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Abstract. In theoretical discussions of the potential effects of collective in-

teractions in such biological systems, statistical physics principles and method-

ologies have been applied.
In order to enhance their capacity for collective computation, it has been

suggested that such collective systems should function close to a phase transi-

tion, specifically a (pseudo-)critical point.
This paper will discuss the phenomenon of flocking that animal communi-

ties exhibit in biological systems.

1. Introduction

Large animal assemblages that cooperate, including schools of fish, flocks of
birds, and swarms of insects, are frequent and fascinating examples of biological
self-organization. Over the past few decades, it has attracted researchers from a
range of disciplines, going beyond biology. Recently, a lot of mathematicians have
studied this [39], [72], [52], [53] [64], [65], [26], [74],[58], [38] as well as any references
thereto. Additionally, theoretical physicists in particular investigate the analogies
between large animal collectives and statistical physics systems like fluids or mag-
nets, where local interactions between numerous relatively simple components lead
to the emergence of novel macroscopic properties that can be difficult to relate to
the properties of the individual components [13, 63, 51].

Although the majority of the study was aimed at understanding systems in ther-
mal equilibrium, where a substantial body of theory supported by experiments has
been solidly established, we have witnessed decades of research into self-organization
and pattern production in non-equilibrium systems [27, 43], pertaining to biologi-
cal systems in general as well as to animal behavior in general. Without a doubt,
physics provides a robust and effective toolbox that can aid in our understand-
ing of the complexity of the living world, even though many questions regarding
non-equilibrium phase transitions remain unresolved.

Physics is not well suited to provide an explanation for the ”Why?,” or the
underlying reasons and biological goal of a particular self-organized behavior, in
biology. This problem, which must be understood and treated via the lenses of
evolutionary theory and behavioral biology, serves as an excellent illustration of
the need for a truly multidisciplinary interchange between physics and biology in
order to comprehend complex living systems.
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A interesting quality that sets living systems different from most (or all) inani-
mate objects is their capacity to react adaptably to changing conditions.

As characterized by the collective dynamics of a sizable number of interacting
elements or agents that make up the complex biological system, this ability to
implement functional adaptive behavior often depends on distributed information
processing at multiple levels. Examples on a smaller scale include the interactions
between proteins in cells [24] to neurons interacting in brains[8, 48] to the group
behavior of animals and humans [61]. The parameter space in which such collective
biological systems operate is large due to the complexity of individual individuals as
well as the sizeable number of individuals that may make up a functional group. An
important question that emerges is if some parameter combinations or parameter
regions are particularly appropriate for their biological function by making their
aggregate behavior in some way close to optimal.

In this instance, the so-called criticality theory has been advanced. It suggests
operating at or close to a critical threshold that separates fundamentally different
aggregate behavior in complex living systems processing data dispersedly. The
collective dynamics at the macroscopic level will be most vulnerable, or sensitive,
to minute variations in an external input at such crucial locations, according to
statistical physics, where information would propagate swiftly across arbitrarily
broad scales [62].

The criticality hypothesis faces a challenge in explaining how scattered systems
may manage their behavior to stay in the critical region of parameter space.

Research on self-organized criticality offers one set of mechanisms for how com-
plex systems might tune towards critical points in a self-organized way without
external control, assuming a time-scale separation between the fast (relaxation)
dynamics of the system and a slow driving of the system towards the critical point.
It was also proposed that (self-organized) critical dynamics could account for the
excess of power-law distributions in empirical data in this situation [3, 54].Self-
organized criticality garnered a significant deal of scientific interest in the 1990s,
with the study that went along with it focusing primarily on idealized mathemat-
ical models [47, 78]. However, there were still a lot of questions that remained
unresolved about the idea, and more importantly, it was unclear whether it applied
to events that happened in the real world.

Near the end of the 20th century, when scientific interest in the criticality concept
began to wane, new experimental findings in the area of neurology helped to revive
it. This is as a result of Beggs & Plenz’s 2003 finding of crucial neuronal avalanches
[7]. Since then, a number of theoretical and experimental research on the criticality
hypothesis in many biological systems, including neurological systems, have been
released [8, 42, 69, 67], gene-regulatory networks[5, 23], and animal group dynamics
collectively [60, 15, 50, 68].Three things set apart this more recent research: 1)
a closer resemblance to experimental observations; 2) an empirically motivated
suggestion of mechanisms for self-tuning towards the critical point; and 3) a critique
of the exclusive emphasis on the benefits of criticality in favor of the significance
of adaptively managing competing trade-offs, perhaps by actively adjusting the
distance to critical transitions depending on environmental context.
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The discussion of flocking in biological collectives and how criticality can affect
biological function will continue in this paper before we move on to possible mech-
anisms that could let animal collectives tune themselves in a self-organized way
toward or away from critical points in the upcoming works.

2. Flocking

The emergence of orientational order as a result of spontaneous symmetry break-
down is perhaps the phase transition that is easiest to discern in the context of
animal groupings [14]. This flocking transition distinguishes between an ordered
flocking state with a non-vanishing average momentum of the entire system and
an unordered flocking state with individuals migrating in random directions with
vanishing center of mass speeds. Starlings and other flocks of birds are outstanding
examples of the phenomena of flocking [4].

Vicsek and co-authors’ important 1995 paper on self-propelled particles moving
at constant speed v0 and engaging with a ferromagnetic (or polar) alignment inter-
action provided the first theoretical analysis of flocking as a phase transition [79].
The reported appearance of long-range orientational order in this non-equilibrium
extension of the traditional XY-model attracted a lot of attention because it seemed
to go against the Mermin-Wagner principle [57, 44].Soon after, Toner and Tu were
able to demonstrate that the model’s non-equilibrium property for a non-zero self-
propulsion speed is what ultimately makes a difference [75, 76, 77] reasons why
the Mermin-Wagner theorem is invalid. Following these initial articles, the Vicsek
model transition’s nature [33, 20, 2, 30], substantial study has been done on both
polar and nematic interactions in models of self-propelled particles with spatially
local alignment interactions [22, 66, 6, 32, 9, 35]. Whereas initially it was thought
that the transformation was ongoing [79, 2], later systematic numerical simulations
and theoretical investigations have demonstrated that the homogeneous ordered
state is unstable with regard to longitudinal density modulations close to the criti-
cal point [33, 10, 45, 46, 30].As a result, broad, high-density bands start to develop
and move through a chaotic, low-density gas-like ”background.” The phase transi-
tions eventually become discontinuous as a result of the development of these spatial
heterogeneities. However, substantial finite size effects frequently obscure the dis-
continuous nature of the transition, which is only consistently visible at very large
system sizes and/or high self-propulsion speeds [21]. There is a density-order cou-
pling, which is the underlying process causing the density instability. On average,
locations with higher densities also tend to be more organized [11].

There are several different self-propelled particle flocking models, some of which
even lack explicit alignment interactions [73, 34, 40, 37].However, the transition
to an ordered state will resemble the one seen in the Vicsek model, including the
above mentioned density-order coupling, and can be assumed to fall into the same
universality class, if it can be defined, as long as the interactions are short-ranged
and result in effective alignment while the system exhibits fluid-like lack of posi-
tional order. Additionally, there is a sizable class of systems that take into account
self-propelled particle systems with attractive and repulsive forces that may exhibit
various flocking transitions [33, 71, 29].

It has been proposed that topological distance, rather than metric distance, gov-
erns interactions between pairs of individuals based on a thorough study of exper-
imental data gathered from 3D tracking of starling flocks [4]. As a focal individual
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pays attention to others if they are inside a set of nearest neighbors, regardless of
their Euclidean distance, such interactions in comparable topological flocking mod-
els can likewise be long-ranged[31, 70]. The density-order coupling was thought to
be disabled by the interaction’s metric-free nature, eliminating the density instabil-
ity and producing a continuous flocking transition [31].Recent studies on flocking
models with distance-independent k-nearest-neighbor interactions, however, have
demonstrated that bands emerge as a result of a weak but persistent density-order
coupling [56, 70],which the presence of spatial heterogeneities can improve even
further [70].

The majority of flocking models presuppose that individuals move at a con-
stant speed. In addition to reducing model complexity, this simplifying assumption
provides a clear comparison to the fixed spin amplitude in closely related statis-
tical physics models like the Ising, Potts, or XY models. Animals traveling in
groups, however, frequently demonstrate variable speed that might be affected by
social interaction, necessitating the consideration of yet another level of freedom
[36, 49, 16]. Scale-free velocity Variable speed models at criticality are the only
ones capable of explaining correlations seen in flocks of birds [12]. Additionally, it
has been demonstrated that variable speed may significantly expand and change
self-organized collective activities and bring about new kinds of order-disorder tran-
sitions [36, 49].

Last but not least, recently proposed ”inertial spin models” with non-dissipative
couplings are based on empirical observations of highly polarized, collective turning
behavior in flocks of birds [1, 17]. The inertial spin model has been shown to
accurately replicate the dynamical correlations of velocities and non-exponential
relaxation dynamics in contrast to the dissipative Vicsek model [18].

3. Appendix: The applicability of processing of changing phase in
biology

We present parts of the discussion from our previous work for reader convenience.
Animal species in particular share several fundamental characteristics with the
classical statistical physics systems that gave rise to the idea of a phase transition.

However, there are also substantial discrepancies, necessitating a rigorous eval-
uation of the phase transition concept’s applicability to herd behavior.

First, the fact that biological systems are far from equilibrium makes them fun-
damentally different from systems that are traditionally examined in statistical
physics. Modern statistical physics has a very active research community that is
focused on the theory of phase transitions in non-equilibrium situations [55, 43, 41].
There is no fundamental reason to think that the corresponding theoretical con-
cepts do not apply to living systems, including animal groups, even though many
questions remain unanswered, and this is further supported by a substantial body
of literature on phase transitions in biology over the past decades [79, 14, 73, 28].

The sheer magnitude of the systems in terms of the number of constituent units
is a significant distinction as well. An animal aggregation normally consists of
N ∼ 1023 individuals, as opposed to a macroscopic volume of matter, which typ-
ically comprises N ∼ 10 − 103 individuals. Rarely, substantially larger collectives
with ∼ 106 individuals are seen, usually in the context of significant migratory
movements in species like pelagic fish (like sardines) or desert locusts [59], [14].
However, in statistical physics, phase transitions are only properly specified in the
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thermodynamic limit of infinitely massive systems. The mathematical abstraction
of N → ∞, although a fairly excellent approximation for the general behavior of
”classical” physical matter, it is doubtful if it really describes the majority of bi-
ological systems, and animal species in particular. While accurate, this criticism
does not discount the importance of criticality and phase transitions in the de-
scription of biological systems with finite sizes. The benefits of (quasi-)criticality
for group animal behavior are hypothesized, but they are not predicated on the
assumption of the thermodynamic limit. In finite-sized systems, a number of col-
lective information processing variables, including correlation lengths, information
transmission, and susceptibility to inputs, still reach maximum at quasi-critical
points [48, 15, 62, 68].

However, through the use of renormalization techniques, the theoretical idea of
universality—or universality—is inextricably related to the idea of thermodynamic
limit. The creation of scaling laws and critical exponents that depend only on
the basic characteristics of the system, including dimensionality and symmetry,
as opposed to minute details, is predicted by universality. Only above a crucial
system size may this simplified scaling behavior be seen. Unfortunately, there
are significant gaps in our understanding of the nature of social interactions and
fluctuations due to the complexity of animal social behavior. As a result, it seems
impossible to construct even reasonable estimates of matching critical system sizes
above which universal behavior in the statistical physics sense could be detected.
Therefore, it is essential to use considerable caution when extrapolating universality
classes from empirically observed scaling rules in small to mesoscale animal groups.

Because of these factors, we believe that classifying biological phase transitions
into different universality classes is less feasible than in traditional physics-based
systems, and may even be impossible. Nevertheless, the idea that a single significant
set of parameters dominates group behavior close to a transition and that this can
allow for a significant simplification of accurate models of specific systems is still
tenable.

Boundary circumstances must be anticipated to play a non-negligible, if not a
dominant, role for self-organized collective behavior due to the very tiny system
sizes [19]. This would be viewed as being somewhat troublesome for many statisti-
cal physics models. But from a biological perspective, this is probably a significant
or even a defining characteristic of animal collectives [25]. It becomes clear that
boundaries are crucial when we consider that the core function of animal aggre-
gates is distributed sensing of environmental cues and collective processing of this
information, for example in the context of predator detection or food search. For
example, in visual perception, individuals at the edge of the group will typically
perceive the majority of the environmental information.
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[56] D. Martin, H. Chaté, C. Nardini, A. Solon, J. Tailleur, and F. Van Wijland.
Fluctuation-induced phase separation in metric and topological models of col-
lective motion. Physical Review Letters, 126(14):148001, 2021.

[57] N. D. Mermin and H. Wagner. Absence of ferromagnetism or antiferromag-
netism in one- or two-dimensional isotropic heisenberg models. Physical Review
Letters, 17:1133–1136, Nov 1966.

[58] P. Minakowski, P. B. Mucha, and J. Peszek. Density-induced consensus proto-
col. Mathematical Models and Methods in Applied Sciences, 30(12):2389–2415,
2020.
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