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Abstract: 21 

While the reciprocal effects of ecological and evolutionary dynamics are increasingly 22 

recognized as an important driver for biodiversity, detection of such eco-evolutionary 23 

feedbacks, their underlying mechanisms, and their consequences remains challenging. Eco-24 

evolutionary dynamics occur at different spatial and temporal scales and can leave signatures 25 

at different levels of organization (e.g., gene, protein, trait, community) that are often difficult 26 

to detect. Recent advances in statistical methods combined with alternative hypothesis tests 27 

provide a promising approach to identify potential eco-evolutionary drivers for observed data 28 

even in non-model systems that are not amenable to experimental manipulation. We discuss 29 

recent advances in eco-evolutionary modelling and statistical methods and discuss 30 

challenges for fitting mechanistic models to eco-evolutionary data. 31 

  32 
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Introduction 33 

The field of eco-evolutionary dynamics centers on the paired observations that evolution can 34 

occur on overlapping timescales with ecological processes, and that ecological processes 35 

are influenced by traits that can both respond to and drive evolutionary change. Eco-36 

evolutionary feedbacks occur when evolution of a trait or property impacts population or 37 

community dynamics (or vice-versa), which feeds back to drive further evolution (or 38 

ecological dynamics), in a continued cycle [1,2]. These eco-evolutionary dynamics need not 39 

be invoked if the timescales of ecological and evolutionary dynamics are sufficiently separate 40 

or if phenotypic variance is low enough that a mean phenotypic value captures ecological 41 

dynamics sufficiently [1]. However even with this clear definition, it remains that all biological 42 

systems experience evolution, and these evolutionary processes are occurring while 43 

ecological dynamics proceed. In the absence of intertwined feedback loops and especially in 44 

their presence, past or contemporary evolution can impact the dynamics of ecological 45 

processes. Studies have identified instances of eco-evolutionary interactions and feedbacks 46 

and demonstrated their strong impacts on populations, communities, and ecosystems [3,4,5, 47 

6], but those impacts can be difficult to detect due to often complex relationship of ecological 48 

and evolutionary processes. Thus, determining potential eco-evolutionary drivers of 49 

population, community, and ecosystem dynamics remains a major challenge. This restricts 50 

our ability to evaluate the consequences of eco-evolutionary dynamics on contemporary and 51 

future biodiversity in natural settings and in non-model organisms. 52 

 53 

Some studies have implemented methods (e.g. [7,8,9]) that ultimately take a target variable 54 

of interest - usually a phenotypic trait or vital rate shared across the species under study - 55 

constructs categories of contributing factors to variation in that target variable, and assigns 56 

total phenotypic variance to these fractions (often by holding one process constant and 57 

averaging across the change in the other effects; e.g. [10]). These fractions are linear and 58 

additive, but lack a mechanistic basis, and are calculated retrospectively, which means they 59 

are limited for predicting future changes. Analysis methods for the study of eco-evolutionary 60 

dynamics should instead consider the mechanistic basis of data structure, realistic models of 61 

variance and uncertainty, and the complexity of eco-evolutionary feedbacks and processes 62 

with distinct signatures at different temporal, spatial, and biodiversity scales (Box 1). Model-63 

based hypothesis testing by comparing among alternative eco-evolutionary hypotheses has 64 

recently emerged as an alternative to existing correlative approaches and this framework can 65 

be used to address the unanswered questions in the field [11,12,13]. We summarize here the 66 

basic building blocks of using mechanistic models and statistical inference to pair eco-67 

evolutionary data with a theoretical or simulation model. We provide guidance on how to 68 

construct alternative hypotheses, fit these to observed data, and generate posterior 69 

probabilities for these hypothesized processes. The goal of statistical inference for eco-70 

evolutionary dynamics is not that all datasets must perfectly capture each step of historical 71 

dynamics, nor that all datasets must be fit to the same ANOVA-based linear model to 72 

categorize average effect sizes. We provide directions to make inference about the potentially 73 

complex processes that structure eco-evolutionary data, to identify whether eco-evolutionary 74 

feedbacks are operating in a specific system, and to determine the consequences of these 75 

dynamics for critical emergent properties such as resilience, stability, diversity, extinction, or 76 

ecosystem function. 77 

 78 
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A structured workflow for model-based hypothesis testing in eco-evolutionary dynamics 79 

Eco-evolutionary research questions may center on whether only evolutionary or only 80 

ecological processes in isolation are sufficient to account for observed patterns of diversity 81 

or whether ecological and evolutionary processes interact in a feedback loop that results in 82 

novel dynamics and diversity patterns. Research questions can thus be formulated as a core 83 

of null and alternative hypotheses expressed in the form of alternative competing mechanistic 84 

models (Figure 1). Simulations from the models can then be matched to these alternative 85 

hypotheses, and rigorously compared to observed data to identify the variety of relevant 86 

processes (ecological, evolutionary, and eco-evolutionary feedback) that are consistent with 87 

this observed data. The simulations provide features (i.e. summary statistics; see Glossary) 88 

that are compared to corresponding features in the observed dataset, and many thousands 89 

of simulations should be run under each model to generate potential distributions of these 90 

features. Examples of these summary statistics in eco-evolutionary simulation models include 91 

spatial alpha diversity, frequencies of different range sizes, normalized lineage-through-time 92 

diversification curves [14], or summary statistics across three data axes (species 93 

abundances, population genetic variation, and trait values; [12]). We describe examples of 94 

such eco-evolutionary hypothesis formulations (Box 1, Figure 1), and how to compare 95 

observed data to these models (Box 2). 96 

 97 

Choose a mechanistic model for eco-evolutionary hypothesis testing 98 

The first step in eco-evolutionary hypothesis testing is to identify a mechanistic model to pair 99 

with observed data. This potential challenge is not unique to eco-evolutionary dynamics but 100 

is also a necessary step to make the field more predictive. Once the research question has 101 

been identified and the relevant biological data have been collected, there are a few options 102 

for selecting an appropriate model. The choice of model should be based on knowledge of 103 

the system (e.g., mechanisms and process that determine ecological dynamics, patterns, or 104 

outcomes), the relevant biodiversity (from genes to communities), the spatial and temporal 105 

scales relevant to the data of interest, as well as the summary statistics used to compare 106 

model simulations to observed data (Box 1). It is not always necessary to develop an entirely 107 

new model or design an experiment that estimates all parameters in a single theoretical 108 

model, as one can choose among existing models or tools to build models. These could be 109 

theoretical models, or simulation models that can reproduce the dynamics described in 110 

theoretical models. Numerous R software packages exist that allow simulations of commonly 111 

used ecological models such as logistic growth and multi-species interaction models 112 

(gauseR; [15]), consumer functional response models (FRAIR; [16]), infectious disease 113 

models (EpiDynamics; [17]), and island biogeography and metapopulation models 114 

(EcoEvoApps; [18]), and researchers can use open-source code to extend the model to 115 

consider evolution. The EcoEvo Mathematica package 116 

(https://github.com/cklausme/EcoEvo) allows simulations and equilibrium condition analyses 117 

of species- and trait-based eco-evolutionary models, using differential equations with intra- 118 

and inter-specific interactions and either quantitative genetic or adaptive dynamics trait 119 

models. 120 

 121 

If models with known equations that capture the eco-evolutionary dynamics of interest do not 122 

exist or are too difficult to develop de novo, a researcher might instead use one from the 123 

emerging class of general-use eco-evolutionary simulation models (Box 1; Supplement 124 

1). These generally use a fixed set of input parameters to model sequence, phenotypic, 125 
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and/or phylogenetic evolution, where evolving traits impact how individuals grow, reproduce, 126 

die, move across a landscape, and interact with their environment and with other individuals, 127 

and where individuals inhabit a landscape with user-specified connectivity and movement 128 

patterns. These models can simultaneously consider both ecological and evolutionary 129 

diversity-generating processes (e.g., speciation, neutral and adaptive sequence and 130 

phenotypic evolution, spatial and environmental drivers of population and community 131 

structure), and generate known patterns that emerge from these processes (e.g., nucleotide 132 

diversity patterns, rank abundance curves, species-genetic diversity correlations). The 133 

models differ in some ways, such as the ease of implementing age- or stage-based 134 

population structure (NEMO-AGE, [19]), the inclusion of molecular evolution, (NEMO-AGE; 135 

SLiM 4, [20]), the built-in models for organismal movement (RangeShifter; [21]), and the types 136 

of built-in species interactions (Box 1). 137 

 138 

Generate alternative hypotheses for processes that structure observed data 139 

Research in eco-evolutionary dynamics has moved forward from asking whether evolution 140 

impacts ecological processes to identifying the mechanism of this effect [22,23,24]. Linking 141 

mechanistic modeling with observational data could allow investigation of these mechanisms 142 

even if they are not easily accessible through direct measurements (e.g., in field surveys, or 143 

for mechanisms that are typically accessible only through experimental manipulation). Some 144 

potential examples of hypotheses that could be studied by comparing data to mechanistic 145 

models include the precise form or mechanism of evolution (e.g., evolution of single or 146 

multiple traits, uncorrelated or correlated, the existence of trade-offs between evolution of life 147 

history traits and competition and their effects on community structure), or identifying 148 

feedbacks between ecological and evolutionary dynamics. Testing these types of hypotheses 149 

represents a step beyond showing only that ecology and evolution occur simultaneously. 150 

 151 

To illustrate how eco-evolutionary hypothesis testing can work, we consider one example of 152 

eco-evolutionary dynamics on a micro-evolutionary timescale at a single spatial location - an 153 

epidemiological model with virulence evolution [25], where the number of individuals in 154 

susceptible (S) and infected (I) host populations are determined by a transmission-virulence 155 

tradeoff. Virulence (α) can evolve if the additive genetic variance for this trait V > 0, and the 156 

rate of change for this trait depends on the susceptible host population size (dα/dt = f(S)). 157 

This link between the evolving trait and host population dynamics represents an eco-158 

evolutionary feedback as dS/dt = f(α) and dα/dt = f(S) [1]. A null hypothesis for comparing 159 

empirical data to this model system could be that phenotypic evolution is not possible (the 160 

additive genetic variance for virulence V = 0), with an alternative hypothesis where evolution 161 

(V > 0) and a feedback between evolution and ecology is possible, and an additional 162 

alternative hypothesis where eco-evolutionary dynamics are removed from the system by 163 

decoupling the dependence of virulence evolution from host population dynamics (dα/dt ≠ 164 

f(S); Figure 1A). Additional simulations can be used to explore the impacts of different trade-165 

off functions (between virulence and transmission, or in the relationship between evolutionary 166 

change in virulence and population size of susceptible hosts). 167 

 168 

For an example of eco-evolutionary dynamics on macroevolutionary timescales in multi-169 

species communities at a large biogeographical scale, we used gen3sis ([14]; Box 1) to 170 

simulate phenotypic evolution, speciation, and community assembly in a hypothetical 171 

https://paperpile.com/c/3HiBom/PW5e
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community across 40 million years and monitor the impact of various eco-evolutionary 172 

processes for emergent patterns of species diversity. In this example, we consider four 173 

alternative hypotheses for evolution (Figure 1B-E): with single vs. multiple traits, evolving at 174 

the same or different speeds, with traits either uncorrelated or correlated. Resulting patterns 175 

(e.g., of richness at the local α, regional γ, and among-site β levels, or of phylogenetic 176 

diversity) can be compared to observed data and model posterior probabilities can inform 177 

researchers of the likelihood that different eco-evolutionary processes have structured their 178 

data. A researcher could also test for the presence of eco-evolutionary feedbacks between 179 

evolution of dispersal ability and range expansion [26], the effects of uniform versus varying 180 

dispersal ability across species, or develop an alternative configuration where traits evolve 181 

as a tradeoff between local competitive ability and colonization ability [27,28]. Eco-182 

evolutionary simulation models with explicit consideration of sequence evolution (e.g. NEMO-183 

AGE, [17]; sPEGG, [24]; SLiM 4, [20]; Box 1) allow tests for the role that genetic 184 

architecture plays for structuring eco-evolutionary dynamics (e.g. species that are similar in 185 

niche axes but differ in their degree of standing genetic variation, mating systems, or other 186 

properties that impact adaptive capacity, i.e. [29]). Eco-evolutionary simulation models can 187 

test the impacts of these processes for emergent community properties such as coexistence, 188 

diversity, or resilience to perturbation. 189 

 190 

Compare simulated data under each alternative hypothesis to observed data 191 

The next step is to compare observed data to data simulated under null and alternative eco-192 

evolutionary hypotheses and their associated models. A decision-making or classifying 193 

algorithm can accept or reject simulations based on their similarity to summary statistics of 194 

observed data (Box 1, 2). As observed and simulated data are compared based on the match 195 

in information-rich summary statistics, there is no a priori reason that absolute time series of 196 

sequences, trait, or abundance data are necessary to successfully identify the processes 197 

most likely to have generated an observed dataset. Diverse summary statistics across 198 

different scales and biological levels may be critical to address the problem of equifinality, 199 

where different combinations of processes or model parameters can produce similar patterns 200 

of data at a single biological level [11,30]. Before the step of comparing observed to simulated 201 

summary statistics, a researcher can combine re-classification of simulated datasets (e.g., 202 

leave-one-out cross validation) with a feature selection algorithm (e.g. a boruta algorithm; 203 

[31]) to both identify summary statistics with the most predictive power for a given target 204 

dataset and to help researchers consider what data properties are most critical to collect for 205 

hypothesis testing. To address data that is at an unknown point along a trajectory towards 206 

model equilibrium, the MESS model includes a parameter Λ that measures the ‘fraction’ of 207 

equilibrium that a system has obtained (the point at which the starting conditions of the 208 

simulation model are no longer detectable in the state of the system), which can be set to 209 

obtain simulations away from equilibrium and can be estimated from an observed empirical 210 

dataset [12,32]. 211 

 212 

It is not required to render guesses for or attempt measurements of all model parameters to 213 

compare observed and simulated data. To generate the thousands of simulations needed 214 

under each alternative hypothesis, researchers can instead sample candidate parameter 215 

values from a proposed prior distribution. These prior distributions should be based on a 216 

researcher’s understanding of the model system when possible (e.g., an uninformative 217 

uniform distribution between 0-1 for a heritability parameter), or informative based on 218 

https://paperpile.com/c/3HiBom/jGzo
https://paperpile.com/c/3HiBom/BF2x
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literature measures (e.g. an increased probability of weak species interactions, [33]; see 219 

[34,35]). After candidate simulations are run and summary statistics (or features) are 220 

extracted from each simulation run, a decision algorithm is used to accept or reject these 221 

simulated data features based on some distance between observed and simulated values. 222 

We describe how to use Approximate Bayesian Computation (ABC, [36]) for such an 223 

algorithmic approach in Box 2, but additional options are available (e.g., Markov chain 224 

Monte Carlo (MCMC), [37,38, 39]; machine learning (ML), [40]; see [41,42] for an overview 225 

of machine learning applied to model fitting in ecology and evolution and Supplement 1 for 226 

an ML alternative to the analysis in Box 2). ABC is a Bayesian statistical computational 227 

approach to estimating posterior distributions of model parameters via random draws from 228 

prior distributions and comparing to observed values via a criterion for acceptance or rejection 229 

[36,43]. Researchers can generate their own models, alternative hypotheses, and associated 230 

simulated summary statistics, and use an existing abc R package [44] for model comparison. 231 

One application of ABC to eco-evolutionary hypothesis testing is the study of Baselga et al. 232 

[45] to estimate the relative importance of dispersal limitation and niche width in 233 

contemporary surveys of genetic and community structure (see also [46]). Machine learning 234 

could also be used to train a classifier algorithm on simulated datasets from known alternative 235 

model conditions, then classify the observed data and generate predicted model class 236 

probabilities. This approach was used by Overcast et al. [12] to classify whether datasets 237 

from contemporary surveys of diverse organismal groups were most consistent with neutral, 238 

environmental filtering, or competition eco-evolutionary models. 239 

 240 

Model validation and generating future predictions 241 

Once the decision algorithm (e.g. ABC) is used to produce posterior probabilities for each 242 

candidate model, researchers should consider posterior predictive checks to evaluate model 243 

fit [47,48], evaluate the importance of summary statistics for predictive ability [40,49,50], and 244 

also consider whether to use the model with the highest posterior probability support or to 245 

average over the models with weights based on their relative posterior support [51,52]. After 246 

these steps, researchers can gain valuable knowledge by considering the posterior 247 

distributions of model parameters that result from the simulations retained by the acceptance-248 

rejection algorithm (Box 2). These posterior estimates of model parameters, some of which 249 

might have associated observations for validation and others of which are impossible or 250 

resource-intensive to estimate, are quite valuable for process inference, and can also serve 251 

as guidance for future data collection to confirm these estimates. They can also be used to 252 

make predictions for future dynamics of the system, with estimates of uncertainty, and with 253 

inclusion of alternative scenarios for future systemic change [53,54]. 254 

 255 

For studies of eco-evolutionary dynamics, predictive simulations can be used to determine 256 

the importance of eco-evolutionary dynamics and feedbacks for critical emergent properties 257 

such as stability, extinction risk, or biodiversity maintenance. For example in the host-disease 258 

model (Figure 1A), the impacts of including versus excluding the eco-evolutionary feedback 259 

loop for population stability could be evaluated by running simulations with parameters drawn 260 

from posterior distributions under each alternative model, and then generating a posterior 261 

distribution for an emergent property of the simulations such the coefficient of variation 262 

(CV, a metric often used to quantify stability; [55]). In one example, the study of Luiselli et al. 263 

[56] determined the relative impact of the combination of speciation rate and mechanism of 264 

competition for population genetic and community structure in a variety of taxonomic 265 
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systems. They used the MESS simulation model to decompose the effects of speciation rates 266 

and competition type for emergent summary statistics of overall species richness, and 267 

community, genetic, and functional trait diversity. Their study found strong differences in the 268 

change in genetic diversity over time depending on whether speciation was included, whether 269 

species interacted neutrally, and on the mechanism of competition considered. Their results 270 

confirm that many of the properties we observe at the level of populations and communities 271 

are generated by eco-evolutionary processes. One recent study has established a 272 

mechanistic basis for the impact of eco-evolutionary dynamics for a critical, emergent system 273 

property of food web collapse. Barbour et al. [23] identified that the presence of a particular 274 

allele (AOP2+ or AOP2-) in host Arabidopsis thaliana plants could result in a 29% difference 275 

in extinction rates for associated aphids and parasitoids in an experimental food web. 276 

 277 

Concluding remarks and future perspectives 278 

It has previously been said that confirmation of eco-evolutionary predictions requires 279 

monitoring genetic properties of populations and subsequent community interactions over 280 

time intervals in which selection regimes are likely to have caused changes in ecologically 281 

relevant traits [8,57,58]. Studies of eco-evolutionary interactions and feedbacks are thus often 282 

limited to tractable taxonomic systems [59,60], with time-intensive measurements of 283 

phenotypes in common environments. The complex eco-evolutionary processes that provide 284 

structure in data are often collapsed into additive categories with effect sizes estimated using 285 

ANOVA-like variance partitioning without consideration for generalized probability 286 

distributions, fixed and random effects, or non-linear and interacting combinations of drivers 287 

of system responses (e.g. [8,9]). However, similar to the way that processes of evolution and 288 

the dynamics of natural selection leave distinct signatures on contemporary populations that 289 

can be analyzed to infer those historical structuring processes (e.g. [61,62,63]), past eco-290 

evolutionary dynamics likely leave distinct signatures on contemporary populations and 291 

communities. Researchers must still scale the difficult challenge of identifying which features, 292 

emergent properties, and summary statistics from observed data capture the signatures of 293 

distinct eco-evolutionary processes (e.g., [3]). However, the path of using statistical or 294 

process-based mechanistic models to compare the likelihood of observed data to 295 

alternative models is used in other fields of research where historical processes cannot be 296 

observed (e.g. coalescent processes and demographic history, phylogenetic reconstruction 297 

and patterns, population genetic structure; [20,64,65,66]). The remaining challenges to 298 

uncover eco-evolutionary signatures on extant biodiversity are (i) generating data in 299 

contemporary populations and communities that captures the features necessary to infer eco-300 

evolutionary structuring processes, (ii) accessing user-friendly versions of statistical models 301 

that can disentangle the numerous processes (drift, selection, gene flow, community 302 

assembly and metacommunity processes, multivariate environmental forcing; [67,68]) that 303 

combine to structure biodiversity from the gene to ecosystem level, and (iii) converging on 304 

mechanistic hypotheses and predictions for the impacts of eco-evolutionary dynamics in 305 

biological systems. 306 

 307 

There is good reason to be optimistic on each front. First of all, simulations from mechanistic 308 

models under alternative eco-evolutionary hypotheses can be combined with exploration of 309 

diverse summary statistics and reclassification of subsets of simulated data to identify 310 

potential signatures of eco-evolutionary dynamics in natural systems (Box 1, using Step 2 311 

and 3 to inform Step 1). As biodiversity science is entering an unprecedented era of 312 
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technology-assisted, high-throughput data collection [69,70,71] and of open, reproducible 313 

data sharing [72,73], it is increasingly possible to test whether these signatures to identify 314 

eco-evolutionary dynamics are realized in diverse systems. Some recent examples of ‘high-315 

throughput’ eco-evolutionary data collection exist, including fine time series of multi-species 316 

population size and trait values via fluid imaging technology [74,75], real-time observation of 317 

adaptive tracking to environmental change (e.g. Drosophila melanogaster, [24]; Arabidopsis 318 

thaliana, [76]; other non-model systems, [77,78,79]). Moving eco-evolutionary dynamics into 319 

the genomic era is a promising current direction of study [22,80]. The difficulty of detecting 320 

eco-evolutionary processes in complex systems could be alleviated by genomic data 321 

monitoring [81,82], especially in systems where candidate genes can be used for monitoring 322 

selection in real time and eDNA and high-throughput sequencing can be used for monitoring 323 

evolutionary dynamics and ranges of organisms across large spatial scales [83,84,85]. 324 

 325 

Second, we have discussed theoretical and simulation models that are moving towards 326 

modeling the full suite of interacting processes that structure biodiversity at multiple scales 327 

(spatial, temporal, diversity across levels of organization; Box 1; additional detail for models 328 

in Supplement 1), and some additional reviews addressed models that can be used to 329 

predict future biodiversity responses to environmental change [86,87]. There is still a need 330 

for statistical tools to detect effects and their magnitudes in experimental and field 331 

observational data, and the difficulty of distinguishing among the many signals that structure 332 

genes, traits, populations, and communities is compounded by the complexity of eco-333 

evolutionary dynamics. Some new statistical models that address this need include an 334 

integrated reaction norm model linking genetic, phenotypic, and demographic processes [88] 335 

and a species distribution model with local adaptation and phenotypic plasticity (ΔSDMs; 336 

[89]). Modern statistical models for population and community ecology now consider critical 337 

processes such as observer, measurement, and process error, error propagation, or the 338 

existence of present but undetected species or life stages (e.g. [90,91,92,93,94,95]), and 339 

these features are likely to be important for eco-evolutionary models as well. For linking 340 

microevolution and models of eco-evolutionary dynamics, tools such as sPEGG [24], SLiM 4 341 

[20], and the EcoEvo Mathematica package are currently available for generating features to 342 

compare with observed data. We also share the code used for all the simulations here in an 343 

open-source R package ecoevoR (https://github.com/jhpantel/ecoevoR). 344 

 345 

There is an urgent need to move beyond establishing that evolution can be important for 346 

ecological processes or that eco-evolutionary feedback loops might exist in some systems. 347 

Are there particular environmental and spatial conditions [96] or features of community 348 

composition [97] or food web network structure [98] that make eco-evolutionary dynamics 349 

more or less likely to occur? The lack of information here highlights the reality that a 350 

background or null level of interacting eco-evolutionary processes is currently unknown (see 351 

Outstanding Questions). Published examples tend to focus on clear feedbacks between 352 

adaptive evolution and ecological dynamics in organisms that may have disproportionate 353 

adaptive capacity (e.g. Daphnia, [5,99,100]; Arabidopsis, [23]). However, it is currently 354 

unknown whether eco-evolutionary dynamics are driven by large effect alleles vs. allelic 355 

changes in numerous locations with cumulative small effects. Additionally, the role of 356 

adaptive evolution has been considered in many studies of eco-evolutionary dynamics, but 357 

fewer have established the role that sexual selection, genetic drift, or maladaptation might 358 

play (but see discussion of maladaptation in evolutionary rescue literature e.g. [101,102] ), as 359 

https://paperpile.com/c/3HiBom/BF2x
https://github.com/jhpantel/ecoevoR
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these processes also structure genetic architecture, population demography, and species 360 

interactions [22,103,104,105]. Given that numerous evolutionary and ecological processes 361 

are continuously occurring, operating at a variety of time scales, answers to these research 362 

questions are needed for statistical models to be developed that implement accurate 363 

distributions for emergent properties that are often the targets of studies of the impacts of 364 

environmental change. Much of this review focuses on the methodology needed to detect 365 

signatures of eco-evolutionary dynamics in experimental and observed biodiversity data. We 366 

anticipate a research era in which these tools can be used to address urgent, compelling 367 

questions such as what the role of eco-evolutionary dynamics is for large-scale properties 368 

such as diversity, stability, and ecosystem functioning. 369 
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Glossary: 610 

Approximate Bayesian Computation (ABC) - Approximate Bayesian Computation is a 611 

class of computational methods, based on a Bayesian statistical framework, to simulate 612 

posterior distributions of model parameters via random draws from those distributions and 613 

comparison to some true values of observations via some criterion for acceptance or rejection 614 

 615 

boruta - A feature selection algorithm that uses a random forest classification algorithm to 616 

identify predictive features that are more informative than randomly generated features 617 

 618 

coefficient of variation (CV) - The ratio of standard deviation to mean 619 

 620 

cross validation - A model validation technique to assess how a statistical model or analysis 621 

will generalize to an independent data set, where a part of the data is withheld from training 622 

the model to assess its ability to classify the withheld data 623 

 624 

genetic architecture –the underlying genetic basis that builds and controls a phenotypic trait 625 

of an individual or population and its variational properties, which can include the number of 626 

genes involved, the distribution of their effects, and their interactions (dominance, epistasis, 627 

pleiotropy) 628 

 629 

general-use eco-evolutionary simulation model - A class of models to simulate eco-630 

evolutionary processes, that include intrinsic population dynamics, species interactions with 631 

one another and with their environment, and genetic (molecular or quantitative trait) evolution. 632 

Models should include processes known to impact different levels of biodiversity (genes, 633 

traits, populations, and/or communities) and should accurately reproduce known patterns of 634 

emergent aggregate properties such as gene, species, or phylogenetic diversity 635 

 636 

machine learning - A family of computational, algorithmic, or statistical approaches to build 637 

a model based on sample data (training data) to make predictions, decisions, or 638 

classifications without explicit programming of a data-generating model 639 

 640 

Markov chain Monte Carlo (MCMC) - A class of algorithms to obtain a sample of a 641 

probability distribution, beginning from an arbitrarily chosen set of starting points and 642 

proceeding by moving at random from the starting point towards representative samples of 643 

the distribution based on some distance or rejection criterion 644 

 645 

posterior distribution - Refers to a posterior probability distribution, or the updated 646 

probability distribution for a model parameter after taking into account information (new 647 

information in the form of data) 648 

 649 

prior distribution - Refers to a prior probability distribution, or the expression of an uncertain 650 

distribution for the probability of different values of a model parameter, which captures prior 651 

expectations for the shape or structure of the parameter 652 

 653 

process-based mechanistic model – A mechanistic model is a characterization of the state 654 

of a system as explicit functions of component parts and their associated actions and 655 
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interactions, and a process-based model is a model that characterizes changes in a system’s 656 

state as explicit functions of the events that drive those state changes [106] 657 

 658 

summary statistic – A descriptive statistic calculated from data that gives compressed, 659 

summarized information, used to reduce data dimensionality (though information in the 660 

original data can be lost); may be refered to as ‘features’ in machine learning applications 661 

 662 

Outstanding questions: 663 

1. Does the occurrence of eco-evolutionary feedbacks depend on a few alleles with large 664 

effects or on many alleles with small effects in numerous directly and indirectly interacting 665 

species? 666 

 667 

2. Under what conditions and how often do the time scales of ecological and evolutionary 668 

dynamics overlap, and does evolution lead to ecological dynamics that cannot be predicted 669 

by ecological processes alone and vice versa? 670 

  671 

3. How do sexual selection, genetic drift, or mismatch structure genetic architecture, 672 

population demography, species interactions, and eco-evolutionary dynamics?  673 

 674 

4. What is the role of eco-evolutionary dynamics for large-scale properties such as diversity, 675 

stability, and ecosystem functioning? 676 

 677 

Tables & Figures: 678 

Figure 1. Eco-evolutionary hypotheses for structure of observed disease and biodiversity 679 

dynamics. (a) Simulations of an eco-evolutionary epidemiological model with virulence 680 

evolution [25] are shown with many of the same model parameters (e.g. S0 = X, α0 = 4, γ = 681 

2; Supplement 1 for additional parameter values), but under three alternative hypotheses 682 

that can be compared to observed data. These comparisons of observed to model-generated 683 

data under alternative hypotheses can help identify whether trait evolution and/or eco-684 

evolutionary feedbacks structured the observed data. Population sizes of susceptible (S, light 685 

blue) and infected (I, light grey) individuals (left y-axis), and pathogen virulence (α, red, right 686 

y-axis), are given for: Hypothesis 1 (H1, solid line) in an ecological-only model where 687 

pathogen traits (α) cannot evolve, Hypothesis 2 (H2, dashed line) in an eco-evolutionary 688 

dynamics model where pathogen virulence can evolve and impacts host population size, and 689 

Hypothesis 3 (H3, dotted line) in an ecological and evolutionary model where virulence 690 

evolves independently from host population size. Points are shown for a coarser time series 691 

that could potentially be used for comparing observed to model-simulated data, including the 692 

final value for pathogen virulence (red points), as fine time series with records of all population 693 

and trait dynamics are difficult to obtain (see Box 2 for eco-evolutionary hypothesis testing 694 

with such data). (b-e) Simulations of macroevolution, speciation, and community assembly 695 

using the gen3sis eco-evolutionary simulation engine [14], for a hypothetical community of 696 

10 ancestral species, randomly placed as a single initial population on the map of South 697 

America (an 81x71 grid with cell-specific temperature values, these values impact population 698 

growth via the distance between a local population’s trait value and the local optimum, and 699 

also impact local carrying capacity). Movement is via a cost function based on the distance 700 

between sites and a species-specific dispersal value, and evolution and speciation occur 701 
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across the dynamic landscape over 40 million years (Supplement 1 for additional parameter 702 

values). We run simulations under 4 alternative eco-evolutionary hypotheses: (b) Hypothesis 703 

1 (H1) with evolution in a single temperature-related trait that determines population growth, 704 

(c) Hypothesis 2 (H2) with evolution proceeding at the same rate in the temperature trait and 705 

in an additional dispersal-related trait, (d) Hypothesis 3 (H3) with evolution in these two traits 706 

that proceeds at different rates, and (e) Hypothesis 4 (H4) with evolution in the two traits at 707 

differing rates, where the two traits are correlated. For all four hypotheses, the final alpha 708 

diversity (local species richness) and time series of some summary statistics (number of 709 

speciation and extinction events, total regional richness) are shown. These summary 710 

statistics create features that could be used for comparison to observed data to distinguish 711 

among the alternative hypotheses that may have structured observed data (Box 2). 712 

  713 
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Box 1. Workflow for model-based hypothesis testing in eco-evolutionary dynamics 714 

1. Identify research question and data 715 

a) Establish eco-evolutionary research questions, identify mechanisms thought to underly 716 

expected dynamics and patterns, and collect data (observational, experimental, field or lab-717 

based, according to research needs) 718 

b) Identify relevant summary statistics that are emergent properties of the data; e.g., 719 

nucleotide diversity, within- and among-population genetic variation, center and width of 720 

phenotypic distributions, phylogenetic structure, total population size, rank abundance 721 

curves, normalized lineage-through-time, diversification curves [14], alpha (local), beta 722 

(among-site turnover), and gamma (regional) diversity, frequencies of different range sizes, 723 

or summary statistics across three data axes (species abundances, population genetic 724 

variation, and trait values; [12]). Choosing the most informative summary statistics emerges 725 

from the research question and the data available (e.g., total abundance data at one time 726 

point will unlikely produce informative model comparisons). Ideally, the summary statistics 727 

are determined before data collection via steps 2-4, as simulations and the algorithms used 728 

for hypothesis testing can be used to inform what type of data might capture the signature of 729 

particular eco-evolutionary dynamics. Summary statistics can be derived from time series or 730 

individual points in time, and one should consider diverse summary statistics across different 731 

scales and biological levels to address the problem of equifinality [11]. 732 

2. Choose a mechanistic model for eco-evolutionary hypothesis testing 733 

a) Identify relevant biodiversity (from genes to communities), spatial, and temporal scales, 734 

single or multiple species in a community, intra- and inter-specific interactions (e.g., 735 

consumer-resource, infectious disease dynamics, multi-species competition) 736 

b) Find theoretical model or use general-use eco-evolutionary simulation model (Box 1 737 

Figure 1) that best matches Step 1 and Step 2a and that can implement evolution (e.g., via 738 

molecular genetics, quantitative genetics, or adaptive dynamics model of traits that influence 739 

ecological model parameters), ecology (e.g., via a density dependent process or 740 

consideration of species interactions), and coupled eco-evolutionary processes 741 

3. Generate alternative hypotheses for processes that structure observed data 742 

a) Formulate a core of null and alternative hypotheses expressed in the form of alternative 743 

competing models differing in ecological, evolutionary, and coupled eco-evolutionary 744 

processes. Model alternatives may include varying forms of ecological (e.g., neutral or niche-745 

based species interactions), evolutionary (e.g., correlated traits, neutral vs. adaptive 746 

evolution), or eco-evolutionary feedback (e.g., density-dependent trait evolution, dispersal-747 

driven maladaptation impacting local fitness) relationships (Figure 1) 748 

b) Run simulations under each model with sampling of candidate parameter values from a 749 

proposed prior distribution based on the biology of the system (e.g., a uniform distribution 750 

between 0-1 for a heritability parameter), literature search, or system knowledge 751 

4. Compare simulated data under each alternative hypothesis to observed data 752 

a) Identify algorithm to compare simulated and observed data 753 

  - Least squares 754 

 - Markov Chain Monte Carlo (MCMC) 755 

- Machine learning (ML) 756 

 - Aproximate Bayesian Computation (ABC) 757 
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b) Identify summary statistics in simulation data that are compared to observed data 758 

c) Evaluate summary statistics in simulated data and determine whether they are sufficient 759 

to distinguish among alternative hypotheses and their associated distinct eco-evolutionary 760 

mechanisms (i.e. test classification ability using training and test data, revisit summary 761 

statistics to maximize posterior probabilities from data simulated under known conditions) – 762 

note potential summary statistics that are emergent signatures of underlying eco-evolutionary 763 

dynamics (e.g. shifts in phase of predator-prey cycles [3]) 764 

d) Compare summary statistics in simulated data and observed data 765 

e) Exclude simulations based on broad criteria (e.g., do not consider simulation runs where 766 

simulated population becomes extinct but observed population persists, where simulated 767 

species do not coexist but observed do, or otherwise where simulation does not resemble 768 

main features of observed data) 769 

f) Compare simulated summary statistics to observed, reject simulations that are above a 770 

threshold level of similarity to observed data, and generate posterior probabilities for data 771 

under each alternative candidate model 772 

5. Model validation and generating future predictions 773 

a) Consider whether to use the model with the highest posterior probability support or to 774 

average over the models with weights based on their relative posterior support [51,52] 775 

b) Use posterior predictive checks to evaluate model fit [47,48] 776 

c) Use predictive simulations to determine the importance of eco-evolutionary dynamics and 777 

feedbacks for critical emergent properties (e.g., stability, extinction risk, or biodiversity 778 

maintenance) 779 

 780 

Box 1, Figure 1. Summary of simulation models of eco-evolutionary dynamics and their 781 

relevant scales, which can be used to simulate the processes that structure observed 782 

biodiversity data. Models are given along with the spatial, temporal, and biodiversity scales 783 

considered by the model. We indicate if a level of biodiversity is modeled with filled symbols, 784 

and open symbols indicate some special considerations must be given to apply the model to 785 

that scale. We use +, - , and 0 to indicate positive, negative, or neutral interactions between 786 

species considered in a model (and a filled circle for species interactions means that all types 787 

are considered). 788 

1) The MESS model considers multiple sites, but is spatially implicit, with a regional 789 

metacommunity immigration rate m (probability that an individual replacing a dead individual 790 

at a site is a migrant from the metacommunity). 791 

2) Sequence evolution is not considered during forward-time simulations of community 792 

assembly, but parameters needed to simulate backward-time coalescent models for genes 793 

are estimated, and these coalescent simulations produce data consistent with user-specified 794 

sample size (number of individuals per species) and length of sequence. 795 

3) Evolution for a single trait is considered, and no intraspecific variation is modeled. 796 

4) In the gen3sis model, the current implementation examples include competition. The 797 

species ecology is customizable and can be programmed to consider additional species 798 

interactions. However, divergence, speciation, and examples of competition are currently 799 

dependent on a single shared trait, which is traditionally used for competition models. 800 
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5) In the BioGEEM model, space is modeled to resemble an island, with 1 km2-sized grids, 801 

with each cell assigned to an island side, elevation, and associated temperature. 802 

6) Evolving traits determine a population’s suitability and growth on a grid type, dispersal 803 

properties, and stage-specific body masses. The model considers plant evolution and life 804 

stages and life form types unique to plants. 805 

7) Competition is implemented via space limitation, determined by cell area. 806 

8) In the RangeShifter model, all evolving traits are related to dispersal. 807 

  808 
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Box 2. Eco-evolutionary hypothesis testing with ABC 

We demonstrate a five-step process to compare observed data to data produced by a 

theoretical model, to identify the most likely 

set of processes that produced the observed 

data. (a) Candidate model development: 

Our example of potential observed data is a 

time series (with values taken every two 

weeks, represented by points) of population 

size in a community with three species that 

coexist, compete for a shared resource, and 

have a key trait x (represented by the length 

of the organisms to the right of the plots) that 

impacts their mean fitness. The two time 

series were produced by a model with 

identical growth and competition parameters (values for interaction coefficients α ii and αij were 

chosen to represent intransitive competition; [101]; see Supplement 1 for additional 

parameter values of the simulation model used here), but in Case 1 the trait values are fixed 

and in Case 2, the trait values can evolve (via a model of evolutionary rescue; [102]). We 

focus on the data in Case 2 to use alternative hypothesis testing to identify the processes 

(ecological or eco-evolutionary) that produced the observed data. (b) Simulations: The first 

step is to come up with a model that could realistically produce the observed data under each 

of two alternative hypotheses. Here, we use a Beverton-Holt model with evolution in a 

heritable trait x that impacts population growth. We will compare Hypothesis 1 (H1) where 

evolution is not possible (h2 = 0 for all species) and Hypothesis 2 (H2) where evolution is 

possible (h2 ≥ 0 for all species) and determine which is a better match to our observed data 

(the data in 

panel a, Case 2). 

We ran 100,000 

simulations 

under the two 

alternative 

models. For all 

unknown or 

unmeasured 

parameters, a 

given simulation 

uses a random 

draw from a 

prior 

distribution, 

chosen to be 

uninformative 

(i.e., for model 

H2, heritability is drawn from a random uniform distribution between 0-1), informed by prior 

expert knowledge about the system (i.e. interaction coefficients are drawn from a beta 

distribution that places an increased likelihood on weak interactions (α ~ beta(0.25,10); [29]), 

or chosen using some value generator (e.g. as in [20])). For the random draws from the prior 
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distribution of w (the width of the Gaussian fitness function; example random draws are 

shown as orange points), the associated Gaussian fitness functions (the relationship between 

fitness on the y-axis and 

trait value on the x-axis) are 

shown. (c) Model 

selection: For each run of 

the simulation, the 

candidate parameter values 

drawn from the prior 

distributions produce a 

simulated dataset, which is 

then compared to the 

observed summary 

statistics (the points and 

xt=300 trait values in panel a) 

using a distance function. 

We used a hidden-layer 

neural network to minimize 

the distance between 

observed and simulation 

summary statistics (using 

the R package abc; [36]). Some simulations are below this threshold distance and accepted 

(green checks) and some are above this threshold distance and rejected (red X). In this 

example, we limited the simulations to those where all 3 species had population size greater 

than 0, to better match the observed data (highlighted by dark red boxes). From this 

proportion of accepted models under each alternative hypothesis, a posterior model 

probability is generated (given in the table as PostPr). This indicates the probability the 

observed data was produced by each model. (d) Parameter estimation: Once a 

hypothesized 

model is 

identified (i.e. 

H2, the model 

with evolution 

in this instance, 

with a posterior 

probability of 

80%), the 

randomly 

drawn 

parameter 

values that 

produced the 

accepted 

simulations can 

be used to 

estimate the 

posterior 

Posterior distributions for model parameters, estimated

from parameter values of accepted (     ) simulations (H2) 
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distributions of model parameters that 

were not measured in the simulation [32]. In 

this example, the ABC process can 

successfully detect that Species 3 (colored 

orange) is unlikely to be the evolving 

species as the most probable values of h2 

are centered around 0. A higher weight is 

given to evolution (h2 > 0) for Species 2 

(colored light blue) compared to Species 1 

(colored grey), but the ABC is unable to 

clearly resolve the true state of the system 

that h2
1,3 = 0 and h2

2=0.25. We also show 

posterior distributions for the strength of 

selection w (prior: light blue, true value: 

black, posterior distribution: dark red) and 

intra- and interspecific interaction 

coefficients (αii) and αij respectively). (e) Posterior predictions: The quality of the selected 

model (H2, with evolution) is assessed by comparing the data (in panel a, Case 2) to 

predictions made under the accepted model and associated parameter posterior 

distributions. The 95% confidence intervals (blue dashed lines) for each species were 

obtained by running simulations using the parameter values from a subset of accepted 

simulations with lowest Euclidean distance to the observed values of summary statistics. 
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