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USE: a novel approach to uniformly sampling the environmental space

Abstract

1. Correlative  habitat  suitability  models  infer  the  geographical  distribution  of  species

using occurrence data and environmental variables. While data on species presence

are increasingly accessible, the difficulty to confirm real absences in the field often

forces  researchers  to  generate  them  in  silico.  To  this  aim,  pseudo-absences  are

commonly randomly sampled across the study area (i.e., the geographical  space).

However,  this  introduces  sample  location  bias  (i.e., the  sampling  is  unbalanced

towards the most frequent habitats occurring within the geographical space) and class

overlap  (i.e.,  overlap  between  environmental  conditions  associated  with  species

presences and pseudo-absences) in the training dataset. 

2. To mitigate this, we propose an alternative methodology (i.e., uniform approach) that

systematically samples pseudo-absences within a portion of the environmental space

delimited  by  a  kernel-based filter,  which  minimises  the  number  of  false-absences

included in the training set. 

3. We simulated 50 virtual species and modelled their distribution using training datasets

assembled with the occurrences of the virtual species and pseudo-absences collected

using the uniform approach and other  approaches that  randomly  sample pseudo-

absences within the geographical space. We compared the predictive performance of

the  models  and  evaluated  the  extent  of  sample  location  bias  and  class  overlap

associated with the different sampling strategies. 

4. Results  indicated that the uniform approach: (i) effectively reduces  sample location

bias and class overlap; (ii)  provides comparable predictive accuracy than sampling

2

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

2



USE: a novel approach to uniformly sampling the environmental space

strategies  carried  out  in  the  geographic  space;  (iii)  ensures  gathering  pseudo-

absences adequately representing the environmental conditions available across the

study area. We developed a set of R functions in an accompanying R package called

USE to disseminate the uniform approach.

Keywords:  background  points,  pseudo-absence,  ecological  niche  models,

environmental space, habitat suitability models, presence-only models, sample

location bias, class overlap, species distribution models, reproducibility.
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1 Introduction

Correlative habitat  suitability  models (hereafter,  HSMs) are a class of  statistical  models

used  to  describe  the  relationship  between  species  attributes  (e.g.,  presence-absence,

abundance) and a set of spatially-explicit variables chiefly representing abiotic and human-

related factors (e.g., climate, soil, land-use).  These models are rooted in the niche theory

(i.e.,  Hutchinsonian niche,  see  Guisan  et  al.,  2017)  and  rely  on  both  theoretical  and

practical  assumptions:  (i)  species  are  assumed  to  be  at  (quasi)equilibrium  with  their

environment (Hattab et al., 2017); (ii) the set of predictors used to fit HSMs  includes all

necessary  information  to capture  the  ecological  niche  of  the  species;  and  (iii)  species

attributes, used as the response variable,  need to be appropriate  for the intended model

purpose  (e.g.,  biodiversity  conservation,  forecasting  biological  invasions,  assessing  the

effects of global change; Tessarolo et al., 2021; see also Guisan et al., 2017 for a thorough

review on the theoretical assumptions underpinning HSMs). Some of these assumptions

are  hardly,  if  ever,  met  in  nature  since  species  are  seldom  at  equilibrium with  their

environment (Svenning  and  Skov,  2004),  posing  several  limitations  to  the  use  and

interpretation  of  HSMs’  outputs.  Acknowledging  and,  when  possible,  addressing  these

limitations still makes HSMs a powerful toolbox for understanding the drivers of the species’

realized and potential distributions (sensu Jackson and Overpeck, 2000). For this reason,

HSMs are still widely applied in several research fields, including biogeography (Wasof et

al.,  2015;  Duffy  et  al.,  2017),  climate  change  ecology  (Jarvie  and  Svenning,  2018),

conservation biology (Newbold, 2018; Santini et al., 2021), and invasion ecology (Hattab et

al., 2017; Da Re et al. 2020; Bazzichetto et al. 2021).

One of the most critical assumptions underpinning HSMs  is the appropriateness of

biological data for modelling the ecological niche of the species, which means that species
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attributes,  being  either  presence-absence  or  abundance  data,  should  allow  effectively

describing  the true  species-environment  relationship  (Guisan et  al.,  2017;  Baker  et  al.,

2022). However, while information on species occurrence (i.e., presence) is usually readily

accessible  through field-collected observations  or  museum/herbaria  records,  trustworthy

absence data are by far more difficult to gather or to confirm in the field (Jiménez-Valverde

et al., 2008), as their sampling requires labour-intensive and costly field campaigns (Hattab

et al., 2017). The usual lack of true absence data has  led to the development of  HSMs

approaches that either rely solely on presence data (so-called ‘presence-only models’, such

as the BIOCLIM model; Booth et al. 2014) or combine presence data with pseudo-absences

or background points for modelling species distributions (e.g., the MaxEnt algorithm; Phillips

et  al.,  2017).  The  terms pseudo-absences  and  background  points  are  often  used  as

synonyms in the scientific literature (Sillero and Barbosa, 2020), yet these two concepts

reflect rather different conditions. On the one hand, pseudo-absences are sampled from

geographical locations that are thought to feature unsuitable environmental conditions for

the species to establish (Barbet-Massin et al., 2012). On the other hand, background points

are collected from the whole spectrum of environmental  conditions present in the study

area, thereby possibly including suitable locations for the species (i.e., presence locations;

Phillips et al., 2009; Hallgren et al., 2019). Therefore, the use of pseudo-absences rather

than  background  points  reflects  the  user’s  degree  of  uncertainty  about  the  species’

ecological  preferences,  with  background  points  being  used  when  there  is  no  a  priori

knowledge about  the  unsuitable  environmental  conditions  for  the  species.  Although we

acknowledge the difference between pseudo-absences and background points, for the sake

of simplicity and because we feel the concept of pseudo-absence adheres more to what we

propose in this study, hereafter we will  always refer to pseudo-absences.

 To date, the most common approaches for  sampling  pseudo-absences involve (i)
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surveying a large sample of points randomly located across the study area (e.g., 10,000;

Barbet-Massin et al. 2012; Iturbide et al., 2015; Støa et al., 2019) or sampling them either

(ii)  within  or  (iii)  outside  the  area  covered by  buffers built  around  presence  locations

(VanDer Wal et al., 2009; Bedia et al., 2013). Beyond the pros and cons of each individual

approach, a common thread is that they all randomly deploy pseudo-absences across the

geographical space, which usually results in the oversampling of the most common habitat

conditions,  namely those that  are  more  geographically  widespread  throughout the area

under investigation (Tessarolo et al., 2014, 2021; Ronquillo et al., 2020). This phenomenon,

which is generally known as sample location bias (Elith et al. 2011), has detrimental effects

on  HSMs  for  different reasons.  First,  it  determines  the  incomplete  sampling  of  the

environmental conditions actually experienced by a species (i.e., the realised environment

sensu  Jackson  and  Overpeck,  2000),  possibly  leading to  the  estimation  of  truncated

species response curves (Hortal et al., 2008; Albert et al., 2010; Beck et al., 2014). Second,

it affects the predictive performance of HSMs (Acevedo et al., 2012), which is reflected in

the behaviour of the metrics used to evaluate them (Jiménez-Valverde et al., 2013; Sillero

and Barbosa, 2020). 

To overcome this issue,  previous studies  (Varela et  al.  2014;  Hattab et  al.,  2017)

proposed  to  sample  species  presence  and  (true)  absence  data  through  a  systematic

sampling of the environmental conditions available throughout the study area, thus limiting

the  artificial  constraint  imposed by  the  random sampling  towards  the  most  widespread

environments. More specifically, Varela et al. (2014), Hattab et al. (2017) and Perret and

Sax  (2022)  suggested  collecting  species’  presence  and/or  absence  within  2-  or  3-

dimensional environmental spaces obtained using ordination techniques. Such approaches

significantly  contributed  to  the  improvement  and  standardisation  of  the  way  species

observations,  including  pseudo-absences,  can  be  collected  to  calibrate  HSMs  reducing
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sample location bias. Yet, they do not explicitly consider class overlap, another relevant

methodological  issue  encountered  when  collecting  pseudo-absences  through  random

sampling  across  the  geographical  space.  Class  overlap  refers  to  the  overlap  between

environmental  conditions associated with species presence and absence, thus hindering

the concept of pseudo-absences itself. It has negative effects on the predictive performance

of  HSMs  and  is  particularly  critical  for  machine  learning  techniques,  while  regression

techniques such as GLMs seem to be less affected (Barbet-Massin et al., 2012; Grimmett,

Whitsed and Horta, 2020; Valavi et al., 2021). So far, class overlap has been addressed

using resampling techniques more oriented to adjusting an unbalanced number of classes

in the response variable (i.e., the ‘up-’ or ‘down-sampling’ approach;  Valavi et al., 2021),

irrespective of the technique to obtain pseudo-absences. 

As far as we know, there are no approaches for sampling pseudo-absences that are

able to mitigate both sample location bias and class overlap. Thus,  here we present  an

alternative sampling strategy,  which  we called  the  ‘uniform’ approach, that builds  upon

existing strategies for systematically sampling the environmental space to select pseudo-

absences.  The  novel  aspect  of  the  uniform approach is  that,  beyond  reducing  sample

location bias, it also minimises class overlap by implementing a kernel-based filter that is

used to delineate the portion of the environmental space where to collect pseudo-absences.

To  test  our approach,  we  simulated  50  virtual  species  and  compared  the  predictive

performance of HSMs trained on pseudo-absences sampled using the uniform approach as

well as other sampling strategies traditionally carried out within the geographical space: (i)

random  (i.e.,  pseudo-absences randomly  sampled  within  the  geographical  space);  (ii)

buffer-in  and  iii)  buffer-out  (i.e.,  pseudo-absences randomly collected  within  or  outside

buffers built  around presence locations, respectively).  To foster reproducibility, we provide

an accompanying R package called USE (Uniform Sampling of the Environmental space),
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which bundles the R functions needed to implement the uniform approach. The package is

available at https://github.com/danddr/USE. Finally, we provide a tutorial to explain how to

apply the uniform approach to real case studies, using the European beech Fagus sylvatica

L. as a target species.  

2 Methods

2.1 Simulation of virtual species

We used virtual species (hereafter VS) as they provide the great advantage of knowing the

true  generative process underlying the species geographical distribution (Meynard et al.,

2019).  The realised environmental space (sensu  Jackson and Overpeck 2000) of the 50

virtual species  was created using the bioclimatic variables gathered from the WorldClim

database (www.worldclim.org; spatial resolution ~18.6 km at the Equator; Fick and Hijmans,

2017).  We  restricted  the  distribution  of  the  simulated  VS  (and  those  of  the  climatic

variables) to the geographical extent spanning from -12° W to 25° E and from 36° to 60° N

(approximately  Western and Southern Europe)  to significantly  reduce the computational

effort to process the entire workflow. Each VS was generated using a random set of five

climatic  variables (out  of  the 19) through the function  generateRandomSp from the R

package  virtualspecies (Leroy  et  al.,  2016),  which  randomly  assigns  relationships

between the VS and those climatic variables (e.g., linear, quadratic relationships). This way,

we obtained a raster layer reporting the habitat suitability index (HSI, Fig. 1a), which we

then converted to a binary (i.e., presence-absence) map using  the function convertToPA.

Further  details  about  parameters  setting  can  be  found  in  the  R  code  available  at

https://github.com/danddr/USE_paper.
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2.2 Sampling of the pseudo-absences

Regardless of the sampling approach and modelling technique used to calibrate the HSMs,

the ratio between the number of presences and pseudo-absences in the training datasets

(i.e., sample prevalence) was kept equal to 1, which means an equal number of presences

and pseudo-absences were collected. In practice, each of the VS-specific training dataset

included  300  presences,  which  were  randomly  sampled  within  the  geographical  extent

using  the  function  sampleOccurrences from  the  virtualspecies R  package.

Consequently,  we  collected an equal number of  pseudo-absences according to the four

sampling strategies presented below. 

2.2.1 Uniform approach: pseudo-absences sampled within the environmental space

For each VS (i.e., iteration), we built a 2-dimensional environmental space by keeping the

first two axes of a principal component analysis (PCA) performed on the correlation matrix

of  the  five randomly  selected  bioclimatic  variables  used  to  generate  the  realised

environment (Fig. 1b). Each time, we checked that the first two principal component axes

accounted for at least 70% of the total bioclimatic variability. Then, we uniformly sampled

pseudo-absences, here intended as the PC-scores projected onto the environmental space,

using  the  function  uniformSampling.  More  specifically,  each  pair  of  PC-scores

represents  the  position  of  a  given  geographical  location,  as  defined  by  the  bioclimatic

conditions it features, within the environmental space. Below,  we present a step-by-step

description  of  the  uniform  sampling  performed  by  the  function  paSampling,  which

internally calls uniformSampling, in the USE R package:

1. First, kernel density estimation is used to calculate the probability density function of
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the presence data within the 2-dimensional  environmental  space (Fig. 1c).  Similar

uses of kernel density estimation have become popular in recent years, especially due

to  their increasing use in trait-based ecology to compute probabilistic hypervolumes

and trait probability densities (Mammola and Cardoso, 2020 and reference therein).

All pseudo-absences associated with a probability threshold equal to or greater than

0.75 (i.e., the default threshold value used in the paSampling function) are excluded,

since  these  points  are  likely  to  bear  environmental  conditions  associated  with

presence locations and can therefore introduce false-absences in the training dataset.

The kernel bandwidth (i.e., the width of the kernel density function  that defines its

shape) can be either defined by the user or automatically estimated by the function

paSampling. In the latter case, the function uses a bandwidth selector by internally

calling the function Hpi of the R package ks (Duong, 2021).

2. A sampling grid constituted by a pre-selected resolution (e.g., 10 X 10 cells) is overlaid

on the 2-dimensional  environmental  space (Fig. 1d).  The optimal resolution of the

sampling grid can be found using the function  optimRes from the  USE package.

This function operates as follows: 

- Within each cell  of  the sampling grid,  the average (squared)  Euclidean distance

between  the  pseudo-absences  (PC-scores)  in  the  cell  and  the  centroid  of  their

convex hull is computed;

- The same measure is computed in each cell of the sampling grid and the average of

the cell-specific averages is computed (hereafter, grid average);

- The  procedure  above  is  separately  repeated  on  sampling  grids  of  increasing

resolution (i.e., increasing number of cells);

- The  resulting  grid  averages  are  used  as  a  measure  of  the  aggregation  among
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pseudo-absences within  the cells  of  the sampling grids.  This  value is  compared

across resolutions and the best grid is chosen as the one providing the best trade-off

between resolution and average distance among points within cells (i.e., resolution

that allows uniformly sampling the environmental space without overfitting it). More

specifically, the best grid is the one whose resolution is just below that which would

not allow the average distance among pseudo-absences to be reduced by more than

10% (other values can be set by the user). 

3. Once the resolution is set, the sampling grid is sequentially scanned (i.e., cell by cell)

by the uniformSampling function called via paSampling function and, from each

grid cell, a given number of pseudo-absences is randomly collected. At this stage, the

pseudo-absences associated with environmental conditions too close to those of the

presence  locations  are already  excluded  (see  step  1).  Notice  that  the  pseudo-

absences are randomly selected within the area of each cell of the sampling grid, and

not at the centroid nor at the nodes. 

The total number of pseudo-absences sampled within each cell of the sampling grid can be

set by the user (using the argument n.tr,  default n.tr = 5),  who can also indicate a

desired sample prevalence. If the sample prevalence is not specified, fewer pseudo-absences

are  likely  to  be  eventually  sampled  than  expected  (i.e.,  n.tr ×  number  of  cells).  This

behaviour happens because no points are collected in empty cells, and less points than n.tr are

available within the cells at the boundary of the environmental space (Figure 1d). Similarly, no

pseudo-absences are collected within the core area of the presences (excluded in step 1). If a

sample prevalence is set by the user,  the sampling grid is surveyed until  the set sample

prevalence is achieved. 
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Figure 1: Flowchart representing the step-by-step procedure for implementing the uniform

approach: a) habitat suitability index of the i-th virtual species (lighter colours indicate higher

habitat suitability and black dots represent presence points in the geographical space); b)

PCA performed on the environmental variables in the study region, lighter colours indicate

high PC-scores densities and black dots represent the presence points in the environmental

space; c) application of the kernel-based filter, which splits the environmental space in sub-

spaces associated with either the environmental conditions more suitable for the species

(blue) or those associated with less/not suitable environmental conditions (red; black dots

represent presence points); d) pseudo-absences are uniformly sampled across a sampling
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grid overlaid to the 2-dimensional environmental space. Specifically, pseudo-absences are

sampled within each cell of the 2-d grid. The inset map shows an example of an empty cell

(i.e., a grid cell containing no pseudo-absences; black dots represent presence points); e)

the red dots represent the dataset of pseudo-absences collected within the environmental

space  using  the  uniform  approach;   f)  the  white  dots  represent  the  pseudo-absences

collected  within  the  environmental  space  using  the  uniform  approach  displayed  in  the

geographical space, black dots represent VS presence points.

2.2.2 Pseudo-absences sampled within the geographical extent

The  sampling  of  pseudo-absences within  the  geographical  extent defined  above was

conducted using the random, buffer-in and buffer-out approaches. For the random approach

(Barbet-Massin et al. 2012; Iturbide et al., 2015; Støa et al., 2019), we simply located 300

random  pseudo-absences across the geographical extent. For the other approaches, we

created a buffer of 50 km radius around each presence location, and then we randomly

sampled the pseudo-absences within (cf. buffer-in; VanDer Wal et al., 2009) and outside (cf.

buffer-out; Bedia et al., 2013) the buffers.  Notice that for the buffer-out approach pseudo-

absences were collected within the convex hull of the species distribution (i.e., the convex

hull that connects the outer occurrences of the species and thus delimits the range actually

covered by the species in the geographical space).

2.3 Comparison among sampling strategies

2.3.1 Predictive performance comparison

The overall workflow of the analyses is described in Fig. 2. For each of the 50 VS and for

each of the four sampling strategies (i.e., uniform, random, buffer-in, buffer-out), we built a

specific dataset combining the presence records with the pseudo-absences sampled within
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the environmental and the geographical space (Fig. 1e). First, we modelled the presence–

pseudo-absences data as a function of the same five bioclimatic variables used to generate

each  of  the  50  VS.  To  this  aim,  we  randomly  partitioned each  dataset  (specific  for  a

sampling strategy) in 5 training (70% observations) and testing (30%) sets, which we used

to calibrate and validate five modelling algorithms: (i) generalised linear models (GLMs); (ii)

generalised additive models  (GAMs);  (iii)  random forests  (RFs);  (iv)  boosted regression

trees (BRTs); and (v) MaxEnt. In total, we fitted 5,000 HSMs (50 VS species × 4 different

sets of pseudo-absences × 5 modelling algorithms × 5 replicates of 70-30% partitions). To

fit  the  HSMs,  we  used  the  R  package  sdm (Naimi  and  Araújo,  2016).  Although  we

acknowledge  the  importance  of  fine-tuning  HSMs  (Fourcade,  2021),  we  leave model

settings  at  their  default  value since  it  would  have  been  unfeasible  to individually

parameterise each algorithm for all 50 VS and sampling strategies. 

Then,  we  compared  the  predictive  performance  of  each  combination  of  sampling

approaches and modelling techniques computing the following metrics: (i) area under the

receiver  operating  characteristic  curve  (AUC);  (ii)  continuous  Boyce  index  (CBI);  (iii)

sensitivity; (iv) specificity; and (v) true skill statistics (TSS). A detailed description of the five

modelling techniques and five validation metrics can be found in Guisan et al. (2017). To

compare the predictive performance of  the HSMs fitted under  different  combinations of

sampling strategy and modelling technique, we visually assessed the results of the 50 VS

simulations  using  violin  plots  reporting  the  distribution of  the  values  of  the predictive

performance metrics listed above. Furthermore, we tested differences among the predictive

performance of the sampling strategies using Kruskall-Wallis tests, followed by Dunn’s post

hoc rank sum comparisons using the dunn.test R package (Dinno, 2017) and correcting

p-values for multiple comparisons with the Holm correction. 

To test  the potential  effect  of  varying sample prevalences on our comparison,  we
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repeated the entire workflow on 10 VS using two different prevalence values: 0.5 and 0.1.

Specifically, for each VS, we generated two training datasets with 300 presences, but we

combined them with 600 and 3,000 pseudo-absences, respectively. 

2.3.2 Sample location bias and class overlap

To assess the intensity of sample location bias associated with the different sampling

strategies,  we  extracted  the  pseudo-absences  of  a  single  VS  and  map  their  spatial

aggregation within the environmental space using bivariate density plots. The aim was to

identify  which,  among  the  four  sampling  strategies,  was  more  subject  to oversampling

particular environmental conditions within the geographical space. In principle, the sampling

strategies  more  affected  by  sample  location  bias  would  exhibit  a  clear aggregation  of

pseudo-absences within the environmental space.  We visually assessed the areas of the

environmental  space  sampled  by  the  different  sampling  strategies  using  the  function

geom_density_2d of the ggplot2 R package (Wickham, 2016). This function performs a

2D kernel density estimation using the kde2d function of the MASS R package (Venables

and Ripley, 2002) and displays the results with contours.  

To assess the effectiveness of the uniform approach for mitigating class overlap, we

simulated 10 further  VS, sampled their  presences and pseudo-absences using the four

sampling strategies and mapped the position of the presence and pseudo-absence points

within the environmental space following the procedure explained in section 2.2.1 and figure

1a,b. Then, we computed the hypervolume of the presences and pseudo-absences using

the hypervolumes R package (Blonder, 2022) and calculated the overlap between them.

Significant differences in the degree of overlap were tested using one-way ANOVA and

Tukey HSD test. 

2.4 Real-case study
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To illustrate how to apply the uniform approach with the USE R package, we modelled the

realised  distribution  of  Fagus  sylvatica  in  Italy,  France  and  Spain  (hereafter,  Western

Europe).  We  chose  F.  sylvatica as  a  target  species  because  its  distribution  and

biogeographic history is well-known across Europe (Magri et al., 2006; Poli et al., 2022).

The whole procedure is described in S4.
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Figure 2 Overall workflow of the analysis described in the Methods section. 
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3 Results

3.1 Comparison of the predictive performance associated with geographical vs 

environmental sampling

Overall,  the  uniform  approach  performed  equal  to  or  better  than  the  geographical

approaches in terms of out-of-sample prediction. In particular, the uniform and buffer-out

strategies showed, on average,  the highest  predictive  accuracy and their  performances

were not significantly different (Fig. 3). Pairwise comparisons between the performance of

the random and buffer-out approaches against the uniform approach showed statistically

significant differences in 92% and 72% of the cases (5,000 models obtained from 50 VS x 4

sampling strategies x 5 algorithms x 5 replicates), respectively. However, these differences

were algorithm- and metric- dependent and did not point to a higher predictive performance

of the uniform approach (Fig. 3). The buffer-out and uniform approaches exhibited the most

similar  values for AUC, sensitivity and TSS, while CBI values tended to be higher with

respect to random sampling (i.e., Dunn’s test: p-value > 0.05; Tab. S1, Fig. S1.1).  Finally,

the buffer-in consistently showed the lowest performance in all comparisons regardless of

the  algorithm  and  predictive  performance  metric  used.  The  observed  pattern  of  the

difference among predictive performances was consistent across sample prevalences (Fig.

S3.1-3.2). 
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Figure  3:  Violin  plots  reporting  the  distribution  of  the  values  of  the  metrics  of  predictive

performance for the HSMs of the 50 VS  modelled as a function of 5, randomly selected bioclimatic

predictors, and setting sample prevalence equal to 1 (i.e., same number of presences and pseudo-

absences). Dots represent median values of the metrics of predictive accuracy. Columns indicate

the different performance metrics, while rows the modelling techniques used to compute HSMs. 

19

356

357

358

359

360

361

362

363

19



USE: a novel approach to uniformly sampling the environmental space

3.2 Effect of sample location bias and class overlap

The bivariate density plots of the pseudo-absences sampled within the environmental and

geographical  space  highlighted  that  the  uniform  approach  had the  widest  and  most

homogeneous coverage of environmental conditions throughout the environmental space

(Fig. 4, see Figure S2.1  for a detailed overview of the density of pseudo-absences sampled

by  the  uniform  approach).  In  contrast,  the  random,  buffer-in  and  buffer-out  strategies

appeared  to  be  prone to  sample  location  bias,  with  peaks  of  high  density  of  pseudo-

absences occurring in specific areas of the environmental space, i.e. those associated with

the most frequent habitat conditions encountered within the geographical space. 

Regarding class overlap, we detected a significant difference in the overlap between ranges

occupied by presence and pseudo-absence points within the environmental space (one-

way ANOVA F(3,36) = 39, p-value < 0.001). Specifically, the uniform approach exhibited the

lowest overlap in comparison to the other sampling strategies (Fig. 5).
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Figure 4: A) Bivariate plots showing the environmental space generated by a PCA carried out on 5

bioclimatic variables. Red lines represent the density of pseudo-absences within the environmental
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space for an individual virtual species. A more detailed representation of the density of pseudo-

absences sampled by the uniform approach is available in Figure S2.1. B) Histograms showing the

frequency distribution of the first two PCs. 

Figure 5: Violin plots showing the overlap in the environmental space between species

presences  and  pseudo-absences.  Colours  represent  samples  of  pseudo-absences

generated using four different strategies, dots represent median values of overlap across 50

VS.
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4 Discussion

In  this  study,  we proposed the  uniform approach as  an  alternative  strategy  to  sample

pseudo-absences within the environmental space. In contrast to existing techniques, our

approach  systematically  samples pseudo-absences  from  portions  of  the  environmental

space excluding the conditions that are likely to be suitable for the species to establish. As a

result, the uniform approach reduces the chance of including false-absences in the training

dataset.  From a more theoretical  perspective, data collected after the application of the

kernel-based filter are much closer to the concept of pseudo-absences than those obtained

through traditional,  geographical sampling  approaches.  Our  findings  showed  that  the

uniform approach represents a valid strategy for gathering pseudo-absences, as it performs

equally or better than sampling strategies implemented within the geographical space in

terms of model out-of-sample predictive accuracy.  Also,  the uniform sampling significantly

reduces  sample  location  bias  and class  overlap,  which  is  critical  to  obtain  ecologically

meaningful pseudo-absences. Importantly, the uniform approach is flexible, as it lets the

user  free  to  set  parameters  (e.g.,  kernel  bandwidth,  sample  prevalence,  sampling  grid

resolution) that control how pseudo-absences are sampled within the environmental space.

This is particularly valuable, as it makes this approach adaptable for modelling species with

different  ecological  properties  (e.g.,  generalist  vs  specialist  species).  By  generating

informative  pseudo-absences,  the  uniform  approach  allows  satisfying one  of  the  most

critical assumptions underpinning habitat suitability modelling: the need of adequate species

attributes to model the species-environment relationship (Guisan et al., 2017).
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4.1 Effect of the sampling approaches on models’ predictive performances 

Results of the VS simulations showed that the uniform approach performed well in terms of

out-of-sample  prediction  regardless  of  the  modelling  technique,  metric  of  predictive

performance, and sample prevalence. HSMs calibrated on pseudo-absences sampled with

the uniform approach consistently showed high predictive performance, especially for the

accuracy metrics related to  the  capacity of the model to correctly  predict presences (i.e.,

sensitivity and CBI).  Concerning the metrics associated with the models’ ability to  predict

absences (e.g., specificity), the uniform sampling showed values comparable to the other

strategies, except for the buffer-in approach, which always scored the lowest values. This

clearly suggests that  the  uniform approach  reduces  omission  error  without  necessarily

increasing commission error.  This is  coherent with  Fei  and Yu (2016),  who reported an

increase in model  predictive  performance  when  pseudo-absences were  systematically

collected within the environmental space. 

In this sense, results for the CBI, which is currently the go-to accuracy metric for validating

HSMs fitted on pseudo-absences or background points, were particularly encouraging: the

uniform approach scored, together with the buffer-out approach, the highest values across

all  modelling  techniques. The  high  predictive  performance  associated  with  the  uniform

approach can be attributed to how it operates: the systematic sampling of the environmental

space  and  the  kernel-based  filter.  In  particular,  the  specular  trends  of  the  predictive

accuracy metrics (Fig. 3) and the environmental overlap among pseudo-absences collected

through the different sampling approaches (Fig. 5) highlight the importance of the kernel-

based filter to favour the discrimination between the environmental features associated with

presences and pseudo-absences.
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Notwithstanding the positive results obtained in terms of predictive performance, we argue

that comparing model predictive accuracy may not be the best choice for evaluating the

adequacy of sampling carried out within the environmental rather than the geographical

space. Indeed, previous studies showed that these metrics are affected by several factors,

including sample prevalence (Guisan et al., 2017; Leroy et al., 2018), sample bias (Dubos

et al., 2022) or the spatial extent of the study area (Lobo et al., 2008). Moreover, AUC and

TSS tend to score high even in case of poor models calibrated on data exhibiting strong

sample location bias (Fourcade et al.,  2018, Jiménez-Valverde, 2021). Assessing HSMs

predictive performance using a set of different predictive accuracy metrics might help the

user to critically evaluate the outputs of the models.

4.2  Effect  of  the  uniform  sampling  on  sample  location  bias and  class

overlap

The uniform approach proved to significantly reduce sample location bias, since pseudo-

absences were homogeneously scattered  along the two principal component axes of the

bivariate density plot (Fig. 3ab, Fig S1.2 in Supplementary Materials). On the contrary, the

sampling approaches based on geographical space, which all perform a random sampling

of  the  pseudo-absences, exhibited  prominent  peaks  of  density  of  pseudo-absences  in

correspondence  of  the  most  frequently  environmental  conditions  available within  the

geographical space.  As a consequence, the random, buffer-in and buffer-out approaches

are likely to provide sub-optimal  pseudo-absences for modelling the species-environment

relationship, potentially resulting in  the estimation of   truncated species response curves

(Thuiller et al. 2004; Austin 2007). This aspect  is increasingly relevant as environmental

conditions are more heterogeneously distributed across the geographic space.  Therefore,

HSMs  calibrated  on  training  datasets  adequately  representing  environmental  variability
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rather  than wide geographical  coverage represent  a  crucial  step to  better  capture and

discriminate the niche variability of a species (Tessarolo et al., 2014, 2021; Varela et al.,

2014; Perret and Sax 2022).  

The  uniform  approach  proved  to  also  significantly  reduce  class  overlap.  The  thres

argument  in  the  paSampling function controls  the  portion  of  the environmental  space

associated with the species presence, thus inherently limiting the class overlap issue by

excluding environmental conditions more  favourable to the study species (see Fig. 1c, 5

and  Fig. S2.2). This results in a set of  pseudo-absences theoretically much closer to the

species’  true  absences.  Given  that  presence points  are  unevenly  distributed  within  the

environmental  space,  different  kernel  thresholds might  also be used to handle  pseudo-

absences  sampling  under  particular  scenarios.  As  an  example,  in  case  of  source-sink

dynamics, setting more conservative thresholds for the kernel functions may allow excluding

pseudo-absences from environmentally suitable areas, while not excluding areas where a

sink population is present due to accidental or mass dispersal close to a source population.

4.4 Limitations and usage notes

4.4.1 Limitations

A first  limitation of the uniform approach is that its effectiveness depends on the amount

(sample size)  and quality  (e.g.,  geographically  unbiased data sensu Fourcade 2014) of

presence data. Indeed, if few presence data are available and/or are geographically biased,

the  kernel-based  filter  might  not  accurately  delimit the  area  associated  with  suitable

conditions for the species. As a consequence, the discrimination between suitable and not

suitable conditions within the environmental space might be sub-optimal. 

A second limitation is that,  although the uniform approach proved to be robust  to
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varying sample  prevalence,  its  effectiveness  might  diminish  if  a very  large  number  of

pseudo-absences is sampled (e.g., in case of low sample prevalence) (Fig. S3.1-3.2). Since

the uniform approach samples a user-defined number of  pseudo-absences within a grid

overlaid  to  the  bi-dimensional  environmental  space,  if  the  number  of  pseudo-absences

grows  indefinitely,  the  advantage  of  the  systematic  sampling  decreases.  Indeed,

oversampling  the  environmental  space  would  generate  datasets  suffering  from  sample

location bias as much as those based on the random sampling of the geographic space.

Finally, from a more practical perspective, the uniform approach can currently only operate

across 2-dimensional environmental spaces, but 3-dimensional spaces might be supported

in the future.

4.4.2 Usage notes

We here used the uniform approach to sample climatic spaces, although we stress the

importance of not only using bioclimatic variables, but also information on soil, land-use as

well  as  other  relevant  variables  when  modelling  species  distributions.  Also,  we  invite

potential  users  of  the  uniform approach to  always  check  that  the first  two  axes of  the

principal component analysis used to generate the environmental space explains a large

portion of the variance in the data (e.g.,  ≥ 70%). Equally important is the choice of the

boundaries  of  the  geographical  extent  for  which  the  2-dimensional  space  has  to  be

generated. Indeed, to avoid the "there are no elephants in the Antarctic" paradox (Lobo et

al.,  2010),  the spatial  extent of  the study area should be delineated so that it  excludes

geographical locations and, in turn, environmental conditions where it is not possible to find

the  target  species  due to  ecophysiological  limitations  (e.g.,  collecting  pseudo-absences

from  Mediterranean  coastal  dunes  when  modelling  the  distribution  of  an  alpine  plant

species). In short, the uniform approach can provide exhaustive information on where the

species is likely to not occur, but it remains a responsibility of the end user to carefully verify
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if such information is ecologically meaningful.
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5 Conclusion

In this study, we evaluated the predictive performance of four sampling strategies, of which one 

implemented within the environmental space, to collect pseudo-absences for HSMs applications. 

Also, we compared the sampling approaches in terms of their vulnerability to sample location bias 

and class overlap. The sampling strategy which we proposed, the uniform approach, proved to (i) 

have good predictive performances, and (ii) to reduce sample location bias and class overlap. The 

uniform approach is openly available to users at https://github.com/danddr/USE.
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7 Code and Data availability 

The  scripts  for  replicating  the  analyses  presented  in  this  paper  are  available  at

https://github.com/danddr/USE_paper, as well as all the raw outputs of the simulations and

statistical analysis, which are available as an .RDS file.

We provide a tutorial to explain how to apply the uniform approach to real case studies,

using the European beech, Fagus sylvatica L. as a target species in S4.  The R script of the

tutorial is available at https://github.com/danddr/USE_paper.
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Supplementary Material 1

Tab. S1: Post-hoc multiple comparisons with Dunn’s rank sum test (α = 0.05; omnibus
test was always significant with P < 0.05, data not shown). All the comparisons were
performed comparing the Uniform dataset with the other different sampling strategies. P-
values were adjusted using Holm correction.

Model Metric Comparisons χ2 P.val

BRT AUC Buffer IN - Uniform 146.28 p<0.001

BRT AUC Buffer OUT - Uniform 146.28 0.176

BRT AUC Random - Uniform 146.28 p<0.001

BRT BoyceI Buffer IN - Uniform 131.66 p<0.001

BRT BoyceI Buffer OUT - Uniform 131.66 0.0356

BRT BoyceI Random - Uniform 131.66 0.009

BRT Sensitivity Buffer IN - Uniform 104.47 p<0.001

BRT Sensitivity Buffer OUT - Uniform 104.47 p<0.001

BRT Sensitivity Random - Uniform 104.47 p<0.001

BRT Specificity Buffer IN - Uniform 76.62 p<0.001

BRT Specificity Buffer OUT - Uniform 76.62 0.016

BRT Specificity Random - Uniform 76.62 p<0.001

BRT TSS Buffer IN - Uniform 150.78 p<0.001

BRT TSS Buffer OUT - Uniform 150.78 0.0087

BRT TSS Random - Uniform 150.78 p<0.001

GAM AUC Buffer IN - Uniform 141.11 p<0.001

GAM AUC Buffer OUT - Uniform 141.11 0.0336

GAM AUC Random - Uniform 141.11 p<0.001

GAM BoyceI Buffer IN - Uniform 144.02 p<0.001

GAM BoyceI Buffer OUT - Uniform 144.02 0.0044

GAM BoyceI Random - Uniform 144.02 0.0033

GAM Sensitivity Buffer IN - Uniform 131.32 p<0.001

GAM Sensitivity Buffer OUT - Uniform 131.32 p<0.001

GAM Sensitivity Random - Uniform 131.32 p<0.001
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Model Metric Comparisons χ2 P.val

GAM Specificity Buffer IN - Uniform 128.72 p<0.001

GAM Specificity Buffer OUT - Uniform 128.72 0.1586

GAM Specificity Random - Uniform 128.72 p<0.001

GAM TSS Buffer IN - Uniform 145.45 p<0.001

GAM TSS Buffer OUT - Uniform 145.45 0.0028

GAM TSS Random - Uniform 145.45 p<0.001

GLM AUC Buffer IN - Uniform 132.53 p<0.001

GLM AUC Buffer OUT - Uniform 132.53 0.0822

GLM AUC Random - Uniform 132.53 0.003

GLM BoyceI Buffer IN - Uniform 175.57 p<0.001

GLM BoyceI Buffer OUT - Uniform 175.57 p<0.001

GLM BoyceI Random - Uniform 175.57 p<0.001

GLM Sensitivity Buffer IN - Uniform 128.02 p<0.001

GLM Sensitivity Buffer OUT - Uniform 128.02 p<0.001

GLM Sensitivity Random - Uniform 128.02 p<0.001

GLM Specificity Buffer IN - Uniform 98.02 p<0.001

GLM Specificity Buffer OUT - Uniform 98.02 p<0.001

GLM Specificity Random - Uniform 98.02 0.1366

GLM TSS Buffer IN - Uniform 141.06 p<0.001

GLM TSS Buffer OUT - Uniform 141.06 0.0333

GLM TSS Random - Uniform 141.06 p<0.001

Maxent AUC Buffer IN - Uniform 151.46 p<0.001

Maxent AUC Buffer OUT - Uniform 151.46 0.0099

Maxent AUC Random - Uniform 151.46 p<0.001

Maxent BoyceI Buffer IN - Uniform 178.36 p<0.001

Maxent BoyceI Buffer OUT - Uniform 178.36 p<0.001

Maxent BoyceI Random - Uniform 178.36 p<0.001

Maxent Sensitivity Buffer IN - Uniform 64.45 p<0.001

Maxent Sensitivity Buffer OUT - Uniform 64.45 0.0677
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Model Metric Comparisons χ2 P.val

Maxent Sensitivity Random - Uniform 64.45 0.0099

Maxent Specificity Buffer IN - Uniform 66.81 p<0.001

Maxent Specificity Buffer OUT - Uniform 66.81 0.046

Maxent Specificity Random - Uniform 66.81 0.0035

Maxent TSS Buffer IN - Uniform 151.49 p<0.001

Maxent TSS Buffer OUT - Uniform 151.49 0.0098

Maxent TSS Random - Uniform 151.49 p<0.001

RF AUC Buffer IN - Uniform 147.3 p<0.001

RF AUC Buffer OUT - Uniform 147.3 0.0747

RF AUC Random - Uniform 147.3 p<0.001

RF BoyceI Buffer IN - Uniform 166.26 p<0.001

RF BoyceI Buffer OUT - Uniform 166.26 0.1462

RF BoyceI Random - Uniform 166.26 p<0.001

RF Sensitivity Buffer IN - Uniform 89.75 p<0.001

RF Sensitivity Buffer OUT - Uniform 89.75 p<0.001

RF Sensitivity Random - Uniform 89.75 0.1444

RF Specificity Buffer IN - Uniform 108.22 p<0.001

RF Specificity Buffer OUT - Uniform 108.22 p<0.001

RF Specificity Random - Uniform 108.22 p<0.001

RF TSS Buffer IN - Uniform 147.11 p<0.001

RF TSS Buffer OUT - Uniform 147.11 0.079

RF TSS Random - Uniform 147.11 p<0.001
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Figure  S1.1:  Post-hoc  multiple  comparisons  with  Dunn’s  rank  sum  test  (α  =  0.05;
omnibus test was always significant with P < 0.05, data not shown). All the comparisons
were  performed  comparing  the  Uniform  dataset  with  the  other  different  sampling
strategies: A) relative proportion of the significant comparisons aggregated by sampling
strategy; B) relative proportion of the significant comparisons aggregated by sampling
strategy and metric.
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Supplementary Material 2

Figure S2.1: Bivariate plots showing the environmental space generated by a PCA
carried out on 5 bioclimatic variables. Red lines represent the density of pseudo-
absences within the environmental space for an individual virtual species and for the
uniform approach only.

Figure  S2.2:  Effect  of  the  kernel  threshold  in  the  inclusion/exclusion  of  the
environmental space to sample. Black dots are the real VS occurrences plotted in the
environmental space. 
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Supplementary Material 3

Sensitivity analyses on the sample prevalence

To test the potential effect of different sample prevalence, we also repeated the

entire workflow on 10 VS with two different prevalence values. Specifically,  in

both cases we kept a training dataset consisting of 300 presences but we used

alternatively  600  and  3,000  pseudo-absences  (sample  prevalence  =  0.5  and

sample prevalence = 0.1, respectively).

Figure  S3.1:  Violin  plots  reporting  the  distribution  of  the  values  of  the  metrics  of
predictive  performance  for  the  HSMs  of  the  50  VS   modelled  as  a  function  of  5,
randomly selected bioclimatic predictors, and setting sample prevalence equal to 0.5.
Dots represent median values of the metrics of predictive accuracy. Columns indicate
the different performance metrics, while rows the modelling techniques used to compute
HSMs. 
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Figure S3.2:  Violin  plots  reporting  the  distribution  of  the  values  of  the  metrics  of
predictive  performance  for  the  HSMs  of  the  50  VS   modelled  as  a  function  of  5,
randomly selected bioclimatic predictors, and setting sample prevalence equal to  0.1.
Dots represent median values of the metrics of predictive accuracy. Columns indicate
the different performance metrics, while rows the modelling techniques used to compute
HSMs. 
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Supplementary Material 4: case study on the realized distribution 
of  Fagus sylvatica in Western Europe

Methods

To illustrate how to apply the uniform approach using the  USE R package, we

modelled the realised distribution of  Fagus sylvatica  in Italy, France and Spain

(hereafter,  western  Europe).  We  chose  F.  sylvatica as  an  example  species

because its distribution and biogeographic history is well-known across Europe

(Magri et al., 2006; Poli et al., 2022). For the sake of simplicity, we restricted the

area of investigation to western Europe and used only two modelling algorithms

(i.e.,  GLM and RF).  Indeed,  the case study of  F. sylvatica is  only  used as a

practical example on how to use the USE package, while not providing a further

comparison  of  the  predictive  performance  of  HSMs  fitted  on  data  collected

through different sampling strategies (as already done with the VS approach). We

gathered data on the presence-absence of F. sylvatica from the open EU-Forest

dataset (Mauri  et  al.,  2017),  which compiles presence data on European tree

species from national  inventories  and other  similar  sources (see Mauri  et  al.,

2017  for  further  information  about  EU-Forest).  EU-Forest  data  consist  of

presence-absence records of tree species exhaustively collected across Europe,

and then aggregated to a 1 × 1 km resolution grid. This let us assume with a

certain  degree  of  confidence  that  the  EU-Forest  dataset  provided  a

geographically  unbiased  sample  of  occurrence  records  for  F.  sylvatica,  and

absence data represented ‘true’ absences.

Across our study area, the EU-Forest dataset provided a total  of  12,444

presence  records  for  F.  sylvatica,  which  we  sub-sampled  within  the

environmental  space  to  retrieve  both  a  training  and  a  testing  presence  (for

internal  validation)  dataset.  To  this  aim,  we  generated  a  2-dimensional

environmental space using all 19 bioclimatic variables available from WorldClim.

Then,  we  used  the  function  uniformSampling from  the  USE package  to

uniformly sample occurrence records within the environmental space. Note that

this approach is conceptually similar to the spatial-thinning approach proposed by

Aiello-Lammens et al. (2015), which aims at reducing the clustering of presences

within the geographical space (Sillero and Barbosa, 2020), except that we here

applied it uniformly and within the environmental space (see Varela et al., 2014;
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Hattab  et  al.  2017).  Once presence records  (n  =  2,747)  were  uniformly  sub-

sampled within the environmental space, we randomly divided them into two sets

of training (70%) and testing (30%) occurrences to then derive the two respective

sets of training and testing pseudo-absences. To this aim, we first used all 12,444

available presence records to recover the core area of  F. sylvatica’s bioclimatic

niche using the function paSampling from the USE package and then filtered out

the background points likely associated with suitable locations for the species

(see step 1 in section 2.2.1 of the main text).  Once we removed background

points  likely  associated  with  the  core  bioclimatic  niche  of  F.  sylvatica,  the

obtained sample sizes were: 1,856 and 906 background points for the training

and  testing  (internal  validation)  dataset,  respectively.  Finally,  we  derived  a

completely independent testing (external validation) dataset using presence and

true  absence  data  from  sPlotOpen  (Sabatini  et  al.,  2021).  The  sPlotOpen

database is an open-access subset  of  sPlot,  one of  the most  comprehensive

global  databases of vegetation records (Sabatini  et  al.,  2021).  Here, we used

sPlotOpen to gather  F. sylvatica presences (n = 366), and also to derive true

absence data from those vegetation plots where F. sylvatica was not recorded (n

= 4039). As done for the EU-Forest dataset, we selected only those vegetation

plots data from sPlotOpen included in our study area (Italy, France and Spain) in

western Europe. 

The  realised  distribution  of  F.  sylvatica  was  modelled  as  a  function  of

WorldClim bioclimatic variables (resolution of 2.5 minutes at the Equator).  For

simplicity, we solely focused on the climatic niche of Fagus sylvatica, although we

acknowledge  that  other  factors  different  from  climatic  drivers  may  equally

contribute in shaping the distribution of this species, especially so at local scales

(Mellert et al., 2018). As modelling techniques, we used binary generalised linear

models  and  random  forests  (ranger  function  available  in  ranger R  package;

Wright and Ziegler, 2017). To avoid multicollinearity issues, we selected a subset

of the 19 bioclimatic variables using the findCorrelation function from the caret R

package  (Kuhn,  2021)  (pairwise-correlation  threshold:  0.6).  The  bioclimatic

variables finally selected for F. sylvatica were: BIO6 (minimum temperature of the

coldest month); BIO7 (temperature annual range); and BIO8 (mean temperature

of the wettest quarter). We also used the latitudinal position of the presence and

pseudo-absence records as an additional predictor to account for the effect of

factors  affecting  F.  sylvatica that  correlates  with  its  latitudinal  gradient  of

9



occurrence and were not included in the model, such as its biogeographic history

of post-glacial  recolonization towards northern Europe (Magri  et  al.,  2006).  To

account for non-linearity in the profile of Pearson’s residuals and improve the fit of

the binary GLM, we introduced second order polynomial terms for BIO6, BIO7

and latitude. Statistically non-significant predictors were dropped from the original

full model to reach a most parsimonious model. The predictive performance of

the fitted models was assessed using TSS and CBI on three different types of

data: (i) the testing dataset derived from the EU-Forest dataset; (ii) 5 partitions of

the  training  dataset  (i.e.,  a  5-fold  cross-validation);  and  (iii)  the  independent

testing dataset derived from sPlotOpen. We often assume TSS>0.5 to indicate

good  predictions,  while  CBI  positive  values  indicate  a  model  which  present

predictions  are  consistent  with  the  distribution of  presences in  the  evaluation

dataset, values close to zero mean that the model is not different from a random

model, negative values indicate counter predictions, i.e., predicting poor quality

areas where presences are more frequent (Hirzel et al. 2006).

Beyond model predictive metrics, we computed the following measures of

goodness-of-fit: Tjur’s R2 for the binary GLM and the R2 for the RF.

A full description of the modelling procedure (from the sub-sampling of the 

presence and background points to the assessment of the model predictive 

performance) is reported at https://github.com/danddr/USE_paper.

Results

Both the GLM and the RF for F. sylvatica showed high predictive performances,

regardless of the dataset used for testing (Table 1). Concerning the GLM, the

TSS was always equal to or above 0.40, with the lowest value obtained for the

sPlotOpen testing dataset (0.40) and the highest for the EU-Forest dataset (0.6).

The lowest CBI was scored for the sPlotOpen dataset (0.88), while the highest for

the EU-Forest dataset (0.98).

Similar  results  were  obtained  for  the  RF,  for  which  the  lowest  TSS  was

obtained  for  the  sPlotOpen  testing  dataset  (0.48),  while  comparable  values

resulted from the EU-Forest dataset and the 5-fold cross validation (0.79 and

0.76, respectively). With respect to the CBI, the highest value was observed for

the EU-Forest dataset (average = 0.98), while the lowest was obtained for the

sPlotOpen dataset (0.96). 
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Goodness-of-fit measures seemed to be affected by the modelling technique, 

with the R2 of the RF being 0.67, and the Tjur’s R2 for the GLM being 0.35 (Tab. 

S4.1). 

The pseudo-absences of  F. sylvatica  collected using the uniform approach  are

uniformly distributed in the environmental space, reducing the sample location bias

(Fig.  S4.1a)  and  the  class  overlap,  since  in  the  geographical  space  they  are

distributed in areas far from the occurrences (Fig. S4.1b). 

 Table S4.1: Results of the two HSMs for Fagus sylvatica (GLM and RF). Models’

predictive performance was assessed through internal (5-fold CV and EU Forest)

and external (sPlotOpen) validation. TSS: True Skill Statistics; Boyce I: Boyce’s

Index; R-sq: Tjur’s R2 for the GLM, and R2 for RF.

Validation dataset GLM RF

TSS CBI Tjur’s R2 TSS CBI R2

5-fold CV 0.52 0.92

0.35

0.76 0.97

0.67EU-Forest 0.60 0.98 0.79 0.98

sPlotOpen 0.40 0.88 0.48 0.96
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Figure S4.1: (A) the environmental space available for  Fagus sylvatica in Italy,

Spain and France, and the position of presences and pseudo-absences sampled

within the environmental space using the Uniform approach; (B) the distribution of

PC-scores in the geographical space and the geographical location of presences

(blue) and pseudo-absences (red) sampled within the environmental space using

the Uniform approach.
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