51]. Furthermore, [5, Ch. 8] have suggested that maladaptive traits may spread widely in a population if indirect biases are strong enough, e.g., by a runaway process caused by a cultural equivalent of sexual selection [8]. Indeed, [35] have shown that helping behaviors can evolve due to horizontal transmission bias even without any benefit to the recipient, or when the benefit is much larger than the cost.
[24] have studied such indirect success biases, which they call cross-domain success bias or *prestige bias* (e.g., great fishermen may be chosen as role-models for growing yams). They have suggested that such biases, over generations, can lead to cultural adaptations, and that although prestige can lead to maladaptive traits spreading in the population, it can also accelerate the spread of adaptive traits. [5, Ch. 8] and [6] have suggested that prestige biases are probably more common in humans than success biases, and prestige is often mentioned in the cultural evolution literature, however there are few models of prestige bias.

A broader definition of prestige is the “widespread respect and admiration felt for someone or something on the basis of a perception of their achievements or quality” (New Oxford American Dictionary). Indeed, [31] have defined prestige bias as “a tendency to learn from individuals to whom others have preferentially attended, learned or deferred”, and demonstrated its occurrence in in 3-4 year old children. [26] gave a similar definition of prestige as “freely conferred deference”, in contrast to dominance, and provided examples from the anthropological literature.

To distinguish this form of indirect bias from other definitions of prestige, we call it *influence bias*. This is an important distinction, as influence is a context-based bias, rather than a content-based bias: it does not depend on the phenotype itself but rather on the number of copiers that already copied each role-model, which may be easier and more accurate to estimate compared to success. Influence bias also differs from frequency biases such as conformity, which depend on the frequency of a trait in the population or in a sample of role-models, rather than the social dynamics of copying.

In contemporary human society, social media makes it especially easy to estimate the social and cultural influence individuals have over others, and therefore can have an effect on decision making. Online social networks such as Facebook and Instagram are known to affect the influence of individuals [39, 40, 41], and specific marketing practices were invented to capitalize on this effect [38].

In the following, we develop a stochastic model of cultural transmission with prestige bias. In our model, prestige combines both cross-domain indirect success bias and influence bias. We develop analytic approximations for this model and analyze its dynamics. We find approximations for the probability and time for fixation of a ‘successful’ phenotype (i.e., that is favored by success bias). Comparing these approximations to Kimura’s approximations for the fixation of a favorable allele [19, 45], we demonstrate that success and influence bias play the role of natural selection and genetic drift, respectively.

Models

We begin with a continuous trait model with indirect bias suggested by [5], develop an extension with influence bias, and then develop a model with a dichotomous trait. We implemented our stochastic models and approximations, performed statistical analyses, and produced figures using Python [42] with NumPy [43] and Matplotlib [44].
Continuous trait

We follow the model of [5], assuming only oblique transmission of the trait and omitting the indirect trait in order to reduce model complexity. We consider a population of N individuals, described by a single trait with a continuous value. Each generation, N naive individuals, or copiers, choose an individual from the previous generation, or role-models, from which they will copy their trait. Similar to a Wright-Fisher model, we assume non-overlapping generations such that the entire population is replaced in each generation. The population at time t can be described by $A(t) = (A_1(t), \ldots, A_N(t))$ where $A_i(t)$ is trait value of individual i at time t. We assume the initial population is drawn from a standard normal distribution, $A(0) \sim N(0, 1)$. Cultural transmission is modeled by a function F such that

$$A_i(t + 1) = F_i(A(t)) .$$

Success bias. [5, Ch. 8, p. 247-249] describe a blended transmission algorithm by defining F as a weighted average of the traits of all role-models,

$$F_i(A) = \sum_{j=1}^{N} G_{i,j} \cdot A_{i,j} ,$$

where $G_{i,j}$ is the success bias of role-model j in the eyes of copier i,

$$G_{i,j} = \frac{\beta(A_{i,j})}{\sum_{k=1}^{N} \beta(A_{i,k})} ,$$

$A_{i,j}$ is the absolute trait value copier i estimates for role-model j with some error $e_i \sim N(0, \eta^2)$,

$$A_{i,j} = A_j + e_i ,$$

and $\beta(\cdot)$ is the bias function that quantifies the success bias of a role-model,

$$\beta(A_{i,j}) = b \cdot \exp \left(- \frac{(A_{i,j} - \hat{A})^2}{2J} \right) ,$$

with \hat{A} as the arbitrary optimal trait value, and J and b as parameters that control the bias strength. Therefore, $G_{i,j}$ is a relative success score that copier i assigns to role-model j, equivalent to relative fitness in evolutionary-genetic transmission models.

[5] note that the deterministic blended transmission algorithm they use has alternatives. We thus develop a similar stochastic model with transmission from a single random role-model. Instead of eq. (2), we define the transmission function F as a random variable with its distribution given by

$$\Pr (F_i(A) = A_j) = G_{i,j} ,$$

such that $G_{i,j}$ gives the probability of copier i to choose to copy the trait of role-model j.

4
Influence bias. Here we introduce a new element to the model. We assume that in each generation, copiers choose their role-models one by one. We denote \(K_{i,j} \) as the number of copiers that chose role-model \(j \) after copier \(i \) chose a role-model. Thus, \(i \) out of \(N \) copiers already chose a role-model, \(\sum_{j=1}^{N} K_{i,j} = i \), and there are \(N - i \) copiers that have yet to choose a role-model. The stochastic process of role-model choice,

\[
\{ K_i = (K_{i,1}, \ldots, K_{i,N}) \}_{i=1}^{N},
\]

is described by the recurrence equation

\[
K_{i,j} = K_{i-1,j} + S_{i,j}, \quad i, j = 1, 2, \ldots, N,
\]

where \(S_{i,j} = 1 \) if the \(i \)-th copier chose role-model \(j \) and 0 otherwise, and the initial state is \(K_{0,j} = 0 \).

Following eq. (6), the probability that the \(i \)-th copier chose role-model \(j \) is given by the prestige of role-model \(j \) in the eyes of copier \(i \),

\[
Pr(S_{i,j} = 1 | S_{1,j}, S_{2,j}, \ldots, S_{i-1,j}) = G_{i,j}.
\]

The prestige \(G_{i,j} \) of role-model \(j \) in the eyes of copier \(i \) is determined by success—the estimated biased trait value \(\beta(A_{i,j}) \)—and influence—the number of copiers that chose role-model \(j \) before copier \(i \), \(K_{i-1,j} \), replacing eq. (3) of [5] with

\[
G_{i,j} = \frac{\alpha_{ij} \cdot \beta(A_{i,j}) + (1 - \alpha_{ij}) \cdot K_{i-1,j}}{W_i}.
\]

Here, the bias weight \(\alpha_{ij} \) is a characteristic of the interaction of role-model \(j \) with copier \(i \) that determines the relative significance of direct success vs. influence in the role-model’s overall prestige in the eyes of the copier.

We assume every individual may evaluate the importance of success and influence differently. Additionally, we assume every role-model displays his influence and success individually. For example, a person with more followers but lack of actual skill may emphasize the number of his followers rather than his actual skill. We therefore defined \(\alpha_{ij} \) to be the relation between every copier’s intrinsic significance of estimation, and every role-model’s personal emphasis.

The trait of role-model \(j \) estimated by copier \(i \), \(A_{i,j} \), remains as in eq. (4), and \(W_i \) is a normalizing factor that sums the numerator over all role-models \((1 \leq j \leq N)\) to ensure \(\sum_{j=1}^{N} G_{i,j} = 1 \).

Dichotomous trait

To allow for mathematical analysis of the model, we introduce a simplified version where the trait only has two phenotypes: the optimal phenotype \(\hat{A} \) and the sub-optimal phenotype \(A \). All role-models with the same phenotype will contribute to the probability of that phenotype to be transmitted, and
thus influence is determined by the number of copiers that have already chosen a role-model with either phenotype. In addition, for simplicity and for easier mathematical analysis, we assume α is homogeneous, such that we have exchangeability between role-models. Therefore, the probability of the i-th copier to copy phenotype A is

$$G_{i,A} = \frac{(N - X)\alpha'\beta(A) + K_{i,A}}{i - 1 + (N - X)\alpha'\beta(A) + \alpha'X},$$

where X is the number of role-models with trait \hat{A}, $K_{i,A}$ is the number of copiers that already chose A when copier i chooses a role-model, $\beta(\hat{A}) = 1$, and $\alpha' = \frac{\alpha}{1 - \alpha}$ is the odd ratio of the bias weight. Complementing this, the probability of the i-th copier to copy phenotype \hat{A} is $G_{i,\hat{A}} = 1 - G_{i,A}$. The rest of the details follow the continuous trait model.

Results

Our model is defined by two nested stochastic processes. Change over multiple generations is described by the phenotype distribution at each generation, $\{A(t)\}_t$. The transition from one generation to the next is described by the number of copiers each role-model has after i copiers have chosen a role-model, $\{K_i\}_{i=1}^N$. We emphasize that the models are nested: $A(t + 1)$ can be computed from $A(t)$ by evaluating K_N. However, the former requires iterating over eqs. (8) and (9). Thus, we sought to find an equivalent stochastic process that has the same joint distribution as K_N. We found two such approximations, summarized here and explained in detail below. In both we assume either α_j is a trait of role-model j only (contrary to α_{ij} that included the relation with copier i), or a completely homogeneous α.

Generalized binomial approximation. The number of copiers of a specific role-model at each step, $K_{i,j}$, follows the **generalized binomial distribution** [16] and therefore,

(i) the expected number of copiers of role-model j equals its prestige in the eyes of the first copier, multiplied by the total number of copiers, that is, $E[K_{N,j}] = N \cdot G_{1,j}$ if trait estimation error is uniform for all copiers ($e = e_i$ for $i = 1, \ldots, N$); and (ii) the expected number of copiers of each role-model equals its relative biased trait value, similar to the role of relative fitness in population-genetic models, that is, $E[K_{N,j}] = \beta(A_j + e)/\bar{\beta}$ if the bias weight is uniform for all role-models ($\alpha = \alpha_j$ for $j = 1, \ldots, N$), where $\bar{\beta} = 1/N \sum_{j=1}^N \beta(A_j + e)$ is the population mean estimated trait value.

Dirichlet-Multinomial approximation. The role-model choice process, $\{K_i\}_{i=1}^N$, is equivalent to a **Pólya urn** model if trait estimation error is uniform for all copiers ($e = e_i$ for all $i = 1, \ldots, N$), meaning there’s no meaning for the order of copiers.

Note that here $G_{i,j}$ is only a function of the trait values A_j and the bias weights α_j, as the estimation error is uniform, meaning all copiers are identical.
Generalized binomial distribution

The generalized binomial distribution (GBD) emerges from a series of dependent Bernoulli trials (in contrast to the standard binomial distribution in which trials are independent) and is parameterized by \(GBD(n, p, \theta) \) where \(n \) is the number of trials, \(p \) is the probability of success of the first trial, and \(\theta \) is the correlation between trials (\(\theta = 0 \) gives the standard binomial distribution).

Result 1 (Generalized binomial approximation). The number of copiers of role-model \(j \) after \(i \) copiers have chosen a role-model follows the GBD, \(K_{i,j} \sim GBD(i, \alpha_i \cdot \beta(A_j + e)) \) if \(e_i = e \) for all role-models \(i = 1, \ldots, N \).

Proof. We denote \(Q_j(k, i) = P(K_{i,j} = k \mid K_{i-1,j}) \) as the probability that exactly \(k \) out of \(i \) copiers choose role-model \(j \) given \(K_{i-1,j} \) our of \(i - 1 \) copiers chose role-model \(j \). Using conditional probability and eq. (8),

\[
Q_j(k, i) = P_j(S_{i,j} = 1 \mid k - 1, i - 1) \cdot Q_j(k - 1, i - 1) + P_j(S_{i,j} = 0 \mid k, i - 1) \cdot Q_j(k, i - 1),
\]

where \(S_{i,j} = 1 \) when the \(i \)-th copier chooses role-model \(j \). Equation (12) is equivalent to eq. (2.1) by [16], which completes the proof.

This result gives the following two corollaries on the expected number of followers of a given role-model by the end of the role-model choice process. The proof of Corollary 2 is in Appendix A.

Corollary 1. The expected number of copiers of role-model \(j \) after all copiers have chosen a role-model is \(E[K_{N,j}] = N \cdot G_{1,j} \), where \(G_{1,j} \) is the probability of the first copier to copy role-model \(j \).

Proof. [16, eq. (2.3)] show that \(E[k] = N \cdot Q_j(1, 1) \) (modified from their notation). \(Q_j(1, 1) \) is the initial probability to choose role-model \(j \), before any role-model choices are made. \(Q_j(1, 1) = G_{1,j} \) by definition, which completes the proof.

Corollary 2. \(E[K_{N,j}] = \alpha_j \cdot \beta(A_j + e) / \alpha \cdot \beta(A + e) \), where the averaging in the denominator is over the role-models index, \(j \).

The special case where the bias weight is uniform for all role-models (\(\alpha = \alpha_j \) for \(j = 1, \ldots, N \)) is interesting, because we can evaluate the expected number of copiers using a linear equation

\[
E[K_{N,j}] = N \cdot \frac{\alpha_j \cdot \beta(A_j + e)}{\sum_{m=1}^{N} \alpha_m \cdot \beta(A_m + e)} = \beta(A_j + e) / \beta(A + e),
\]

(13)
where the only variable is \(A_j + e \), because \(\beta(A + e) \) is the mean of the distribution of the trait values, modified by some constant parameters of \(\beta \). We can then denote \(L = 1/\beta(A + e) \) and write

\[
E[K_{Nj}] = L \cdot \beta(A_j + e).
\] (14)

Numerical validation. To validate our results we ran 1,000 simulations of the full model, and compared the results with Corollary 2. We compare the distribution of number of copiers by plotting the histograms of both our simulations results and the expected values based on Corollary 2. We used the average of the 1,000 simulations to eliminate drift errors, as can be seen in Figure S1.

Although basic, Figure S1 shows good fit of the GB approximation. This validation is initial, and the more extensive validations we do on the Dirichlet-Multinomial approximation, because it is what we will use in our analysts.

Dirichlet-Multinomial distribution approximation

Pólya urn model. This stochastic process consists of \(N \) draws from an urn with an initial amount of colored balls of \(M \) colors. When a ball is drawn, it is then placed back in the urn together with an additional new ball of the same color. Let \(U_i = \{u_{i,1}, u_{i,2}, \ldots, u_{i,M}\} \) where \(u_{i,j} \) is the number of balls of the \(j \)-th color in the urn after \(i \) draws. Let \(S_{i,j} = 1 \) when drawing a \(j \)-colored ball on the \(i \)-th draw, and 0 otherwise. The probability that \(S_{i,j} = 1 \) given \(U_{i-1} \) is

\[
P(S_{i,j} = 1 | U_{i-1}) = \frac{u_{i-1,j}}{\sum_{m=1}^{M} u_{i-1,m}} = \frac{o_j + w_{i-1,j}}{\sum_{m=1}^{M} o_m + w_{i-1,m}} = \frac{o_j + w_{i-1,j}}{i - 1 + \sum_{m=1}^{M} o_m},
\] (15)

where \(o_j \) is the initial number of balls of the color \(j \) in the urn, and \(w_{i,j} \) is the cumulative number of new balls that were added to the urn after \(i \) draws of the color \(j \).

Result 2 (Pólya urn model). The role-model choice process, \(\{K_i\}_{i=1}^{N} \), is equivalent to a Pólya urn model if both trait estimation error and bias weight are uniform in the population, \(e = e_j \) and \(\alpha = \alpha_j \) for all \(j = 1, \ldots, N \).

Proof. Denote \(\alpha' = \frac{o}{1-o} \) as the bias weight ratio, and \(A'_j = A_j + e \). From eq. (10) and because \(\sum_{j=1}^{N} K_{i,j} = i \), we have

\[
\alpha' \beta(A'_j) + K_{i-1,j} = \frac{\alpha' \beta(A'_j) + K_{i-1,j}}{\sum_{m=1}^{M} \alpha' \beta(A'_m) + K_{i-1,m}} = \frac{\alpha' \beta(A'_j) + K_{i-1,j}}{i - 1 + \sum_{m=1}^{M} \alpha' \beta(A'_m)}.
\] (16)

Substituting \(M = N \), \(o_j = \alpha' \beta(A'_j) \), and \(w_{i,j} = K_{i,j} \) in eq. (15) gives eq. (16), thus completing the proof.
[17, section 2] prove that the proportion of different colored balls in a Pólya urn model converges to the Dirichlet distribution as the number of draws approaches infinity, based on the Martingale Convergence Theorem [18]. We therefore have an approximation for the relative prestige each role-model has when evaluated by copiers. Thus, choosing the role-models for all copiers is equivalent to drawing from a Multinomial distribution where the parameters are the modified weights from a Dirichlet distribution and we have the following corollary.

Corollary 3. The number of copiers of each role-model follows a Dirichlet-Multinomial distribution, $K_i \sim \text{DM}(N, G_1)$, under the conditions of Result 2.

Numerical validation. To validate our analytical result (Corollary 3) and test its sensitivity to the assumptions ($e_i = e$ and $\alpha_i = \alpha$ for $i = 1, \ldots, N$) we compare it to results of stochastic simulations of the full model. First, we computed an observed distribution of the number of copiers from the average empirical distribution of multiple simulations. We then compared this observed distribution with the expected theoretical DM distribution (Figure S2A). The difference in distributions was not perceived when plotting both distributions on the same figure, so we used the difference instead. The maximum difference is 0.5 role-models, which indicate a very good fit. In addition, we tested the likelihood of the observed data to be drawn from the DM distribution, against a shuffle of the parameters vector of the DM distribution itself (Figure S2B). We see that the negative log likelihood of the observed data is much higher than any other shuffled version of the parameters vector, supporting our approximation more.

Next, we examined the fixation probability and fixation time of a favored phenotype \hat{A} when invading a population of phenotype A and compared results from the full model and the DM approximation. Thus, we assume the population has a single individual with phenotype \hat{A} and $N - 1$ individuals with phenotype A. We find that the number of simulations needed to sufficiently approximate our model with the DM approximation is roughly 1,000 (Figure S3). We examined the robustness of the DM approximation to relaxing the approximation assumptions. First, we relaxed our assumption of no estimation error e. Estimation error in the original model was drawn from a normal distribution, and added to the trait value before evaluation of the bias ($A_{ij} = A_j + e_i$). When estimation error is applied, we sample J_i for each copier i from a normal distribution with varying scale (variance). Even when the standard deviation is 0.1, the fixation probability and time is similar (Figure S4). We also relaxed our assumption of a uniform bias weight α (i.e., $\alpha_i = \alpha$). We allowed α to vary in the population, drawing α_j for each role-model j from a normal distribution such that $\alpha_j \sim N(0.5, q)$ where $q \in [10^{-7}, 10^{-1}]$. We found again that results of the DM approximation are similar to those from stochastic simulations of the full model (Figure S5).

Fixation probability and time

After finding that the DM distribution is a good approximation of the (within-generation) role-model choice process, we turn our attention to the (between-generation) evolutionary dynamics. We focus on the fixation probability and conditional fixation time (conditioned on the population reaching fixation)
of a favored phenotype, using a diffusion-equation approximation approach, similar to analyses of population-genetic models [19, 45, 46]. We are mainly interested in the effect of the bias weight, \(\alpha \), which determines the relative effect of success and influence on prestige bias, given by eq. (10). For simplicity, we do not include role-model estimation error in this analysis, i.e. \(e_i = 0 \) for every copier \(i \). As shown above, transmission in our model is approximately DM distributed (Corollary 3 and eq. (16)).

We start by finding the expectation and variance of the change in frequency from one generation to the next, which are the drift and diffusion terms of the diffusion equation. The proof is in Appendix B.

Result 3 (Drift and diffusion terms in a constant environment). Let \(x \) and \(x' \) be the frequency of type \(\hat{A} \) in a population with \(N \) individuals in the current and next generation, and \(\beta \) is the success coefficient of phenotype \(A \), \(\beta = \beta(A) < \beta(\hat{A}) = 1 \). Then,

\[
E[x' - x] \approx x(1 - x)(1 - \beta), \quad V(x' - x) \approx x(1 - x)\left(\frac{1}{\alpha N + (1 - \alpha)}\right).
\]

This analysis gives a surprising result relating the parameters \(\alpha \) and \(\beta \) to parameters of the classical Wright-Fisher model from population genetics: the selection coefficient \(s \), a measure of the effect of natural selection on the change in frequency of genotypes, and the effective population size, \(N_e \), a measure of the effect of random genetic drift on the change in frequency of genotypes. In a diffusion-equation approximation of the classical Wright-Fisher model, the expectation and variance of the change in frequency are \(E[x' - x] = x + x(1 - x)s + o(s) \) and \(V[x' - x] = x(1 - x)/N_e \) [19, eq. 7]. Therefore, we have the following result.

Result 4 (Effective selection coefficient and population size). The effective selection coefficient \(s \) and effective population size \(N_e \) can be written in terms of the success coefficient \(\beta \) (eq. (5)), the bias weight \(\alpha \) (eq. (10)), and the population size \(N \) as

\[
s = 1 - \beta(A), \quad N_e = \alpha N + (1 - \alpha).
\]

Note that when \(N >> 1 \), \(N_e \approx \alpha N \), resulting in a very convenient expression.

Using our effective selection coefficient, \(1 - \beta \), and effective population size, \(N_e \), with the population-genetics fixation probability approximation given by [19, eq. 8], we get the following result:

Result 5 (Fixation probability). The fixation probability is approximately

\[
\pi(x) = \frac{1 - e^{-2(1-\beta)N_ex}}{1 - e^{-2(1-\beta)N_e}} \tag{19}
\]

where \(x \) is the initial frequency of the favored phenotype \(\hat{A} \).
Similarly, we can use $1 - \beta$ and N_e in the population-genetics fixation time approximation given by [45, eq. 17].

Result 6 (Fixation time). The fixation time (conditioned on fixation) from an initial frequency x is approximately

$$T(x) = J_1(x) + \frac{1 - \pi(x)}{\pi(x)} \cdot J_2(x), \quad (20)$$

where $N_e = \alpha N + (1 - \alpha)$, $S = N_e(1 - \beta)$, and

$$J_1(x) = \frac{2}{(1 - \beta)(1 - e^{-2S})} \int_x^1 \frac{(e^{2S}\xi - 1)(e^{-2S}\xi - e^{-2S})}{\xi(1 - \xi)} d\xi,$$

$$J_2(x) = \frac{2}{(1 - \beta)(1 - e^{-2S})} \int_0^x \frac{(e^{2S}\xi - 1)(1 - e^{-2S}\xi)}{\xi(1 - \xi)} d\xi. \quad (21)$$

Note that these integrals cannot be solved in closed form, so we can only estimate them numerically.

Numerical validation. We compare our approximations (eqs. (19) and (20)) with results of simulations of our dichotomous model using various α and β values, as well as simulations of the Wright-Fisher model, using the effective selection coefficient, $1 - \beta$, and effective population size, $N_e = \alpha N + (1 - \alpha)$. We find see that the two models have similar dynamics, and both are well approximated our approximations (Figure 1).

Changing environment. After finding a good approximation in constant environment, where the favorable trait is always \hat{A}, we proceeded to find an approximation for a changing environment. Following [21], we denote k as the number of generations in which the invading phenotype is favored by success bias, and l as the number of generations in which the resident phenotype is favored by success bias. We then proceed to find expressions for the expectation and variance of the change in frequency between $n = k + l$ generations. The proof is in Appendix C.

Result 7 (Drift and diffusion terms in a changing environment). Let x be the initial frequency of the invading phenotype and X_t is the number of individuals with the phenotype after n generation. Then,

$$E[X_t/N - x] \approx x(1 - x)S_n/N_e, \quad \text{and} \quad V(X_t/N - x) \approx nx(1 - x)/N_e, \quad (22)$$

where $S_n = \sum_{i=1}^n N(1 - \beta_i)$.

Note that here, we have the average selection coefficient during a cycle of n generations as the selection coefficient eq. (19). Using the drift and diffusion terms and following [21], we can approximate the fixation probability in a changing environment using

$$\tilde{\pi}(x) = \frac{1 - e^{-2S_n}/N_e x}{1 - e^{-2S_n}/N_e} \cdot (23)$$
Figure 1: Fixation probability and time in a constant environment. Fixation probability and time (in generations) as a function of the success-bias weight α (bottom x-axis), or effective population size N_e (top x-axis) in the top row, and as a function of the success coefficient, $1 - \beta$, on the bottom row. The approximation (black; eq. (19)) agrees with both DM simulations (green) and Wright-Fisher simulation (orange). Fixation probability (A) is bounded by $2(1 - \beta)$ (blue). Markers are averages of 10,000 simulations, error bars show 95% confidence intervals for panels A and B and 75% for panels C and D. Here, Population size, $N = 1,000$; phenotype values, $\hat{A} = 1, A = 0.7$ (A and B), $A = a \cdot \hat{A}$ with $0.01 \leq a \leq 0.99$ (panels C and D); success coefficient, $1 - \beta = s = 0.044$ (A and B); success-bias weight, $\alpha = 0.01$ (panels C and D).

Numerical validation. Comparing our approximation (eq. (23)) to simulations, we find that the approximation fits simulation results well for variable bias weights, α, which corresponds to the effective population size (Figure 2A).

However, the approximation is more sensitive to the value of the success bias coefficient β (Figure 2B). We suspect that when β is too small, there will not be many cycles in the simulations, because either the population reaches a high frequency of the fitter phenotype after just a few cycles, or the fitter phenotype becomes extinct very quickly. For such β values (below 0.65), the fixation probability exceeds even the constant environment approximation (which is the upper limit). We note that the diffusion-equation approximation assumes weak selection, or in our case, weak success bias.
We found that for a large k/l ratio (with a constant cycle length, $n = k + l = 100$), the changing environment approximation (eq. (23)) converges to the constant environment approximation (eq. (19)), see Figure 2C and Figure 2D.

The approximation follows the trend of the simulation results for all α values. When increasing the success coefficient to more than 0.15, the simulation results were located above the changing environment approximation, and below the constant environment approximation. We believe the reason is the structure of the cycle. Our proof and approximation in the changing environment are for a large amount of cycles, and when the success coefficient is too high, there might be very few cycles. Either the ideal trait is copied by enough copiers so that the influence is sufficient to negate the success bias when the cycle changes (and the trait favored by the bias becomes the disfavored), or the opposite happens, and the ideal trait gets extinct before there were enough copiers that copied it. We then tried to change the ratio between the number of cycles where \hat{A} is favored and disfavored. We showed that the approximation fits well regardless of the ratio, but when the ratio of favored generations to disfavored ones is very high, it is very similar to a constant environment model.
Figure 2: Fixation probability in a changing environment. (A) Fixation probability decreases with the success-bias weight (bottom x-axis) and effective population size (top x-axis). The approximation (blue; eq. (23)) agrees with simulation results (orange). (B) Fixation probability increases with the success coefficient, β. When success bias is large ($1 - \beta > 0.1$), simulation results (orange) are underestimated by the changing environment approximation (blue; eq. (23)). With even larger success bias ($1 - \beta > 0.35$), even the constant environment approximation (green; eq. (19)) slightly underestimates simulation results, likely because the diffusion equation approximation assumes weak "selection". (C,D) The approximation (blue) is robust to changes in environmental cycle length, as it agrees with simulations (orange) for different sizes of the changing environment cycle, where k and l are the number of generations each trait value is under success bias. When $k > l$, the approximation and the simulations are both very close to the constant environment approximation (green), because the more generations the rare phenotype is favored, the more similar it is to the constant environment model, where it is always favored by the success bias. Markers show average of 10,000 simulations, error bars show 75% (A, C, and D) and 95% (B) confidence intervals. Here, population size, $N = 1,000$; phenotype values, $\hat{A} = 1$, $A = 0.9$ (A and B), $A = 0.8$ (C and D); In (A), the success coefficient is: $1 - \beta = s = 0.005$; In (B, C, and D) the success-bias weight is $\alpha = 0.1$.
Adaptive success-bias weight

We ran simulations of the role-model choice process during a single generation in which every copier evaluates its own optimal success-bias weight, α^*, which minimizes the expected squared error between the estimated and the ideal trait values,

$$\alpha^* = \arg\min_{\alpha} \sum_{j=1}^{N} \frac{\alpha A_j + (1 - \alpha) K_j}{\sum_{l=1}^{N} \alpha A_l + (1 - \alpha) K_l} (\hat{A} - A_j)^2,$$

(24)

where A_j is the trait of role-model j and K_j the number of copiers that already chose role-model j.

We find that when copiers adapt their success-bias weight, it decreases with the number of copiers that have already chosen a role-model (Figure 3). Moreover, their estimation error is much lower compared to a constant success-bias weight, which gives roughly the same high estimation error to all copiers (compare Figure 3B and C): in this example, the adaptive weight estimation error converges to 0.046, whereas a constant weight gives values > 0.74.

Discussion

During cultural transmission, cultural traits such as attitudes, values, beliefs, and behavioral patterns are transmitted between individuals, for example via copying and social learning. Some cultural traits or cultural role-models may be copied more often due to transmission biases. A common bias is success bias, in which copiers are more likely to copy a successful role-model. Many models assume that success can be accurately estimated. However, it has been suggested that because it is hard to estimate success, a more common bias is prestige bias—a bias towards role-models perceived to be successful. This perceived success can be determined by performance in another trait, i.e., by indirect success [5, 24], or by the influence an individual has on others [26, 31].

We developed a cultural-evolution model with prestige bias that includes both indirect success and influence biases, where the latter is a bias towards role-models with many copiers. We model the these biases using a stochastic role-model choice process: each copier, in its turn, randomly chooses a role-model, and this choice is affected both by the estimated success of each potential role-model and the number of copiers that already chose each role-model (eq. 10).

Hence, we have a model with two "nested" stochastic processes: the role-model choice process within each generation, and the cultural-evolutionary process between generations. To simplify the mathematical and computational analysis, we developed analytic approximations for the role-model choice process using the the generalized binomial distribution (GBD, Result 1) and the Dirichlet-Multinomial distribution (DM, Corollary 3). The latter is especially useful, as it approximates the entire role-model choice process and only requires us to assume that the relative effect of success and influence is a characteristic of the role-model and not the copier.
Analyzing the model with the DM distribution, we found approximations for the fixation probability and fixation time of a cultural trait under biased transmission in a constant environment. Our approximations are similar to Kimura’s evolutionary-genetic approximations, such that (i) the difference between the resident and invading cultural trait values, $1 - \beta(A)$, is equivalent to the selection coefficient in favor of a beneficial allele, s, and (ii) increasing the relative weight of influence versus success bias, α, decreases the effective population size, N_e (Figure 1).

We also analyzed a cyclic changing environment in which the identity of the success-biased trait switches after a fixed amount of generations (Figure 2). We find that, similarly to the constant environment approximation, a change in the success-bias weight α has no negative effects on the goodness-of-fit of the approximation to simulation results. We also showed that this approximation is more sensitive to changes in the success coefficient β than the constant environment approximation, and a lower value is required to have a good fit. The ratio between the number of generation in which
the rare phenotype is under positive transmission bias and the number of generations in which it is under negative bias does not affect the goodness-of-fit of the approximation.

We also examined a scenario in which copiers can adapt their success-weight bias, α, to minimize their copying error, i.e., copy trait values closer to the optimal value. We found that as the role-model choice process proceeds (that is, more copiers make their choices), both the success-bias weight (adapted by copiers) and the estimation error decrease. The latter is significantly lower compared to a population using a constant, fixed success-bias weight, regardless of the value of the constant weight (Figure 3). This suggests that the later a copier makes its choice, the more it should rely on choices of previous copiers, and the less it should rely on its own estimation. The rationale, then, is that the more information a copier has, e.g., by using others as information sources, the more informative and effective his choice can be.

[31] report the first direct tests in children that suggest the existence of prestige bias, defined as the tendency to learn from individuals to whom others have preferentially attended, learned, or deferred. Their definition of prestige is similar to our influence bias. They showed that the odds of 3-4 years-old children learning from an adult role-model to whom bystanders had previously preferentially attended for 10 seconds were more than twice those of their learning from a role-models whom bystanders ignored. They also note that prestige effects are domain sensitive: they found that prestigious role-models were attended more when demonstrating artifact use, whereas role-models presenting food preferences had less attendants, suggesting that the domain itself (artifact use vs. food preference) can affect the attendance, and hence the prestige of the role-model. This lead [31] to suggest that when the trait is costly to learn individually, prestige will have a stronger bias. It would be interesting to include costs in our model to try and observe these effects and dynamics in a large population.

According to [24], evolutionary theorists propose that natural selection has favored the emergence of psychological biases for learning from those individuals most likely to possess adaptive information. Thus, they studied Fijian villages to examine if and how such biases emerge in a small-scale society. They found that Fijian villagers are more likely to learn from role-models perceived as more successful/knowledgeable, both within and across domains. Their research thus suggests that copying from those perceived as successful, rather than actually are successful, is a common phenomena. They show that the social networks representing copier–role-model relationships are centralized, suggesting that it is consistent with the prediction that people substantially share notions about who is a good cultural model, but that individuals’ role-model selections are influenced by multiple factors.

We can also find prestige bias in more modern domains such as western medicine. [28] examined literature from 1950 to 2005 on the effects of prestige on medicinal practices. They found that active, specialized, biomedical, and high-technological types of medicine on organs in the upper part of the bodies of young and middle-aged people were accorded high levels of prestige, whereas medicine and practices with opposite characteristics had low levels of prestige. For example, they found that surgery counts as the most prestigious specialty, while psychiatry is the less prestigious. In addition, doctors tend to rank practices that require more time to master as more prestigious, while other procedures that are considered easier to master are less prestigious. This means that there may be very important
practices that are neglected due to prestige bias. They concluded that such differences in prestige may bear consequences for actual priority setting in healthcare systems.

Prestige bias can help to cheaply estimate and acquire knowledge, which may facilitate survival and reproduction. However, it is not always the case, and there could be negative repercussions to this bias, such as invasion of maladaptive traits. [27] mention that social learning not only takes the form of random copying of other individuals, but also involves learners’ choice of what to learn and from whom to learn. They suggest a best-of-k model where an individual samples k role-models and chooses the one he deems most "successful". They mentioned that a previous mathematical analysis has shown that it may sometimes result in maladaptive cultural evolution when the payoffs associated with cultural variants vary stochastically. In such a case, learners may be selectively disfavored and in the long run replaced by unbiased learners, who simply copy someone chosen at random. They developed new mathematical models that are simpler and mathematically tractable. They found that best-of-k learning, unlike unbiased learning, can facilitate the invasion of an on average inferior variant that sometimes gives a very high payoff. Our model, which includes influence bias, is consistent with this claim. When a maladaptive trait is "piggybacking" a role-model with high influence, this trait could spread in the population. In addition, they show that best-of-k learning can be stable against invasion by unbiased learning if social learning is sometimes combined with individual learning. Our model only includes social learning, and not individual learning, but it could be interesting to combine it with individual learning and see how it affects the dynamics.

Prestige bias can also accelerate reversal of harmful traditions such as child marriage and domestic violence. [25] suggest a spillover mechanism, in which an intervention affects a large enough group in a target population, so that others not included in the intervention also change their behavior. They found that there are individuals who act as agents, who are often looked upon, and therefore they are ideal targets for interventions. This is similar to influential role-models in our model, where a prestigious individual will be copied more often, and will therefore spread his trait faster and wider in the population. They also suggest a way to use this phenomena to change existing traditions in a population. It is very clear however, that just as it can be used to end harmful traditions, the same agents could start harmful traditions.

[30] hypothesized that larger, more complex brains can store and manage more information and in turn, this information can support the costs of a larger brain. Following up on this, [29] offered that prestige can directly affect human physical evolution. They present a concept called cultural brains—brains that evolved primarily for the acquisition of adaptive knowledge. They then develop a model that predicts a strong relationship between brain size and group size, because group size also provides access to more adaptive knowledge. They also presented the cumulative cultural brain hypothesis, which proposes that human brains have evolved with an ability and tendency for selective, high-fidelity social learning. As part of this process, there are a variety of strategies and biases that have evolved to hone in on the most adaptive knowledge. These strategies and biases include direct and indirect cues of the popularity of cultural traits (e.g. success and prestige biases). They suggest
that one of the reasons for the extreme increase in brain size in humans is the ability to "cheaply" acquire adaptive knowledge via transmission biases such as prestige.

One path forward is an analysis of the dynamics of the adaptive success-bias weight model, in which every copier chooses its α. It would be interesting to see if the mean estimation error and the adaptive weight, α^*, are converging to specific values, and how they are affected by the model parameters. It may also be possible to relax the assumptions required for our approximations, such as homogeneous estimation error and success-bias weight. Lastly, it would be interesting to analyze the continuous model and determine how much it differs from the dichotomous model.

Another way to expand our model is to account for the two types of prestige or leadership suggested by [23] that are attributed to Confucius and Machiavelli. Confucius viewed leaders as role-models who exercise influence through possessing superior knowledge, skills, and (outstanding) personal qualities. This fits the success bias in our model. In contrast, Machiavelli viewed leaders as rulers who exercise influence by imposing costs through (the threat of) punishment and violence. [23] suggest that these two opposing views are both partially supported by the available evidence but each one on its own offers an incomplete view of the complex and dynamic concept of leadership. Several adjustments could be made so that our model reflects these leadership styles, such as assuming there is a correlation between phenotype to leadership style. The emerging cultural-evolutionary dynamics and their dependence on the costs and benefits are intriguing.

Conclusions. Here, we studied a model of cultural evolution under two transmission biases: the commonly studied success bias, together with influence bias, which has so far received less attention. We found approximations for this complex dynamics. We then showed that success bias affects the evolutionary dynamics much like natural selection does, whereas influence bias has a similar effect to random genetic drift. We also find a clear advantage to individuals that can choose the relative weight of the two biases.

Acknowledgements

We thank Marc Feldman, Martin Pontz, Gili Greenbaum, Alon Rozen, and Tal Simon for discussions and comments. This work was supported in part by Minerva Stiftung Center for Lab Evolution (YR) and the John Templeton Foundation (YR 61809).

References

Appendices

Appendix A General binomial distribution approximation

Proving $E[K_{Nj}] = \frac{\alpha_j \cdot \beta(A_j + e)}{\sum_{m=1}^{N} \alpha_m \cdot \beta(A_m + e)}$, where the averaging in the denominator is over the role-models index, j.

Proof. The initial prestige of role-model j based on eq. (10) is

$$G_{1,j} = \frac{\alpha_j \cdot \beta(A_j + e)}{\sum_{m=1}^{N} \alpha_m \cdot \beta(A_m + e)}.$$ \hspace{1cm} (A1)

The denominator of eq. (A1) can also be formulated as:

$$\sum_{m=1}^{N} \alpha_m \beta(A_m + e) = N \cdot \alpha \cdot \beta(A + e),$$ \hspace{1cm} (A2)

where $\alpha \beta(A + e)$ is the mean value of $\alpha_m \cdot \beta(A_m + e)$ for all m. Using eq. (A2) and Corollary 1 we get,

$$E[K_{Nj}] = \frac{\alpha_j \cdot \beta(A_j + e)}{\alpha \cdot \beta(A + e)},$$ \hspace{1cm} (A3)
Appendix B Drift and diffusion in a constant environment

Proving drift and diffusion terms in a constant environment. Let x and x' be the frequency of type \hat{A} in a population with N individuals in the current and next generation, and β is the success coefficient of phenotype A, $\beta = \beta(A) < \beta(\hat{A}) = 1$. Then,

$$E[x' - x] \approx x(1 - x)(1 - \beta), \quad V(x' - x) \approx x(1 - x)\left(\frac{1}{\alpha N + (1 - \alpha)}\right).$$

Proof. Let X be the number of individuals of type \hat{A} such that $x = X/N$. X' is the number of individuals with \hat{A} in the next generation. The expected number of individuals is (due to the DM approximation),

$$E[X'] = N\frac{\alpha_1}{\alpha_1 + \alpha_2}, \quad (B1)$$

where $\alpha_1 = \alpha'X$ and $\alpha_2 = \alpha'(N - X)\beta$, from eq. (11). To use frequencies instead of counts, $E[x'] = E[X'/N] = \frac{1}{N}E[X']$. Putting it together,

$$E[x'] = \frac{1}{N}N\frac{\alpha'xN}{\alpha'xN + \alpha'N(1 - x)\beta} = \frac{x}{x + (1 - x)\beta}$$

$$= \frac{x}{x + (1 - x) - (1 - x) + (1 - x)\beta} = \frac{x}{1 - (1 - x)(1 - \beta)}$$

$$= x(1 + (1 - x)(1 - \beta) + o(\beta)) = x + x(1 - x)(1 - \beta) + o(\beta), \quad (B2)$$

following [20, p. 253, ch 7.2] and because $1/(1 - y) = 1 + y + y^2 + \ldots$.

By definition, x is constant, so $E[x] = x$. We therefore have

$$E[x' - x] = E[x'] - E[x] = x(1 - x)(1 - \beta) + o(1 - \beta), \quad (B3)$$

which gives us the drift term of the diffusion equation.

Using the variance of the DM distribution,

$$V(X') = N\frac{\alpha_1}{\alpha_1 + \alpha_2}\left(1 - \frac{\alpha_1}{\alpha_1 + \alpha_2}\right)\left(N + \alpha_1 + \alpha_2\right). \quad (B4)$$

Again, we want to use frequencies so we have $V(X'/N) = \frac{1}{N^2}V(x')$. Putting it together with our model notations,

$$V(x') = \frac{1}{N^2}N\frac{x}{x + (1 - x)\beta}\left(1 - \frac{x}{x + (1 - x)\beta}\right)\left(N + \alpha'xN + \alpha'N(1 - x)\beta\right). \quad (B5)$$

Following [20, ch 7.2], we assume $\beta \approx 1$, such that

$$\frac{x}{x + (1 - x)\beta} \approx x \quad (B6)$$
and for the entire variance expression we get

$$V(x') \approx \frac{1}{N} x (1 - x) \left(\frac{N + \alpha' xN + \alpha' N - \alpha' xN}{1 + \alpha' xN + \alpha' N - \alpha' xN} \right) = x(1 - x) \left(\frac{1 + \alpha'}{1 + \alpha' N} \right). \quad (B7)$$

Now because x is a constant, $V(x) = 0$, and therefore

$$V(x' - x) = V(x') - V(x) \approx x(1 - x) \left(\frac{1 + \alpha'}{1 + \alpha' N} \right). \quad (B8)$$

α' is the odds ratio of the bias weight,

$$\alpha' = \frac{\alpha}{1 - \alpha}. \quad (B9)$$

Combining eq. (B8) and eq. (B9) we get:

$$V(x' - x) \approx x(1 - x) \left(\frac{1 + \frac{\alpha}{1 - \alpha}}{1 + \frac{\alpha}{1 - \alpha} N} \right) = x(1 - x) \left(\frac{1}{\alpha N + (1 - \alpha)} \right). \quad (B10)$$

This gives the diffusion term of the diffusion equation.

Appendix C Drift and diffusion in a changing environment

Proving drift and diffusion terms in a changing environment. Let x be the initial frequency of the invading phenotype and X_t is the number of individuals with the phenotype at time t. Then,

$$E \left[X_t / N - x \right] \approx x(1 - x) S_t / N_e, \quad \text{and} \quad V(X_t / N - x) \approx tx(1 - x) / N_e,$$

where $S_t = \sum_{i=1}^{t} N(1 - \beta_i)$.

Proof. Let $s_t = N(1 - \beta_t)$, and $S_n = \sum_{i=1}^{n} s_i$, where β_t is $\beta(A)$ at generation t. We prove by induction both terms in eq. (22). From eq. (B3) we know that

$$E \left[\frac{X_{t+1}}{N} - \frac{X_t}{N} \right] X_t = \frac{X_t}{N} \left(1 - \frac{X_t}{N} \right) (1 - \beta_{t+1}) = \frac{X_t}{N} \left(1 - \frac{X_t}{N} \right) s_{t+1}. \quad (C1)$$

Also note that using the definition of $V(y) = E[y^2] - (E[y])^2$

$$E \left[\frac{X_t}{N} \left(1 - \frac{X_t}{N} \right) \right] = E \left[\frac{X_t}{N} - \left(\frac{X_t}{N} \right)^2 \right] = E \left[\frac{X_t}{N} \right] - E \left[\left(\frac{X_t}{N} \right)^2 \right] = E \left[\frac{X_t}{N} \right] - V \left(\frac{X_t}{N} \right) - \left(E \left[\frac{X_t}{N} \right] \right)^2. \quad (C2)$$
We can now use the induction assumption of \(V\left(\frac{X_t}{N}\right) \) to get
\[
E\left[\frac{X_t}{N} \left(1 - \frac{X_t}{N}\right) \right] \approx E\left[\frac{X_t}{N} \right] \left(1 - E\left[\frac{X_t}{N}\right]\right) - \frac{1}{N_e} t x(1 - x). \tag{C3}
\]

From eq. (C1) we know that
\[
E\left[\frac{X_{t+1} - X_t}{N} \right] = \frac{1}{N} s_{t+1} E\left[\frac{X_t}{N} \left(1 - \frac{X_t}{N}\right) \right] \approx \frac{1}{N} s_{t+1} \left(E\left[\frac{X_t}{N} \right] \left(1 - E\left[\frac{X_t}{N}\right]\right) - \frac{1}{N_e} t x(1 - x) \right)
\]
\[
\approx \frac{1}{N} s_{t+1} \cdot E\left[\frac{X_t}{N} \right] \left(1 - E\left[\frac{X_t}{N}\right]\right) - \frac{1}{N_e N} s_{t+1} t x(1 - x). \tag{C4}
\]

Now we omit \(O\left(\frac{1}{N^2}\right) \) and get
\[
E\left[\frac{X_{t+1} - X_t}{N} \right] \approx \frac{1}{N} s_{t+1} \cdot E\left[\frac{X_t}{N} \right] \left(1 - E\left[\frac{X_t}{N}\right]\right). \tag{C5}
\]

We now look at the induction assumption to see that
\[
E\left[\frac{X_t}{N} - x \right] = E\left[\frac{X_t}{N} \right] - E[x] = E\left[\frac{X_t}{N} \right] - x, \tag{C6}
\]
so using the assumption we get
\[
E\left[\frac{X_t}{N} \right] \approx \frac{1}{N} S_t x(1 - x) + x, \tag{C7}
\]
\[
1 - E\left[\frac{X_t}{N} \right] \approx 1 - \frac{1}{N} S_t x(1 - x) + x.
\]

We use both expressions in eq. (C5) and get
\[
E\left[\frac{X_{t+1} - X_t}{N} \right] \approx \frac{1}{N} s_{t+1} \left(\frac{1}{N} S_t x(1 - x) + x \right) \left(1 - \frac{1}{N} S_t x(1 - x) + x \right)
\]
\[
\approx \frac{1}{N} s_{t+1} \cdot x(1 - x), \tag{C8}
\]
after again omitting \(O\left(\frac{1}{N^2}\right) \) terms. To conclude the proof, we note that
\[
E\left[\frac{X_{t+1} - X_t}{N} - x \right] = E\left[\frac{X_{t+1} - X_t}{N} \right] + E\left[\frac{X_t}{N} - x \right], \tag{C9}
\]
so again using the induction assumption, together with eq. (C8) we get
\[
E\left[\frac{X_{t+1} - X_t}{N} - x \right] \approx \frac{1}{N} s_{t+1} \cdot x(1 - x) + \frac{1}{N} S_t \cdot x(1 - x)
\]
\[
\approx \frac{1}{N} x(1 - x)(S_t + s_{t+1}) \approx \frac{1}{N} S_{t+1} x(1 - x), \tag{C10}
\]
which proves the drift term.
For the diffusion term, we use a property of variance,

\[V \left(\frac{X_{t+1}}{N} \right) = E \left[V \left(\frac{X_{t+1}}{N} \big| X_t \right) \right] + V \left(E \left[\frac{X_{t+1}}{N} \big| X_t \right] \right). \] \hspace{1cm} (C11)

Using eq. (C1) we see that

\[E \left[\frac{X_{t+1}}{N} \big| X_t \right] - E \left[\frac{X_t}{N} \right] = \frac{1}{N} s_{t+1} \frac{X_t}{N} \left(1 - \frac{X_t}{N} \right) \hspace{1cm} (C12) \]

Using eq. (B10) we get

\[V \left(\frac{X_{t+1}}{N} \big| X_t \right) = \frac{1}{N} \frac{X_t}{N} \left(1 - \frac{X_t}{N} \right), \hspace{1cm} (C13) \]

and using the equation \(y'(1 - y') \approx y(1 - y) \) on the first part of eq. (C11) we get

\[E \left[V \left(\frac{X_{t+1}}{N} \big| X_t \right) \right] = \frac{1}{N} e \left[\frac{X_t}{N} \left(1 - \frac{X_t}{N} \right) \right] \approx \frac{1}{N} e x(1 - x). \hspace{1cm} (C14) \]

Moving on to simplify the second part of eq. (C11) using eq. (C12),

\[V \left(E \left[\frac{X_{t+1}}{N} \big| X_t \right] \right) = V \left(\frac{X_t}{N} \right) \hspace{1cm} (C15) \]

Now, because \(\frac{X_t}{N} \) is a frequency, i.e. \(0 \leq X_t/N \leq 1 \), we know that \(V \left(\frac{X_t}{N} \left(1 - \frac{X_t}{N} \right) \right) \leq \frac{1}{4}. \) We therefore find that

\[V \left(\frac{1}{N} s_{t+1} \frac{X_t}{N} \left(1 - \frac{X_t}{N} \right) \right) \leq \frac{1}{4N^2} s_{t+1}^2, \hspace{1cm} (C16) \]

and so it can be ignored. Combining our equations we get

\[V \left(E \left[\frac{X_{t+1}}{N} \big| X_t \right] \right) = V \left(\frac{X_t}{N} \right) + O \left(\frac{1}{N^2} \right) \approx V \left(\frac{X_t}{N} \right). \hspace{1cm} (C17) \]

Using the induction assumption and eq. (C14),

\[V \left(\frac{X_{t+1}}{N} \right) \approx \frac{1}{N} e x(1 - x) + \frac{1}{N} e x(1 - x) \approx \frac{1}{N} e x(1 - x)(t + 1) \hspace{1cm} (C18) \]

which proves the diffusion term.
Supplementary Figures

Figure S1: Numerical validation of the GB approximation. The approximation (orange) fits simulation results (blue) well when using 1,000 simulations for both models. Here, population size, \(N = 2,000 \); bias weight, \(\alpha = 0.1 \); idea phenotype value, \(\hat{A} = 1 \); role-model traits \(A \sim N(0, 1) \); success bias value, \(\beta(A) = 0.956 \).
Figure S2: Numerical validation of the DM approximation. We performed computational "experiments" of the role-model choice process and compared them to the DM distribution. (A) The difference between the DM distribution (orange) and the empirical distribution of the experiments (blue) is very small. (B) The log-likelihood of the DM distribution for results of the experiments (red vertical line) is much higher compared to the log-likelihood of permutations of experiments (blue histogram). Here, population size, \(N = 100 \); number of experiments, \(m = 100 \); phenotype values, \(\hat{A} = 1 \), \(A \sim N(0, 1) \); success-bias weight, \(\alpha = 0.5 \). No estimation error or bias is applied, and traits are estimated and copied perfectly.

Figure S3: DM Approximation precision as function of number of simulations. Our DM approximation (orange) agrees with stochastic simulation results (blue) when using 1,000 or more simulations. Both fluctuate around the analytic fixation probability approximation (black; eq. (19)). Markers are averages across simulations, error bars are 95% confidence intervals. Here, population size, \(N = 1000 \); success-bias weight, \(\alpha = 0.5 \); phenotype values, \(\hat{A} = 1 \), \(A = 0.7 \); success-bias value, \(\beta(A) = 0.956 \).
Figure S4: Robustness of DM approximations to success estimation error. Both the DM approximation (orange) and our approximation (black) agree with the stochastic simulations (blue), even with a high estimation error. Markers are averages across simulations, error bars are 95% confidence intervals. 5,000 simulations per data point; population size, $N = 1000$; success-bias weight, $\alpha = 0.1$; phenotype values, $\hat{A} = 1, A = 0.7$; bias strength parameter $J \sim N(1, \eta^2)$ where η^2 in on the x-axis.

Figure S5: Robustness of DM approximations to variation in the bias weight α. Both the DM approximation (orange) and Kimura’s equation (black line) fit the stochastic simulations (blue) well even with a high variation in success bias weight. Markers for average across 5,000 simulations, error bars are 95% confidence intervals. Here, population size, $N = 1000$; success bias weight normally distributed, $\alpha \sim N(0.5, x^2)$; phenotype values, $\hat{A} = 1, A = 0.7$; success bias value, $\beta(A) = 0.956$.