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Abstract8

If the traits of more successful individuals are more likely to be adopted, the resulting cultural
transmission is described as being success-biased. Prestige may be used as a proxy for success.10
Here, we model prestige bias as a combination of indirect success bias and influence bias, the latter
meaning that the choice of a role-model depends on the number of individuals that have already12
copied that role-model. The effect of prestige on cultural evolutionary dynamics is analyzed using
mathematical analysis and stochastic simulations. Analytic approximations to the stochastic role-14
model choice process facilitate themathematical analysis and reduce the computational complexity
of simulations. Approximations are given to the fixation probability and the fixation time of an16
invading cultural trait in different environments. We show that indirect success bias effectively
plays the role of natural selection, whereas influence bias effectively plays the role of genetic18
drift. Influence bias, which may be strong in communities where social media are prevalent, also
accelerates the evolutionary dynamics, as can be expected in a rich-get-richer process.20
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Introduction

Cultural transmission of attitudes, preferences, beliefs, norms, and behaviors may combine vertical22

transmission, in which parents transmit to their offspring; oblique transmission, in which adults
(teachers, leaders, and even strangers) transmit to unrelated offspring; and horizontal transmission, in24

which individuals from the same age cohort transmit to one another [4]. It has been demonstrated that
non-vertical cultural transmission can maintain maladaptive traits, which can be beneficial in changing26

environments [21, 55].

Transmission biases may cause a cultural trait to have a higher rate of transmission than its frequency in28

the population. Success bias occurs when individuals prefer to copy from role models that demonstrate
success in some activity, such as fishing, growing yams, using medicinal plants [24], or hunting [54],30

and it can increase the probability of learning a trait that is present in those successful individuals [53].
Indeed, in a tournament between learning strategies [7], most winning strategies included a mixture32

of success-biased social learning and individual learning, implying that success-biased learning is a
good strategy, but that by itself it is not enough to best other strategies, even when success is measured34

accurately.

Boyd and Richerson [5, Ch. 5] suggested that the assessment of success can be divided to three36

categories: direct bias, indirect bias and frequency-dependent bias. Direct bias occurs when one
phenotype is more attractive than other phenotypes, and is evaluated by directly testing the trait. For38

example, an individual observing a ping-pong match can try the observed paddle grips to determine
which grip is better. Frequency-dependent bias occurs when the probability of copying a phenotype40

is higher or lower than the frequency of the phenotype among demonstrators. For example, suppose
the common paddle grip is used by 60% of the demonstrators; if the this grip is adopted by 80% of42

copiers, then transmission is under positive frequency bias, also called conformity; if it is adopted
by 40% of copiers, then transmission is under negative frequency bias, or anti-conformity [15]. The44

effects of conformity and anti-conformity on cultural evolution have been studied with both models
[36, 37, 52] and experiments [3]. Indirect bias occurs when a copier uses some observed phenotype to46

evaluate the attractiveness of a potential role-model. For example, an observer may copy the paddle
grip of the ping-pong player who scored more points in the match, thus indirectly evaluating the grip48

by the points scored. However, this may cause mismatches between the copied trait and the rest of
the cultural or genetic repertoire of the individual [51]. Furthermore, Boyd and Richerson [5, Ch. 8]50

suggest that maladaptive traits may spread widely in a population if indirect bias is strong enough,
e.g., by a runaway process caused by a cultural equivalent of sexual selection [8]. Indeed, helping52

behaviors can evolve due to horizontal transmission bias even without any benefit to the recipient, or
when the benefit is much larger than the cost [35].54

Heinrich and Broesch [24] studied such indirect success biases, which they call cross-domain success
bias or prestige bias (e.g., great fishermen may be chosen as role-models for growing yams). They56

suggested that such biases, over generations, can lead to cultural adaptations, and that although prestige
can lead to maladaptive traits spreading in the population, it can also accelerate the spread of adaptive58
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traits [5, Ch. 8]. Prestige bias may be more common in humans than success bias [6], and prestige is
often mentioned in the cultural evolution literature, although there are few models of it.60

Abroader definition of prestige is the “widespread respect and admiration felt for someone or something
on the basis of a perception of their achievements or quality” (New Oxford American Dictionary).62

Indeed, Chudek et al. [31] have defined prestige bias as “a tendency to learn from individuals to whom
others have preferentially attended, learned or deferred”, and demonstrated its occurrence in in 3-464

year old children. Henrich and Gil-White [26] gave a similar definition of prestige as “freely conferred
deference”, in contrast to dominance, and provided examples from the anthropological literature.66

To distinguish this form of indirect bias from other definitions of prestige, we call it influence bias. This
is an important distinction, as influence is a context-dependent bias, rather than a content-dependent68

bias: it does not depend on the phenotype itself but rather on the number of copiers that have already
copied each role-model, which may be easier and more accurate to estimate than success. Influence70

bias is also frequency independent (see Corollary 1 below), and thus it differs from conformity, which
depend on the frequency of a trait in the population or in a sample of role-models, rather than the72

social dynamics of copying.

In contemporary human society, social media make it especially easy to estimate the social and cultural74

influence individuals have over others, which can have an effect on decision making. Online social
networks such as Facebook and Instagram are known to affect the influence of individuals [39, 40, 41],76

and specific marketing practices have been invented to capitalize on this effect [38].

In the following, we develop a stochasticmodel of cultural transmissionwith prestige bias that combines78

both cross-domain indirect success bias and influence bias. Wedevelop analytic approximations for this
model and analyze its dynamics. We also find approximations for the probability and time to fixation80

of a ‘successful’ phenotype (i.e., that is subject to success bias). Comparing these approximations to
Kimura’s approximations for the fixation of a favorable allele [19, 45], we demonstrate that success82

and influence bias play the role of natural selection and genetic drift, respectively.

Models84

We begin with a continuous trait model with indirect bias, previously suggested by Boyd and Richer-
son [5]. We extend this model to include influence bias. We then develop a dichotomous trait model.86

Note that the indirect bias is due to an indirect evaluation, in which a certain phenotype is used to
evaluate the success of potential role-models.88

We implement our stochastic models and approximations, perform statistical analyses, and pro-
duce figures using Python [42] with NumPy [43] and Matplotlib [44]. Source code is available at90

https://github.com/yoavram-lab/PrestigeBias.

Continuous trait92

We follow the Boyd and Richerson model [5], assuming only oblique transmission of a single trait.
Consider a population of # individuals, described by a single trait that takes continuous values.94
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Each generation, # naive individuals, or copiers, each chooses a single role-model from the entire
previous generation. The copier than copies its trait value from the chosen role-model. Note that our96

transmission models is slightly different than previous those modeled before, e.g. [5, 37, 57], in which
the population is infinite and each copier samples = role-models and then copies its trait from one or98

more of the sampled role-models.

Similar to a Wright-Fisher model, generations are non-overlapping, and the entire population is100

replaced in each generation. The population at time C can be described by A(C) =
(
�1(C), . . . , �# (C)

)
where �8 (C) is trait value of individual 8 at time C, and the initial population is drawn from a standard102

normal distribution,A(0) ∼ # (0, 1) . Cultural transmission ismodeled by a function � such that

�8 (C + 1) = �8 (A(C)) . (1)104

Success bias. Boyd andRicherson [5, Ch. 8, p. 247-249] describe a transmission algorithm by defining
�, a weighted average of the traits of all role-models, as106

�8 (A) =
#∑
9=1
�8, 9 · �8, 9 , (2)

where �8, 9 is the success bias of role-model 9 in the eyes of copier 8,108

�8, 9 =
V(�8, 9 )∑#
:=1 V(�8,: )

, (3)

�8, 9 is the absolute trait value that copier 8 estimates for role-model 9 with some error 48 ∼110

# (0, [2),
�8, 9 = � 9 + 48, (4)112

and V(·) is the bias function that quantifies the success bias of a role-model [5, eq. 5.11],

V(�8, 9 ) = 1 · exp
(
−
(�8, 9 − �̂)2

2�

)
, (5)114

with �̂ as the arbitrary optimal trait value, and � and 1 as parameters that control the bias strength.
Therefore, �8, 9 is a relative success score that copier 8 assigns to role-model 9 .116

Boyd and Richerson [5] note that the deterministic blended transmission algorithm they use has
alternatives. We can develop a similar stochastic model with transmission from a single random118

role-model where instead of eq. (2), we define the transmission function � as a random variable with
its distribution given by120

Pr
(
�8 (A) = � 9

)
= �8, 9 ; (6)

here �8, 9 is the probability that copier 8 chooses to copy the trait of role-model 9 .122

Influence bias. Here we introduce a new element to the model by assuming that in each generation,
copiers choose their role-models one by one. Denote by  8, 9 the number of copiers that choose role-124
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model 9 after copier 8 chose a role-model. Thus, 8 out of # copiers had already chosen a role-model,∑#
9=1  8, 9 = 8, and there are # − 8 copiers that have yet to choose a role-model. The stochastic process126

of role-model choice, {
K8 = ( 8,1, . . . ,  8,# )

}#
8=1 , (7)128

is described by the recurrence equation

 8, 9 =  8−1, 9 + (8, 9 , 8, 9 = 1, 2, . . . , # , (8)130

where (8, 9 = 1 if the 8-th copier chose role-model 9 and 0 otherwise, and the initial state is  0, 9 =

0.132

Following eq. (6), the probability that the 8-th copier chose role-model 9 is given by the prestige of
role-model 9 in the eyes of copier 8,134

%A ((8, 9 = 1 | (1, 9 , (2, 9 , ..., (8−1, 9 ) = �8, 9 . (9)

The prestige�8, 9 of role-model 9 in the eyes of copier 8 is determined by success–the estimated biased136

trait value V(�8, 9 )–and influence–the number of copiers that chose role-model 9 before copier 8,  8−1, 9 ,
replacing eq. (3) with138

�8, 9 =
U8 9 · V(�8, 9 ) + (1 − U8 9 ) ·  8−1, 9

,8

, (10)

where,8 is a normalizing factor that sums the numerator over all role-models (1 ≤ 9 ≤ #) to ensure140 ∑#
9=1�8, 9 = 1.

Here, the bias weight U8, 9 determines the relative weighting of success and influence bias. It is a142

characteristic of the interaction of role-model 9 with copier 8 that determines the relative significance
of direct success vs. influence in the role-model’s overall prestige in the eyes of the copier. Different144

individuals may evaluate the importance of success and influence differently. Additionally, we assume
each role-model displays its influence and success individually. For example, individuals with more146

followers but lacking skill may emphasize the number of their followers rather than their skill. Finally,
the trait of role-model 9 estimated by copier 8, �8, 9 , remains as in eq. (4).148

Dichotomous trait
We introduce a simplified version where the trait has only two phenotypes: an optimal phenotype150

�̂ and a sub-optimal phenotype �. All role-models with the same phenotype will contribute to the
probability that that phenotype is transmitted, and thus influence is determined by the number of152

copiers that have already chosen a role-model with either phenotype. In addition, for simplicity and
for easier mathematical analysis, we assume U is homogeneous, which entails exchangeability between154

role-models. Therefore, the probability that the 8-th copier copies phenotype � is

�8,� =
(# − -)U′V(�) +  8,�

8 − 1 + (# − -)U′V(�) + U′- , (11)156
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where - is the number of role-models with trait �̂;  8,� is the number of copiers that already chose �
when copier 8 chooses a role-model; assuming (without loss of generality) that V( �̂) = 1; and defining158

U′ = U
1−U as the odds ratio of the bias weight. Complementing this, the probability of the 8-th copier to

copy phenotype �̂ is �8, �̂ = 1 − �8,�. The rest of the details follow the continuous trait model.160

Results

Our models are defined by two nested stochastic processes. Change over multiple generations is162

described by the dynamics of the phenotype distribution at each generation, {A(C)}C , see eq. (1). The
transition from one generation to the next is described by the number of copiers each role-model has164

after 8 copiers have chosen a role-model, {K8}#8=1, see eq. (7). We emphasize that the models are nested:
A(C +1) can be computed from A(C) by evaluating K# , where  #, 9 is the number of copiers that chose166

role-model 9 after all copiers chose a role model. However, the former requires iterating over eqs. (8)
and (9). Thus, we sought to find an equivalent stochastic process that has the same joint distribution168

as K# . We found two approximations for the distribution of K# , summarized here and explained in
detail below. In both we assume that the bias weight is either completely homogeneous, U8, 9 = U, or170

that U8, 9 = U 9 is a bias of role-model 9 only, meaning it does not vary between copiers. Note that
these approximations apply for both the and the continuous trait (eq. (10)) and the dichotomous trait172

(eq. (11)) models.

Generalized binomial approximation. The number of copiers of a specific role-model at each step,174

 8, 9 , follows the generalized binomial distribution [16] and therefore,

(i) the expected number of copiers of role-model 9 equals its prestige in the eyes of the first copier,176

multiplied by the total number of copiers, that is, IE[ #, 9 ] = # · �1, 9 if trait estimation error is
uniform for all copiers (4 = 48 for 8 = 1, . . . , #); and (ii) the expected number of copiers of each role-178

model equals its relative biased trait value, similar to the role of relative fitness in population-genetic
models, that is, IE[ #, 9 ] = V(� 9 + 4)/V if the bias weight is uniform for all role-models (U = U 9 for180

9 = 1, . . . , #), where V = 1/# ∑#
9=1 V(� 9 + 4) is the population mean estimated trait value.

Dirichlet-Multinomial approximation. The role-model choice process, {K8}#8=1, is equivalent to a182

Pólya urnmodel if trait estimation error is uniform for all copiers (4 = 48 for all 8 = 1, . . . , #), meaning
that the order of copiers does not matter.184

Generalized binomial distribution
The generalized binomial distribution (GBD) emerges from a series of dependent Bernoulli trials186

(in contrast to the standard binomial distribution in which trials are independent) and is denoted by
��� (=, ?, \) where = is the number of trials, ? is the probability of success of the first trial, and \ is188

the correlation between trials (the latter can be estimated from data, but its value is insignificant for
our approximation). Note that \ = 0 gives the standard binomial distribution.190
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Result 1 (Generalized binomial approximation). The number of copiers of role-model 9 after 8 copiers192

have chosen a role-model follows the generalized binomial distribution, 8, 9 ∼ ��� (8, U 9 ·V(� 9+4), \)
if 48 = 4 for all role-models 8 = 1, . . . , # , and \ is the correlation between successive role-model194

choices.

Proof. Let & 9 (:, 8) = %( 8, 9 = : |  8−1, 9 ) be the probability that exactly : out of 8 copiers choose196

role-model 9 given  8−1, 9 out of 8 − 1 copiers chose role-model 9 . Using conditional probability and
eq. (8),198

& 9 (:, 8) = % 9 ((8, 9 = 1|: − 1, 8 − 1) · & 9 (: − 1, 8 − 1) + % 9 ((8, 9 = 0|:, 8 − 1) · & 9 (:, 8 − 1) , (12)

where (8, 9 = 1 when the 8-th copier chooses role-model 9 . Equation (12) is equivalent to eq. (2.1) in200

[16], which completes the proof.

This result gives the following corollary on the expected number of followers of a given role-model 9202

by the end of the role-model choice process,  #, 9 .
204

Corollary 1. The expected number of copiers of role-model 9 after all copiers have chosen a role-
model is IE[ #, 9 ] = # · �1, 9 , where �1, 9 is the probability of the first copier to copy role-model 9 . In206

addition, IE[ #, 9 ] = U 9 · V(� 9 + 4)/U · V(� + 4), where the averaging in the denominator is over the
role-models index, 9 .208

Proof. The expected value of the GBD is IE[ #, 9 ] = # · & 9 (1, 1), see Drezner and Farnum [16,
eq. (2.3)]. Here, & 9 (1, 1) is the initial probability to choose role-model 9 , before any role-model210

choices are made, such that & 9 (1, 1) = �1, 9 by definition. The rest of the proof is in Appendix A.

From Corollary 1 we see that if there is no success bias, meaning & 9 (1, 1) = @ for 9 in 1, ..., # , then212

the expected number of copiers will be Binomial distributed. This proves that influence bias is not
frequency dependent.214

The special case where the bias weight is uniform for all role-models (U = U 9 for 9 = 1, . . . , #) is
interesting, because we can evaluate the expected number of copiers using a linear equation216

IE[ #, 9 ] = # ·
U · V(� 9 + 4)
#∑
<=1

U · V(�< + 4)
= V(� 9 + 4)

/
V(� + 4) , (13)

where the only variable is � 9 + 4, because V(� + 4) is the mean of the distribution of the trait values,218

modified by some constant parameters of V. We can then write ! = 1/V(� + 4) and

IE[ #, 9 ] = ! · V(� 9 + 4) . (14)220
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Numerical validation. To validate that GBD approximation for the number of copiers of a role-
model is correct (eq. (13)), we ran 1, 000 simulations of the full model, and compared the results with222

Corollary 1. We compare the distribution of number of copiers by plotting the histograms of both our
simulations results and the expected values based on Corollary 1.224

Although basic, Figure S1 shows good fit of the GB approximation. This validation is initial, and we
do more extensive validations on the Dirichlet-Multinomial approximation, because that is what we226

will use in our analysis.

Dirichlet-Multinomial distribution approximation228

Pólya urn model. This stochastic process consists of # draws from an urn with an initial number of
colored balls of " colors. When a ball is drawn, it is then placed back in the urn together with an230

additional new ball of the same color. Let Ui = {D8,1, D8,2, ..., D8,"} where D8, 9 is the number of balls
of the 9-th color in the urn after 8 draws. Let (8, 9 = 1 when drawing a 9-colored ball on the 8-th draw,232

and 0 otherwise. The probability that (8, 9 = 1 given Ui−1 is

%((8, 9 = 1 | Ui−1) =
D8−1, 9

"∑
<=1

D8−1,<

=
> 9 + F8−1, 9

"∑
<=1

>< + F8−1,<

=
> 9 + F8−1, 9

8 − 1 +
"∑
<=1

><

,
(15)234

where > 9 is the initial number of balls of color 9 in the urn, and F8, 9 is the cumulative number of new
balls that were added to the urn after 8 draws of color 9 .236

Result 2 (Pólya urn model). The role-model choice process,
{
K8

}#
8=1, is equivalent to a Pólya urn238

model if both trait estimation error and bias weight are uniform in the population, 4 = 4 9 and U = U 9

for all 9 = 1, . . . , # .240

Proof. Write U′ = U
1−U as the bias weight ratio, and �′

9
= � 9 + 4. From eq. (10) and because∑#

9=1  8, 9 = 8, we have242

�8, 9 =
U′V(�′

9
) +  8−1, 9

#∑
<=1

[
U′V(�′<) +  8−1,<

] =
U′V(�′

9
) +  8−1, 9

8 − 1 +
#∑
<=1

U′V(�′<)
. (16)

Substituting " = # , > 9 = U′V(�′
9
), and F8, 9 =  8, 9 in eq. (15) gives eq. (16), thus completing the244

proof.

Frigyik et al. [17, section 2] prove that the proportion of different colored balls in a Pólya urn model246

converges to the Dirichlet distribution as the number of draws (the population size, # , in our model)
approaches infinity, based on the Martingale Convergence Theorem [18]. We therefore have an ap-248

proximation for the relative prestige each role-model has when evaluated by copiers. Thus, choosing
the role-models for all copiers is equivalent to drawing from a multinomial distribution where the250
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parameters are the modified weights from a Dirichlet distribution and we have the following corollary.
252

Corollary 2. The number of copiers of each role-model approximates a Dirichlet-Multinomial distri-
bution, Ki ∼ DM(#,G1), under the conditions of Result 2.254

Numerical validation. Wenext validated theDMapproximation of ourmodel and tested its sensitivity
to the assumptions (48 = 4 and U8 = U for 8 = 1, . . . , #) by comparing results of stochastic simulations256

of our model (eq. (11)) with the DM approximation (Corollary 2). We used a relatively small
population size, # = 100, thus validating that the approximation is in good agreement even for258

small # , despite the assumption of large # in the proof by Frigyik et al. [17, section 2]. First, we
computed an observed distribution of the number of copiers from the average empirical distribution260

of multiple simulations. We then compared this observed distribution with the expected theoretical
DM distribution (Figure S2A). The difference in distributions was not perceived when plotting both262

distributions on the same figure, so we used the difference instead. The maximum difference is 0.5
role-models, which indicates a very good fit. In addition, we tested the likelihood of the observed data264

to be drawn from the DM distribution, against a shuffle of the parameters vector of the DM distribution
itself (Figure S2B). We see that the negative log likelihood of the observed data is much higher than266

any other shuffled version of the parameters vector, strongly supporting our approximation.

Next, we examined the fixation probability and fixation time of a favored phenotype �̂ when invading268

a population of phenotype � and compared results from the full model and the DM approximation.
Thus, we assume the population has a single individual with phenotype �̂ and # − 1 individuals270

with phenotype �. That the number of simulations needed to sufficiently approximate our model
with the DM approximation is roughly 1, 000 (Figure S3). We examined the robustness of the DM272

approximation to relaxing the following assumptions. First, we relaxed our assumption of no estimation
error 4. Estimation error in the original model was drawn from a normal distribution, and added to the274

trait value before evaluation of the bias (�8, 9 = � 9 + 48). When estimation error is applied, we sample
48 for each copier 8 from a normal distribution with expected value zero and variance [2. Even when276

the estimation error variance is 0.1, both the fixation probability and fixation time approximations
are accurate (Figure S4). We also relaxed our assumption of a uniform bias weight U (i.e., U8 = U).278

We allowed U to vary in the population, drawing U 9 for each role-model 9 from a normal distribution
such that U 9 ∼ # (0.5, @) where n is between 10−7 and 10−1. We found again that results of the DM280

approximation are similar to those from stochastic simulations of the full model (Figure S5).

Fixation probability and time282

After finding that the DM distribution is a good approximation of the (within-generation) role-model
choice process, we turn our attention to the (between-generation) evolutionary dynamics. We focus on284

the fixation probability and conditional fixation time (conditioned on the population reaching fixation)
of a favored phenotype, using a diffusion-equation approximation approach, similar to analyses of286

population-genetic models [19, 45, 46]. We are mainly interested in the effect of the bias weight, U,
which determines the relative effect of success and influence on prestige bias, given by eq. (10). For288
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simplicity, we use the dichotomous model, and we do not include role-model estimation error in this
analysis, i.e 48 = 0 for every copier 8. As shown above, transmission in our model is approximately290

DM distributed (Corollary 2 and eq. (16)).

Drift and diffusion terms in a constant environment. We start by finding the expectation and292

variance of the change in frequency from one generation to the next, which are the drift and diffusion
terms of the diffusion equation. Let G and G′ be the frequency of phenotype �̂ in a population with294

# individuals in the current and next generation, respectively. We set V to be the success bias of
phenotype � relative to phenotype �̂, such that V = V(�)/V( �̂) < 1. Then (see Appendix B for296

derivation),
� [G′ − G] = G(1 − G) (1 − V) + >(1 − V) ,

+ (G′ − G) = G(1 − G)
(

1
U# + (1 − U)

)
+ >

(
1

U# + (1 − U)

)
.

(17)298

This analysis gives a surprising result relating the parameters U and V to parameters of the classical
Wright-Fisher model from population genetics: the selection coefficient B, a measure of the effect of300

natural selection on the change in frequency of genotypes, and the effective population size, #4, a
measure of the effect of random genetic drift on the change in frequency of genotypes. In a diffusion-302

equation approximation of the classical Wright-Fisher model, the expectation and variance of the
change in frequency are � [G′ − G] = G + G(1 − G)B + >(B) and + [G′ − G] = G(1 − G)/#4 [19, eq. 7],304

respectively. Therefore, we have the following result.
306

Result 3 (Effective selection coefficient and population size). The effective selection coefficient B and
effective population size #4 can be written in terms of the success coefficient V (eq. (5)), the bias308

weight U (eq. (10)), and the population size # as

B = 1 − V =
V( �̂) − V(�)

V( �̂)
, #4 = U# + (1 − U) . (18)310

Note that when # >> 1, #4 ≈ U# , resulting in a very convenient expression.
312

Using our effective selection coefficient, B = 1 − V, and effective population size, #4, with the
population-genetics fixation probability approximation given by Kimura and Ohta [19, eq. 8], we314

obtain:

Result 4 (Fixation probability). The fixation probability of an invading phenotype favored by success316

bias is approximately

c(G) = 1 − 4−2(1−V)#4G

1 − 4−2(1−V)#4
, (19)318

where G is the initial frequency of the invading phenotype.

10



Similarly, we can use 1 − V and #4 in the population-genetics fixation time approximation given by320

[45, eq. 17].
322

Result 5 (Fixation time). The expected fixation time (conditioned on fixation) from an initial frequency
G is approximately324

) (G) = �1(G) +
1 − c(G)
c(G) · �2(G), (20)

where #4 = U# + (1 − U), ( = #4 (1 − V), and326

�1(G) =
−1

(1 − V) (4−2( − 1)

∫ 1

G

1 − 42(b − 4−2((1−b) + 4−2(

b (1 − b) 3b ,

�2(G) =
−1

(1 − V) (4−2( − 1)

∫ G

0

(1 − 42(b) (4−2(b − 1)
b (1 − b) 3b .

(21)

Note that these integrals cannot be solved in closed form, and are estimated numerically.328

Numerical validation. We compare our approximations (eqs. (19) and (20)) with results of sim-
ulations of our dichotomous model using various U and V values, as well as simulations of the330

Wright-Fisher model, using the effective selection coefficient, 1 − V, and effective population size,
#4 = U# + (1 − U). We find see that the two models have similar dynamics, and both are well332

approximated by our approximations (Figure 1).

Changing environment . After finding a good approximation in a constant environment, where the334

favorable trait is always �̂, we proceeded to find an approximation for a periodically changing envi-
ronment. Following [21], we denote : as the number of generations in which the invading phenotype336

is favored by success bias, and ; as the number of generations in which the resident phenotype is
favored by success bias. Thus, during the first : generations of the environmental cycle, V =

V(�)
V( �̂)<1,338

where �̂ is the invading phenotype. During the following ; generations of the environmental cycle,
the phenotype favored by success bias is switched, such that V(�)

V( �̂) > 1. We then proceed to find340

expressions for the expectation and variance of the change in the frequency of phenotype �̂ after
= = : + ; generations. The proof is in Appendix C.342

Drift and diffusion terms in a changing environment. Let G be the initial frequency of the invading344

phenotype and -C the number of individuals with that phenotype after = generations. Then,

� [-=/# − G] ' G(1 − G)(=/#4 , and + (-=/# − G) ' =G(1 − G)/#4 , (22)346

where (= =
=∑
C=1
# (1 − VC) and VC is V(�) at generation C.

Note that here, we have the average selection coefficient during a cycle of = generations as the selection348

coefficient in eq. (19). Using the drift and diffusion terms and following [21], we can approximate the
fixation probability in a changing environment.350
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Figure 1: Fixation probability and time in a constant environment. Fixation probability and time (in
generations) as a function of the success-bias weight U (bottom x-axis), or effective population size #4 (top
x-axis) in the top row, and as a function of the success coefficient, 1− V, on the bottom row. The approximation
(black; eq. (19)) agrees with both DM simulations (green) and Wright-Fisher simulation (orange). Fixation
probability (A) is bounded by 2(1 − V) (blue). Markers are averages of 10, 000 simulations, error bars show
95% confidence intervals for panels A and B and 75% for panels C and D. Here, Population size, # = 1, 000;
phenotype values, � = 0.7 (panels A and B), �/�̂ varies between 0.01 and 0.99 (panels C and D), and �̂ = 1,
which affects V via eq. (17); success coefficient, 1 − V = B = 0.044 (panels A and B); success-bias weight,
U = 0.01 (panels C and D).

Result 6 (Fixation probability in a changing environment). The fixation probability of an invading352

phenotype under periodical environmental changes is approximately

c̃(G) = 1 − 4−2 (=
=
#4G

1 − 4−2 (=
=
#4

. (23)354

where G is the initial frequency of the invading phenotype.

Numerical validation. To validate the the approximation for the fixation probability in a changing356

environment (eq. (23)), we compare it to results of simulations that use the DM approximation
(Corollary 2). We find that the approximation fits the simulation results well for variable bias weights,358

U, which corresponds to the effective population size (Figure 2A).
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However, the approximation is more sensitive to the value of the success bias coefficient V (Figure 2B).360

We suspect that when V is too small, there will not be many cycles in the simulations, because either
the population reaches a high frequency of the fitter phenotype after just a few cycles, or the fitter362

phenotype goes extinct very quickly. For such V values (below 0.65), the fixation probability exceeds
even the constant environment approximation (which is the upper limit). We note that the diffusion-364

equation approximation assumes weak selection, or in our case, weak success bias.

We found that for a large :/; ratio (with a constant cycle length, = = : + ; = 100), the changing366

environment approximation (eq. (23)) converges to the constant environment approximation (eq. (19)),
see Figure 2C and Figure 2D.368

The approximation follows the trend of the simulation results for allU values. On increasing the success
coefficient U to more than 0.15, the simulation results were located above the changing environment370

approximation, and below the constant environment approximation. We believe the reason is the
structure of the cycle. Our proof and approximation in the changing environment are for a large372

number of cycles, and when the success coefficient U is too high, there might be very few cycles.
Either the ideal trait is copied by enough copiers so that the influence is sufficient to negate the success374

bias when the cycle changes (and the trait favored by the bias becomes the disfavored), or the opposite
happens, and the ideal trait goes extinct before there are enough copiers that copied it. We then tried to376

change the ratio between the number of cycles where �̂ is favored and disfavored. We showed that the
approximation fits well regardless of the ratio, but when the ratio of favored generations to disfavored378

ones is very high, it is very similar to a constant environment model.
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Figure 2: Fixation probability in a changing environment. (A) Fixation probability decreases with the
success-biasweight (bottomx-axis) and effective population size (top x-axis). The approximation (blue; eq. (23))
agrees with simulation results (orange). (B) Fixation probability increases with the success coefficient, V. When
success bias is large (1− V > 0.1), simulation results (orange) are underestimated by the changing environment
approximation (blue; eq. (23)). With even larger success bias (1 − V > 0.35), even the constant environment
approximation (green; eq. (19)) slightly underestimates simulation results, likely because the diffusion equation
approximation assumesweak "selection" . (C,D) The approximation (blue) is robust to changes in environmental
cycle length, as it agrees with simulations (orange) for different sizes of the changing environment cycle, where
: and ; are the number of generations each trait value is under success bias. When : > ;, the approximation
and the simulations are both very close to the constant environment approximation (green), because the more
generations the rare phenotype is favored, the more similar it is to the constant environment model, where it is
always favored by the success bias. Markers show average of 10, 000 simulations, error bars show 75% (panels
A, C, and D) and 95% (panel B) confidence intervals. Here, population size, # = 1, 000; phenotype values,
�̂ = 1 with � = 0.9 (panels A and B) and � = 0.8 (panels C and D); In panel A, the success coefficient is
1 − V = B = 0.005; In panels B, C, and D, the success-bias weight is U = 0.1.

Adaptive success-bias weight380

We ran simulations of the role-model choice process during a single generation in which every
copier evaluates its own optimal success-bias weight, U∗, which minimizes the expected squared error382
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between the estimated and the ideal trait values,

U∗ = argmin
#∑
9=1

U� 9 + (1 − U) 9∑#
;=1 U�; + (1 − U) ;

( �̂ − � 9 )2 , (24)384

where � 9 is the trait of role-model 9 and  9 the number of copiers that already chose role-model
9 .386

We find that when copiers choose their success-bias weight, it decreases with the number of copiers
that have already chosen a role-model (Figure 3). Moreover, their estimation error is much lower388

compared to a constant success-bias weight, which gives roughly the same high estimation error to all
copiers (compare Figure 3B and C): in this example, the adaptive weight estimation error converges390

to 0.046, whereas a constant weight gives values > 0.74.
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Figure 3: Advantage of an adaptive success-bias weight. Both success-bias weight U (A) and estimation
error (B) decrease during the role-model choosing process, demonstrating that influence becomes more favored
as more copiers have made their choice. However, when U is homogeneous (C), the mean estimation error
doesn’t decrease, regardless of U or [. The mean estimation error in the homogeneous U model is larger by a
factor of 10 than the adaptive U model. Here, population size # = 200; estimation error is normally distributed
4 ∼ # (0, [2) with standard deviation [ =0.0001 (blue), 0.001 (orange), 0.01 (green), plots are average of 300
simulations.
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Discussion392

Some cultural traits or cultural role-models may be copied more often than others due to transmission
biases. One such bias is success bias, in which copiers are more likely to copy a successful role-model.394

Although many models assume that success can be accurately estimated, it has been suggested that
because it is hard to estimate success, amore common bias is prestige bias—abias towards role-models396

perceived to be successful. This perceived success can be determined by performance with respect to
another trait (indirect) [5, 24], or by the influence an individual has on others [26, 31].398

We developed a cultural-evolution model with prestige bias that includes both indirect success and
influence biases, where the latter is a bias towards role-models with many copiers and hence is the400

same as conformity bias. We model the these biases using a stochastic role-model choice process:
each copier, in turn, randomly chooses a role-model, and this choice is affected both by the estimated402

success of each potential role-model and the number of copiers that already chose each role-model
(eq. 10).404

Hence, our model has two “nested” stochastic processes: the role-model choice process within each
generation, and the cultural-evolutionary process between generations. To simplify the mathematical406

and computational analysis, we developed analytic approximations for the role-model choice process
using the the generalized binomial distribution (GBD, Result 1) and the Dirichlet-Multinomial dis-408

tribution (DM, Corollary 2). The latter is especially useful, as it approximates the entire role-model
choice process and only requires us to assume that the relative effect of success and influence is a410

characteristic of the role-model and not the copier.

Analyzing the model with the DM distribution, we found approximations for the fixation probability412

and fixation time of a cultural trait under biased transmission in a constant environment. Our approxi-
mations are similar to Kimura’s evolutionary-genetic approximations, in that (i) the difference between414

the resident and invading cultural trait values, 1 − V(�), is equivalent to the selection coefficient in
favor of a beneficial allele, B, and (ii) increasing the relative weight of influence versus success bias,416

U, decreases the effective population size, #4 (Figure 1).

We also analyzed a cyclic changing environment in which the identity of the success-biased trait418

switches after a fixed amount of generations (Figure 2). We find that, similarly to the constant
environment approximation, a change in the success-bias weight U has no negative effects on the420

goodness-of-fit of the approximation to simulation results. We also showed that this approximation is
more sensitive to changes in the success coefficient V than the constant environment approximation,422

and a lower value is required to have a good fit. The ratio between the number of generations in which
the rare phenotype is under positive transmission bias and the number of generations in which it is424

under negative bias does not affect the goodness-of-fit of the approximation.

We also examined a scenario in which copiers can adapt their success-weight bias, U, to minimize their426

copying error, i.e., copy trait values closer to the optimal value. We found that as the role-model choice
process proceeds (that is, more copiers make their choices), both the success-bias weight (chosen by428
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copiers) and the estimation error decrease. The latter is significantly lower than in a population using
a constant, fixed success-bias weight, regardless of the value of the constant weight (Figure 3). This430

suggests that the later a copier makes its choice, the more it should rely on choices of previous copiers,
and the less it should rely on its own estimation. The rationale, then, is that the more information a432

copier has, e.g., by using others as information sources, the more informative and effective his choice
can be.434

Chudek et al. [31] report the first direct tests in children that suggest the existence of prestige bias,
defined as the tendency to learn from individuals to whom others have preferentially attended, learned,436

or deferred. Their definition of prestige is similar to our influence bias. They showed that the odds
of 3-4 years-old children learning from an adult role-model to whom bystanders had previously438

preferentially attended for 10 seconds were more than twice those of learning from a role model
whom bystanders ignored. They also note that prestige effects are domain sensitive: they found that440

prestigious role-models were attended more when demonstrating artifact use, whereas role-models
presenting food preferences had less attendants, suggesting that the domain itself (artifact use vs.442

food preference) can affect the attendance, and hence the prestige of the role-model. This led to the
suggestion that when the trait is costly to learn individually, prestige will have a stronger bias [31]. It444

would be interesting to include costs in our model to try and observe these effects and dynamics in a
large population.446

According to [24], natural selection has favored the emergence of psychological biases for learning
from those individuals most likely to possess adaptive information. They studied Fijian villages to448

examine if and how such biases emerge in a small-scale society. They found that Fijian villagers are
more likely to learn from role-models perceived as more successful/knowledgeable, both within and450

across domains. Their research thus suggests that copying from those perceived as successful, rather
than who are actually successful, is a common phenomenon. They show that the social networks452

representing copier–role-model relationships are centralized, suggesting that it is consistent with
the prediction that people substantially share notions about who is a good cultural model, but that454

individuals’ role-model selections are influenced by multiple factors.

Prestige bias also occurs in more modern domains such as western medicine. Norredam and Al-456

bum [28] examined literature from 1950 to 2005 on the effects of prestige on medicinal practices.
They found that active, specialized, biomedical, and high-technological types of medicine on organs458

in the upper part of the bodies of young and middle-aged people were accorded high levels of prestige,
whereas medicine and practices that were not of these types had low levels of prestige. For example,460

they found that surgery counts as the most prestigious specialty, while psychiatry is the least presti-
gious. In addition, doctors tend to rank practices that require more time to master as more prestigious,462

while other procedures that are considered easier to master are less prestigious. This means that there
may be very important practices that are neglected due to prestige bias. They concluded that such464

differences in prestige may affect for actual priority setting in healthcare systems.

Prestige bias can help to cheaply estimate and acquire knowledge, which may facilitate survival and466

reproduction. However, it is not always the case, and there could be negative repercussions to this
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bias, such as invasion of maladaptive traits. Takahashi and Ihara [27] mention that social learning468

not only takes the form of random copying of other individuals, but also involves learners’ choice
of what to learn and from whom to learn. They suggest a best-of-k model where an individual470

samples : role-models and chooses the one he deems most "successful". They mention that a previous
mathematical analysis has shown that it may sometimes result in maladaptive cultural evolution when472

the payoffs associated with cultural variants vary stochastically. In such a case, learners may be
selectively disfavored and in the long run replaced by unbiased learners, who simply copy someone474

chosen at random. They developed new mathematical models that are simpler and mathematically
tractable. They found that best-of-k learning, unlike unbiased learning, can facilitate the invasion of476

an on average inferior variant that sometimes gives a very high payoff (see Fogarty et al. [56] and
references there). Our model, which includes influence bias, is consistent with this claim. When a478

maladaptive trait is “piggybacking” on a role-model with high influence, the former could spread in
the population. In addition, best-of-k learning can be stable against invasion by unbiased learning if480

social learning is sometimes combined with individual learning [27]. Our model includes only social
learning, and not individual learning, but it could be interesting to combine it with individual learning482

and see how it affects the dynamics.

Prestige bias can also accelerate reversal of harmful traditions such as child marriage and domestic484

violence. Efferson et al. [25] suggest a spillover mechanism, in which an intervention affects a large
enough group in a target population, so that others not included in the intervention also change their486

behavior. They find that there are individuals who act as agents, who are often observed, and therefore
they are ideal targets for interventions. This is similar to influential role-models in our model, where a488

prestigious individual will be copied more often, and will therefore spread their trait faster and wider
in the population. They also suggest a way to use this phenomenon to change existing traditions in490

a population. It is very clear however, that just as it can be used to end harmful traditions, the same
agents could start harmful traditions.492

Dunbar [30] hypothesized that larger, more complex brains can store and manage more information
and in turn, this information can support the costs of a larger brain. Following this, Muthukrishnan494

and Henrich [29] suggested that prestige can directly affect human physical evolution. They present a
concept called cultural brains—brains that evolved primarily for the acquisition of adaptive knowledge.496

They then develop a model that predicts a strong relationship between brain size and group size,
because group size also provides access to more adaptive knowledge. They also presented the498

cumulative cultural brain hypothesis, which proposes that human brains have evolved with an ability
and tendency for selective, high-fidelity social learning. As part of this process, there are a variety of500

strategies and biases that have evolved to hone in on the most adaptive knowledge. These strategies
and biases include direct and indirect cues of the popularity of cultural traits (e.g. success and prestige502

biases). They suggest that one of the reasons for the extreme increase in brain size in humans is the
ability to "cheaply" acquire adaptive knowledge via transmission biases such as prestige.504

One path forward is an analysis of the dynamics of the adaptive success-bias weight model, in which
every copier chooses its U. It would be interesting to see the if the mean estimation error and the506
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adaptive weight, U∗, converge to specific values, and how they are affected by the model parameters. It
may also be possible to relax the assumptions required for our approximations, such as homogeneous508

estimation error and success-bias weight. Lastly, it would be interesting to analyze the continuous
model and determine how much it differs from the dichotomous model.510

Another way to expand our model is to account for the two types of prestige or leadership suggested
by Van Vugt and Smith [23] that are attributed to Confucius and Machiavelli. Confucius viewed512

leaders as role-models who exercise influence through possessing superior knowledge, skills, and
(outstanding) personal qualities. This fits the success bias in our model. In contrast, Machiavelli514

viewed leaders as rulers who exercise influence by imposing costs through (the threat of) punishment
and violence. Van Vugt and Smith suggest that these opposing views are both partially supported by516

the available evidence but each one on its own offers an incomplete view of the complex and dynamic
concept of leadership. Several adjustments could be made so that our model reflects these leadership518

styles, such as assuming there is a correlation between phenotype and leadership style. The resulting
cultural-evolutionary dynamics and their dependence on the costs and benefits are intriguing.520

Conclusions. We studied a model of cultural evolution under two transmission biases: the commonly
studied success bias, together with influence bias, which has so far received less attention. We found522

approximations for this complex dynamics. We then showed that success bias affects the evolutionary
dynamics much like natural selection does, whereas influence bias has a similar effect to random524

genetic drift. We also find a clear advantage to individuals that can choose the relative weight of the
two biases.526
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Appendices

Appendix A General binomial distribution approximation

Proving IE[ # 9 ] = U 9 · V(� 9 + 4)/U · V(� + 4), where the average in the denominator is over the
role-models index, 9 .

Proof. The initial prestige of role-model 9 based on eq. (10) is

�1, 9 =
U 9 · V(� 9 + 4)

#∑
<=1

U< · V(�< + 4)
. (A1)

The denominator of eq. (A1) can also be formulated as:

#∑
<=1

U<V(�< + 4) = # · U · V(� + 4) , (A2)

where UV(� + 4) is the mean value of U< · V(�< + 4). Using eq. (A2) and Corollary 1 we get,

IE[ #, 9 ] = U 9 · V(� 9 + 4)
/
U · V(� + 4) , (A3)

Appendix B Drift and diffusion in a constant environment

Proving drift and diffusion terms in a constant environment. Let G and G′ be the frequency of
type �̂ in a population with # individuals in the current and next generation, and V be the success
coefficient of phenotype �, V = V(�) < V( �̂) = 1. Then,

� [G′ − G] ≈ G(1 − G) (1 − V) , + (G′ − G) ≈ G(1 − G)
( 1
U# + (1 − U)

)
.

Proof. Let - be the number of individuals of type �̂ such that G = -/# . -′ is the number of
individuals with �̂ in the next generation. The expected number of individuals is (due to the DM
approximation),

� [-′] = # U1
U1 + U2

, (B1)
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where U1 = U′- and U2 = U′(# − -)V, from eq. (11). To use frequencies instead of counts,
� [G′] = � [-′/#] = 1

#
� [-′]. Putting it together,

� [G′] = 1
#
#

U′G#

U′G# + U′# (1 − G)V =
G

G + (1 − G)V

=
G

G + (1 − G) − (1 − G) + (1 − G)V = G
1

1 − (1 − G) (1 − V)
= G

(
1 + (1 − G) (1 − V) + >(1 − V)

)
= G + G(1 − G) (1 − V) + >(1 − V) ,

(B2)

following Durrett [20, p. 253, ch 7.2] and because 1/(1 − H) = 1 + H + H2 + . . ..

We therefore have

� [G′ − G] = � [G′] − � [G] = G(1 − G) (1 − V) + >(1 − V) , (B3)

which gives us the drift term of the diffusion equation.

Using the variance of the DM distribution,

+ (-′) = # U1
U1 + U2

(
1 − U1

U1 + U2

) (# + U1 + U2
1 + U1 + U2

)
. (B4)

Again, we want to use frequencies so we have+ (-′/#) = 1
#2+ (G′). Putting it together with our model

notations,

+ (G′) = 1
#2#

G

G + (1 − G)V

(
1 − G

G + (1 − G)V

) (# + U′G# + U′# (1 − G)V
1 + U′G# + U′# (1 − G)V

)
. (B5)

Following Durrett [20, ch 7.2], we assume V ≈ 1, such that

G

G + (1 − G)V ≈ G (B6)

and for the entire variance expression we get

+ (G′) ≈ 1
#
G(1 − G)

(# + U′G# + U′# − U′G#
1 + U′G# + U′# − U′G#

)
= G(1 − G)

( 1 + U′
1 + U′#

)
. (B7)

The current frequency G is a given, such that + (G) = 0, and therefore

+ (G′ − G) = + (G′) −+ (G) ≈ G(1 − G) ( 1 + U′
1 + U′# ) . (B8)

U′ is the odds ratio of the bias weight,
U′ =

U

1 − U . (B9)
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Combining eq. (B8) and eq. (B9) we get:

+ (G′ − G) ≈ G(1 − G)
( 1 + U

1−U
1 + U

1−U#

)
= G(1 − G) ( 1

U# + (1 − U) ) . (B10)

This gives the diffusion term of the diffusion equation.

Appendix C Drift and diffusion in a changing environment

Proving drift and diffusion terms in a changing environment. Let G be the initial frequency of the
invading phenotype and -C is the number of individuals with the phenotype at time C. Then,

� [-C/# − G] ' G(1 − G)(C/#4 , and + (-C/# − G) ' CG(1 − G)/#4 ,

where (C =
C∑
8=1
# (1 − VC).

Proof. Let BC = # (1 − VC), and (= =
=∑
8=1
B8, where VC is V(�) at generation C. We prove by induction

both terms in eq. (22). From eq. (B3) we know that

�

[
-C+1
#
− -C
#

����-C] =
-C

#

(
1 − -C

#

)
(1 − VC+1) =

1
#

-C

#

(
1 − -C

#

)
BC+1 . (C1)

Also note that using the definition of + (H) = � [H2] − (� [H])2

�

[
-C

#

(
1 − -C

#

)]
= �

[
-C

#
−

(
-C

#

)2
]
= �

[
-C

#

]
− �

[(
-C

#

)2
]

= �

[
-C

#

]
−+

(
-C

#

)
−

(
�

[
-C

#

] )2
.

(C2)

We can now use the induction assumption of +
( -C
#

)
to get

�

[
-C

#

(
1 − -C

#

)]
' �

[
-C

#

] (
1 − �

[
-C

#

] )
− 1
#4
CG(1 − G) . (C3)

From eq. (C1) we know that

�

[
-C+1
#
− -C
#

]
=

1
#
BC+1�

[
-C

#

(
1 − -C

#

)]
' 1
#
BC+1

(
�

[
-C

#

] (
1 − �

[
-C

#

] )
− 1
#4
CG(1 − G)

)
' 1
#
BC+1 · �

[
-C

#

] (
1 − �

[
-C

#

] )
− 1
#4#

BC+1CG(1 − G) .
(C4)

Now we omit $
( 1
#4·#

)
and get

�

[
-C+1
#
− -C
#

]
' 1
#
BC+1 · �

[
-C

#

] (
1 − �

[
-C

#

] )
. (C5)
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We now look at the induction assumption to see that

�

[
-C

#
− G

]
= �

[
-C

#

]
− � [G] = �

[
-C

#

]
− G , (C6)

so using the assumption we get

�

[
-C

#

]
' 1
#
(CG(1 − G) + G ,

1 − �
[
-C

#

]
' 1 − 1

#
(CG(1 − G) + G .

(C7)

We use both expressions in eq. (C5) and get

�

[
-C+1
#
− -C
#

]
' 1
#
BC+1

(
1
#
(CG(1 − G) + G

) (
1 − 1

#
(CG(1 − G) + G

)
' 1
#
BC+1 · G(1 − G) ,

(C8)

after again omitting $
( 1
#2

)
terms. To conclude the proof, we note that

�

[
-C+1
#
− G

]
= �

[
-C+1
#
− -C
#

]
+ �

[
-C

#
− G

]
, (C9)

so again using the induction assumption, together with eq. (C8) we get

�

[
-C+1
#
− G

]
' 1
#
BC+1 · G(1 − G) +

1
#
(C · G(1 − G)

' 1
#
G(1 − G) ((C + BC+1) '

1
#
(C+1G(1 − G) ,

(C10)

which proves the drift term.

For the diffusion term, we use a property of variance,

+

(
-C+1
#

)
= �

[
+

(
-C+1
#

����-C)] ++ (
�

[
-C+1
#

����-C] ) . (C11)

Using eq. (C1) we see that

�

[
-C+1
#

����-C] − � [
-C

#

����-C] =
1
#
BC+1

-C

#

(
1 − -C

#

)
�

[
-C+1
#

����-C] =
-C

#
+ 1
#
BC+1

-C

#

(
1 − -C

#

)
.

(C12)

Using eq. (B10) we get

+

(
-C+1
#

����-C) =
1
#4

-C

#

(
1 − -C

#

)
, (C13)
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and using the equation H′(1 − H′) ' H(1 − H) on the first part of eq. (C11) we get

�

[
+

(
-C+1
#

����-C)] =
1
#4
�

[
-C

#

(
1 − -C

#

)]
' 1
#4
G(1 − G) . (C14)

Moving on to simplify the second part of eq. (C11) using eq. (C12),

+

(
�

[
-C+1
#

����-C] ) = +

(
-C

#
+ 1
#
BC+1

-C

#

(
1 − -C

#
.

))
(C15)

Now, because -C
#

is a frequency, i.e 0 ≤ -C/# ≤ 1, we know that +
(
-C
#

(
1 − -C

#

))
≤ 1

4 . We therefore
find that

+

(
1
#
BC+1

-C

#

(
1 − -C

#

))
≤ 1

4#2 B
2
C+1; , (C16)

and so it can be ignored. Combining our equations we get

+

(
�

[
-C+1
#

����-C] ) = +

(
-C

#

)
+$

(
1
#2

)
' +

(
-C

#

)
. (C17)

Using the induction assumption and eq. (C14),

+

(
-C+1
#

)
' 1
#4
G(1 − G) + 1

#4
CG(1 − G) ' 1

#4
G(1 − G) (C + 1) (C18)

which proves the diffusion term.
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Supplementary Figures
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Figure S1: Numerical validation of the GB approximation. The approximation (orange) fits simulation
results (blue) well when using 1,000 simulations. Here, population size, # = 2, 000; bias weight, U = 0.1; ideal
phenotype value, �̂ = 1; role-model traits A ∼ # (0, 1); success bias value, V(�) = 0.956.
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Figure S2: Numerical validation of the DM approximation. We performed computational simulations of the
role-model choice process (Equation (10)) and compared the distribution of the number of copiers to simulations
when using the DM distribution approximation (Corollary 2). (A) The difference between the DM distribution
(orange) and the empirical distribution of the simulations (blue) is very small. (B) The log-likelihood of
the DM distribution for results of the simulations (red vertical line) is much higher than the log-likelihood of
permutations of simulations (blue histogram). Here, population size, # = 100; number of simulations,< = 100;
phenotype values, �̂ = 1, � ∼ # (0, 1); success-bias weight, U = 0.5. No estimation error or bias is applied,
and traits are estimated and copied perfectly.
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Figure S3: DM Approximation precision as function of number of simulations. Our DM approximation
(orange) agrees with stochastic simulation results (blue) when using 1,000 or more simulations. Both fluctuate
around the analytic fixation probability approximation (black; eq. (19)). Markers are averages across simulations,
error bars are 95% confidence intervals. Here, population size, # = 1000; success-bias weight, U = 0.5;
phenotype values, �̂ = 1, � = 0.7; success-bias value, V(�) = 0.956.
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Figure S4: Robustness of DM approximations to success estimation error. Both the DM approximation
(orange) and our approximation (black) agree with the stochastic simulations (blue), even with a high estimation
error. Markers are averages across simulations, error bars are 95% confidence intervals. 5,000 simulations per
data point; population size, # = 1000; success-bias weight, U = 0.1; phenotype values, �̂ = 1,� = 0.7; bias
strength parameter � ∼ # (1, [2) where [2 in on the x-axis.

Figure S5: Robustness of DM approximations to variation in the bias weight U. Fixation probability
does not seem to be affected by variation in success bias weight between role-models. Thus, both the DM
approximation (orange) and Kimura’s equation (black line) have a good fit to results of stochastic simulations
(blue). Markers for average across 5, 000 simulations, error bars are 95% confidence intervals. Here, population
size, # = 1000; success bias weight is normally distributed, U 9 ∼ # (0.5, n2) where 10−7 ≤ n2 ≤ 10−1;
phenotype values ,�̂ = 1,� = 0.7; success bias value, V(�) = 0.956.
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