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Abstract: 21 

While the reciprocal effects of ecological and evolutionary dynamics are increasingly 22 
recognized as an important driver for biodiversity, detection of such eco-evolutionary 23 
feedbacks, their underlying mechanisms, and their consequences remains challenging. Eco-24 
evolutionary dynamics occur at different spatial and temporal scales and can leave signatures 25 
at different levels of organization (e.g., gene, protein, trait, community) that are often difficult 26 
to detect. Recent advances in statistical methods combined with alternative hypothesis 27 
testing provides a promising approach to identify potential eco-evolutionary drivers for 28 
observed data even in non-model systems that are not amenable to experimental 29 
manipulation. We discuss recent advances in eco-evolutionary modeling and statistical 30 
methods and discuss challenges for fitting mechanistic models to eco-evolutionary data.  31 
 32 
  33 
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Pairing ecological and evolutionary dynamics 34 
The field of eco-evolutionary dynamics centers on the paired observations that evolution can 35 
occur on overlapping timescales with ecological processes, and that ecological processes 36 
are influenced by traits that can both respond to and drive evolutionary change. Eco-37 
evolutionary feedback occurs when evolution of a trait or property impacts population or 38 
community dynamics (or vice versa), which feeds back to drive further evolution (or ecological 39 
dynamics) in a continuous cycle [1,2]. These eco-evolutionary dynamics need not be invoked 40 
if the timescales of ecological and evolutionary dynamics are sufficiently separate, or if 41 
phenotypic variance is low enough that a mean phenotypic value captures ecological 42 
dynamics sufficiently [1]. However, it remains that evolutionary processes are occurring while 43 
ecological dynamics proceed in all biological systems. In the absence of intertwined feedback 44 
loops, and especially in their presence, past or contemporary evolution can impact the 45 
dynamics of ecological processes. Studies have identified instances of eco-evolutionary 46 
interactions and feedbacks and demonstrated their strong impacts on populations, 47 
communities, and ecosystems [3–6], but those impacts can be difficult to detect due to the 48 
often complex relationship between ecological and evolutionary processes. Thus, 49 
determining potential eco-evolutionary drivers of population, community, and ecosystem 50 
dynamics remains a major challenge. This restricts our ability to evaluate the consequences 51 
of eco-evolutionary dynamics on contemporary and future biodiversity in natural settings and 52 
in non-model organisms. 53 
 54 
Some studies (e.g., [7–9]) have implemented methods that take a target variable of interest 55 
(e.g., phenotypic trait, vital rate shared across the species under study), construct categories 56 
of contributing factors to variation in that target variable, and assigns total phenotypic 57 
variance to these fractions (often by holding one process constant and averaging across the 58 
change in the other effects; [10]). These fractions are linear and additive, but lack a 59 
mechanistic basis; they are calculated retrospectively, and thus are limited for predicting 60 
future changes. Analysis methods for studying eco-evolutionary dynamics should instead 61 
consider the mechanistic basis of data structure, realistic models of variance and uncertainty, 62 
and the complexity of eco-evolutionary feedbacks and processes with distinct signatures at 63 
different temporal, spatial, and biodiversity scales (Box 1, Figure I). Model-based hypothesis 64 
testing by comparing among alternative eco-evolutionary hypotheses has recently emerged 65 
as an alternative to existing correlative approaches, and this framework can be used to 66 
address the unanswered questions in the field [11–13]. In this review we summarize the basic 67 
building blocks of using mechanistic models and statistical inference to pair eco-evolutionary 68 
data with a theoretical or simulation model. We provide guidance on how to construct 69 
alternative hypotheses, fit these to observed data, and generate posterior probabilities for 70 
these hypothesized processes. The goal of statistical inference for eco-evolutionary 71 
dynamics is not that all datasets must perfectly capture each step of historical dynamics, nor 72 
that all datasets must fit to the same ANOVA-based linear model to categorize average effect 73 
sizes. We provide directions to make inference about the potentially complex processes that 74 
structure eco-evolutionary data, to identify whether eco-evolutionary feedbacks are operating 75 
in a specific system, and to determine the consequences of these dynamics for critical 76 
emergent properties such as resilience, stability, diversity, extinction, and ecosystem 77 
function. 78 
 79 
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A structured workflow for model-based hypothesis testing in eco-evolutionary dynamics 80 
Eco-evolutionary research questions may center on whether only evolutionary or only 81 
ecological processes in isolation, or their interaction in a feedback loop, account for observed 82 
diversity patterns. Research questions can thus be formulated as a core of null and alternative 83 
hypotheses expressed in the form of alternative competing mechanistic models (Figure 1). 84 
Simulations from the models can then be matched to these alternative hypotheses and 85 
rigorously compared to observed data to identify the variety of relevant processes (ecological, 86 
evolutionary, eco-evolutionary feedback) that are consistent with these observed data. The 87 
simulations provide features – referred to as summary statistics (see Glossary) – that are 88 
compared with corresponding features in the observed dataset, and many thousands of 89 
simulations should be run under each model to generate potential distributions of these 90 
features. Examples of these summary statistics include spatial alpha diversity, range size 91 
variation, normalized lineage-through-time diversification curves [14], or diversity indices 92 
across three data axes (species abundances, population genetic variation, and trait values) 93 
[12]. We describe examples of such eco-evolutionary hypothesis formulations (Box 1 and 94 
Figure 1), and how to compare observed data to these models (Box 2). 95 
 96 
Choose a mechanistic model for eco-evolutionary hypothesis testing 97 
The first step in eco-evolutionary hypothesis testing is to identify a mechanistic model to pair 98 
with observed data. This potential challenge is not unique to eco-evolutionary dynamics, but 99 
it is also a necessary step to make the field more predictive. Once the research question has 100 
been identified and the relevant biological data have been collected, there are some options 101 
for selecting an appropriate model. The choice of model should be based on knowledge of 102 
the system (e.g., mechanisms and processes that determine ecological dynamics, patterns, 103 
or outcomes), the relevant biodiversity (from genes to communities), the spatial and temporal 104 
scales relevant to the data of interest, as well as the summary statistics used to compare 105 
model simulations to observed data (see Figure I in Box 1). It is not always necessary to 106 
develop an entirely new model or design an experiment that estimates all parameters in a 107 
single theoretical model, as one can choose among existing models or tools to build models. 108 
These could be theoretical models, or simulation models that reproduce the dynamics 109 
described in theoretical models. Numerous R software packages exist that allow simulations 110 
of commonly used ecological models such as logistic growth and multispecies interaction 111 
models (gauseR [15]), consumer functional response models (FRAIR [16]), infectious 112 
disease models (EpiDynamics [17]), and island biogeography and metapopulation models 113 
(EcoEvoApps [18]). Researchers can use open- source code to extend the model to consider 114 
evolution. Alternatively, an existing EcoEvo Mathematica package 115 
(https://github.com/cklausme/EcoEvo) allows simulations and equilibrium analysis of 116 
species- and trait-based eco-evolutionary models, using differential equations with intra- and 117 
interspecific interactions, and quantitative genetic or adaptive dynamics trait models. 118 
 119 
If models with known equations that capture the eco-evolutionary dynamics of interest do not 120 
exist or are difficult to develop de novo, one can choose from the emerging class of general- 121 
use eco-evolutionary simulation models (Box 1, see online supplemental material S1F). 122 
These generally use a fixed set of input parameters to model sequence, phenotypic, and/or 123 
phylogenetic evolution, where evolving traits impact how individuals grow, reproduce, die, 124 
move across a landscape, and interact with their environment and with other individuals, and 125 
where individuals inhabit a landscape with user-specified connectivity and movement 126 
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patterns. These models can simultaneously consider both ecological and evolutionary 127 
diversity-generating processes (e.g., speciation, neutral and adaptive sequence and 128 
phenotypic evolution, spatial and environmental drivers of population and community 129 
structure), and generate known patterns that emerge from these processes (e.g., nucleotide 130 
diversity patterns, rank abundance curves, species–genetic diversity correlations). The 131 
models differ in some included features, such as implementing age- or stage-based 132 
population structure (NEMO-AGE; [19]), including molecular evolution (NEMO-AGE; SLiM 4; 133 
[20]), built-in models for organismal movement (RangeShifter; [21]), and the types of built-in 134 
species interactions (see Figure I in Box 1). 135 
 136 
Generate alternative hypotheses for processes that structure observed data 137 
Research in eco-evolutionary dynamics has moved forward from asking whether evolution 138 
impacts ecological processes to identifying the mechanism of this effect [22–24]. Linking 139 
mechanistic modeling with observational data could allow investigation of these mechanisms 140 
even if they are not easily accessible through direct measurements (e.g., in field surveys, or 141 
for mechanisms that are typically accessible only through experimental manipulation). Some 142 
potential examples of hypotheses that could be studied by comparing data to mechanistic 143 
models include the precise form or mechanism of evolution (e.g., evolution of single or 144 
multiple traits, uncorrelated or correlated, the existence of trade-offs between evolution of life 145 
history traits and competition [25] and their effects on community structure), or identifying 146 
eco-evolutionary feedback dynamics. Testing these mechanistic hypotheses represents a 147 
step beyond showing only that ecology and evolution occur simultaneously. 148 
 149 
To demonstrate eco-evolutionary hypothesis testing, we consider an example on a 150 
microevolutionary timescale at a single spatial location: an epidemiological model with 151 
virulence evolution [26], where the number of individuals in susceptible (S) and infected (I) 152 
host populations are determined by a transmission–virulence tradeoff. Virulence (α) can 153 
evolve if the additive genetic variance for this trait V > 0, and the rate of change for this trait 154 
depends on the susceptible host population size: dα/dt = f(S). This link between the evolving 155 
trait and host population dynamics represents an eco-evolutionary feedback as dS/dt = f(α) 156 
and dα/dt = f(S) [1]. A null hypothesis for comparing empirical data to this model system could 157 
be that phenotypic evolution is not possible (the additive genetic variance for virulence V = 158 
0), with an alternative hypothesis where evolution (V > 0) and a feedback between evolution 159 
and ecology is possible, and an additional alternative hypothesis where eco-evolutionary 160 
feedbacks are removed from the system by decoupling the dependence of virulence evolution 161 
from host population dynamics: dα/dt ≠ f(S) (Figure 1A). Additional simulations can be used 162 
to explore the impacts of different trade-off functions (between virulence and transmission, 163 
or in the relationship between evolutionary change in virulence and population size of 164 
susceptible hosts). 165 
 166 
For an example of eco-evolutionary dynamics on macroevolutionary timescales in 167 
multispecies communities on a large biogeographical scale, we used gen3sis [14] to simulate 168 
phenotypic evolution, speciation, and community assembly in a hypothetical community 169 
across 40 million years, and to monitor the impact of various eco-evolutionary processes for 170 
emergent patterns of species diversity. We consider four alternative hypotheses for evolution 171 
(Figure 1B–E): single versus multiple traits, evolving at the same or different speeds, with 172 
traits either uncorrelated or correlated. Resulting patterns (e.g., of richness at the local α, 173 
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regional γ, and among-site β levels, or of phylogenetic diversity) can be compared to 174 
observed data, and model posterior probabilities can inform researchers of the likelihood that 175 
different eco-evolutionary processes have structured their data. One could also test for the 176 
presence of eco-evolutionary feedbacks between evolution of dispersal ability and range 177 
expansion [27], the effects of uniform versus varying dispersal ability across species, or 178 
develop an alternative configuration where traits evolve as a tradeoff between local 179 
competitive ability and colonization ability [28,29]. Eco-evolutionary simulation models with 180 
explicit consideration of sequence evolution (e.g., NEMO-AGE [17], sPEGG [24], SLiM 4 [20]) 181 
(see Figure I in Box 1) allow tests for the role that genetic architecture plays in structuring 182 
eco-evolutionary dynamics (e.g., species with similar niche axes but different degrees of 183 
standing genetic variation, mating systems, or other properties that impact adaptive capacity 184 
[30]). Eco-evolutionary simulation models can test the impacts of these processes for 185 
emergent community properties such as coexistence, diversity, or resilience to perturbation. 186 
 187 
Compare simulated data under each alternative hypothesis to observed data 188 
The next step is to compare observed data with data simulated under null and alternative 189 
eco-evolutionary hypotheses and their associated models, to estimate the posterior 190 
probability of each hypothesis. A decision-making or classifying algorithm can accept or reject 191 
simulations based on their similarity to summary statistics of observed data (Boxes 1 and 2). 192 
As observed and simulated data are compared based on the match in information-rich 193 
summary statistics, there is no a priori reason that absolute time series of sequences, traits, 194 
or abundance data are necessary to successfully identify the processes most likely to have 195 
generated an observed dataset. Diverse summary statistics across different scales and 196 
biological levels may be critical to address the problem of equifinality, where different 197 
combinations of processes or model parameters can produce similar patterns of data at a 198 
single biological level [11,31]. Before the step of comparing observed to simulated summary 199 
statistics, one can combine reclassification of simulated datasets (e.g., leave-one-out cross 200 
validation) with a feature selection algorithm (e.g., a boruta algorithm [32]) to both identify 201 
summary statistics with the most predictive power for a given target dataset and to identify 202 
what data properties are most critical to collect for hypothesis testing. To address data at an 203 
unknown point along a trajectory towards system equilibrium, the MESS model includes a 204 
parameter Λ that measures the ‘fraction’ of equilibrium that a system has obtained (the point 205 
at which the starting conditions of the simulation model are no longer detectable in the system 206 
state), which can be set to obtain simulations away from equilibrium and can be estimated 207 
from an observed empirical dataset [12,33].  208 
 209 
It is not required to render guesses for or attempt measurements of all model parameters to 210 
compare observed and simulated data. To generate the thousands of simulations needed 211 
under each alternative hypothesis, researchers can instead sample candidate parameter 212 
values from a proposed prior distribution. These prior distributions should be based on a 213 
researcher’s understanding of the model system when possible (e.g., an uninformative 214 
uniform distribution between 0 and 1 for a heritability parameter), or informative based on 215 
literature measures (e.g., an increased probability of weak species interactions) [34–36]. After 216 
simulations are run and summary statistics have been extracted, a decision algorithm can 217 
accept or reject a simulation based on its distance from observed summary statistics. We 218 
describe how to use approximate Bayesian computation (ABC) [37] for such an 219 
algorithmic approach in Box 2, but additional options are available: for example, Markov 220 
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chain Monte Carlo (MCMC) [38–40], machine learning (ML) [41] (see [42,43] for an 221 
overview of ML applied to model fitting in ecology and evolution, and supplemental material 222 
S1D for an ML alternative to the analysis in Box 2). ABC is a Bayesian statistical 223 
computational approach for estimating posterior distributions of model parameters via 224 
random draws from prior distributions and comparing with observed values via a criterion for 225 
acceptance or rejection [37,44]. Researchers can generate their own models, alternative 226 
hypotheses, and associated simulated summary statistics, and use an existing abc R 227 
package [45] for model comparison. One application of ABC to eco- evolutionary hypothesis 228 
testing is the study of Baselga et al. [46] to estimate the relative importance of dispersal 229 
limitation and niche width in contemporary surveys of genetic and community structure (see 230 
also [47]). ML could also be used to train a classifier algorithm on simulated datasets from 231 
known alternative model conditions, then classify the observed data and generate predicted 232 
model class probabilities. Overcast et al. [12] used this approach to classify whether datasets 233 
from contemporary surveys of diverse organismal groups were most consistent with neutral, 234 
environmental filtering, or competition eco-evolutionary models. 235 
 236 
Parameter estimation, model validation, and generating future predictions 237 
After model fitting is used to produce posterior probabilities for each candidate model, the 238 
posterior distributions of model parameters can also be estimated from the simulations 239 
retained by the acceptance–rejection algorithm (Box 2). These posterior estimates of model 240 
parameters – some of which might have associated observations for validation, and others 241 
of which are impossible or resource-intensive to estimate – are useful for process inference, 242 
and can also serve as guidance for future data collection to confirm these estimates. Model 243 
checking and improvement is the next step: researchers should consider posterior predictive 244 
checks to evaluate model fit [48,49], evaluate the importance of summary statistics for 245 
predictive ability [41,50,51], and also consider whether to use the model with the highest 246 
posterior probability support or to average over the models with weights based on their 247 
relative posterior support [52,53]. The best fit (or averaged) models and parameter estimates 248 
can be used to make predictions for future dynamics of the system, with estimates of 249 
uncertainty, and with inclusion of alternative scenarios for future systemic change [54,55]. 250 
 251 
For studies of eco-evolutionary dynamics, predictive simulations can be used to determine 252 
the importance of eco-evolutionary dynamics and feedbacks for critical emergent properties 253 
such as stability, extinction risk, or biodiversity maintenance. For example, in the host–254 
disease model (Figure 1A), the impacts of including versus excluding the eco-evolutionary 255 
feedback loop for population stability could be evaluated by running simulations with 256 
parameters drawn from posterior distributions under each alternative model, and then 257 
generating a posterior distribution for an emergent property of the simulations such the 258 
coefficient of variation (CV), a metric often used to quantify stability [56]. In one example, 259 
the study of Luiselli et al. [57] determined the relative impact of the combination of speciation 260 
rate and mechanism of competition for population genetic and community structure in a 261 
variety of taxonomic systems. They used the MESS simulation model to decompose the 262 
effects of speciation rates and competition type for emergent summary statistics of overall 263 
species richness, and community, genetic, and functional trait diversity. Their study found 264 
strong differences in the change in genetic diversity over time depending on whether 265 
speciation was included, whether species interacted neutrally, and depending on the 266 
mechanism of competition considered. Their results confirmed that many of the properties 267 
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we observe at the level of populations and communities are generated by eco-evolutionary 268 
processes. One recent study has established a mechanistic basis for the impact of eco-269 
evolutionary dynamics for a critical, emergent system property of food web collapse. Barbour 270 
et al. [23] identified that the presence of a particular allele (AOP2+ or AOP2–) in host 271 
Arabidopsis thaliana plants could result in a 29% difference in extinction rates for associated 272 
aphids and parasitoids in an experimental food web.  273 
 274 
Future perspectives 275 
It has previously been said that confirmation of eco-evolutionary predictions requires 276 
monitoring genetic properties of populations and subsequent community interactions over 277 
time intervals in which selection regimes are likely to have caused changes in ecologically 278 
relevant traits [8,58,59]. Studies of eco-evolutionary interactions and feedbacks are thus often 279 
limited to tractable taxonomic systems [60,61], with time-intensive measurements of 280 
phenotypes in common environments. The complex eco-evolutionary processes that provide 281 
structure in data are often collapsed into additive categories with effect sizes estimated using 282 
ANOVA-like variance partitioning without consideration for generalized probability 283 
distributions, fixed and random effects, or non-linear and interacting combinations of drivers 284 
of system responses (e.g., [8,9]). However, similarly to the way in which processes of 285 
evolution and the dynamics of natural selection leave distinct signatures on contemporary 286 
populations that can be analyzed to infer those historical structuring processes (e.g., [62–287 
64]), past eco-evolutionary dynamics likely leave distinct signatures on contemporary 288 
populations and communities. Researchers must still scale the difficult challenge of 289 
identifying which features, emergent properties, and summary statistics from observed data 290 
capture the signatures of distinct eco-evolutionary processes (e.g., [3]). However, the path of 291 
using statistical or process-based mechanistic models to compare the likelihood of 292 
observed data to alternative models is used in other fields of research where historical 293 
processes cannot be observed (e.g., coalescent processes and demographic history, 294 
phylogenetic reconstruction and patterns, population genetic structure [20,65–67]). The 295 
remaining challenges to uncover eco-evolutionary signatures on extant biodiversity are 296 
generating data in contemporary populations and communities that capture the features 297 
necessary to infer eco-evolutionary structuring processes, accessing user-friendly versions 298 
of statistical models that can disentangle the numerous processes (drift, selection, gene flow, 299 
community assembly and metacommunity processes, multivariate environmental forcing 300 
[68,69]) that combine to structure biodiversity from the gene to ecosystem level, and 301 
converging on mechanistic hypotheses and predictions for the impacts of eco-evolutionary 302 
dynamics in biological systems. 303 
 304 
There is good reason to be optimistic on each front. First, biodiversity science is entering an 305 
unprecedented era of technology-assisted, high-throughput data collection [70–72] and of 306 
open, reproducible data sharing [73,74]. Some recent examples of ‘high-throughput’ eco-307 
evolutionary data collection exist, including fine time series of multispecies population size 308 
and trait values via fluid imaging technology [75,76], real-time observation of adaptive 309 
tracking to environmental change (e.g., Drosophila melanogaster [24], Arabidopsis thaliana 310 
[77], other non-model systems [78–80]). Moving eco-evolutionary dynamics into the genomic 311 
era is a promising current direction of study [22,81]. The difficulty of detecting eco-312 
evolutionary processes in complex systems could be alleviated by genomic data monitoring 313 
[82,83], especially in systems where candidate genes can be used for monitoring selection 314 
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in real time and eDNA and high-throughput sequencing can be used for monitoring 315 
evolutionary dynamics and ranges of organisms across large spatial scales [84–86]. While 316 
this level of data coverage may not exist for all empirical studies, when available, such rich 317 
datasets can be used to evaluate summary statistics and data features that are potentially 318 
diagnostic of eco-evolutionary processes (Box 1, steps 1–4) and therefore useful as 319 
signatures of eco-evolutionary dynamics across diverse systems. 320 
 321 
Second, we have discussed theoretical and simulation models that are moving towards 322 
modeling the full suite of interacting processes that structure biodiversity at multiple scales 323 
(spatial, temporal, diversity across levels of organization [Box 1]) (additional detail for models 324 
can be found in supplemental material S1E and S1F), and some additional reviews have 325 
addressed models that can be used to predict future biodiversity responses to environmental 326 
change [87,88]. There is still a need for statistical tools to detect effects and their magnitudes 327 
in experimental and field observational data, and the difficulty of distinguishing among the 328 
many signals that structure genes, traits, populations, and communities is compounded by 329 
the complexity of eco-evolutionary dynamics. Some new statistical models that address this 330 
need include an integrated reaction norm model linking genetic, phenotypic, and 331 
demographic processes [89], and a species distribution model with local adaptation and 332 
phenotypic plasticity (ΔSDMs [90]). Modern statistical models for population and community 333 
ecology now consider critical processes such as observer, measurement, and process error, 334 
error propagation, or the existence of present but undetected species or life stages (e.g., [91–335 
96]), and these features are likely to be important for eco-evolutionary models as well. For 336 
linking microevolution and models of eco-evolutionary dynamics, tools such as sPEGG [24], 337 
SLiM 4 [20], and the EcoEvo Mathematica package are currently available for generating 338 
features to compare with observed data. We also share the code used for all the analyses 339 
here in an open-source R package ecoevoR (https://github.com/jhpantel/ecoevoR). 340 
 341 
Future perspectives 342 
There is an urgent need to move beyond establishing that evolution can be important for 343 
ecological processes or that eco-evolutionary feedback loops might exist in some systems. 344 
Are there particular environmental and spatial conditions [97] or features of community 345 
composition [98] or food web network structure [99] that make eco-evolutionary dynamics 346 
more or less likely to occur? The lack of information here highlights the reality that a 347 
background or null level of interacting eco-evolutionary processes is currently unknown (see 348 
Outstanding questions). Published examples tend to focus on clear feedbacks between 349 
adaptive evolution and ecological dynamics in organisms that may have disproportionate 350 
adaptive capacity (e.g., Daphnia [5,100,101], Arabidopsis [23]). However, it is currently 351 
unknown whether eco-evolutionary dynamics are driven by large-effect alleles versus allelic 352 
changes in numerous locations with cumulative small effects. Additionally, the role of 353 
adaptive evolution has been considered in many studies of eco-evolutionary dynamics, but 354 
fewer have established the role that sexual selection, genetic drift, or maladaptation might 355 
play (but see discussion of maladaptation in evolutionary rescue literature: e.g., [102,103]), 356 
as these processes also structure genetic architecture, population demography, and species 357 
interactions [22,104–106]. Given that numerous evolutionary and ecological processes are 358 
continuously occurring, operating at a variety of time scales, answers to these research 359 
questions are needed for statistical models to be developed that implement accurate 360 
distributions for emergent properties that are often the targets of studies of the impacts of 361 
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environmental change. Much of this review focuses on the methodology needed to detect 362 
signatures of eco-evolutionary dynamics in experimental and observed biodiversity data. We 363 
anticipate a research era in which these tools can be used to address urgent, compelling 364 
questions such as what the role of eco-evolutionary dynamics is for large-scale properties 365 
such as diversity, stability, and ecosystem functioning.  366 
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Glossary: 638 
Approximate Bayesian computation (ABC): Approximate Bayesian Computation is a class 639 
of computational methods, based on a Bayesian statistical framework, to simulate posterior 640 
distributions of model parameters via random draws from those distributions and comparison 641 
to some true values of observations via some criterion for acceptance or rejection 642 
 643 
Boruta: A feature selection algorithm that uses a random forest classification algorithm to 644 
identify predictive features that are more informative than randomly generated features 645 
 646 
Coefficient of variation (CV): The ratio of standard deviation to mean 647 
 648 
Cross validation: A model validation technique to assess how a statistical model or analysis 649 
will generalize to an independent data set, where a part of the data is withheld from training 650 
the model to assess its ability to classify the withheld data 651 
 652 
General-use eco-evolutionary simulation model: A class of models to simulate eco-653 
evolutionary processes, that include intrinsic population dynamics, species interactions with 654 
one another and with their environment, and genetic (molecular or quantitative trait) evolution. 655 
Models should include processes known to impact different levels of biodiversity (genes, 656 
traits, populations, and/or communities) and should accurately reproduce known patterns of 657 
emergent aggregate properties such as gene, species, or phylogenetic diversity 658 
 659 
Genetic architecture: the underlying genetic basis that builds and controls a phenotypic trait 660 
of an individual or population and its variational properties, which can include the number of 661 
genes involved, the distribution of their effects, and their interactions (dominance, epistasis, 662 
pleiotropy) 663 
 664 
Machine learning: A family of computational, algorithmic, or statistical approaches to build 665 
a model based on sample data (training data) to make predictions, decisions, or 666 
classifications without explicit programming of a data-generating model 667 
 668 
Markov chain Monte Carlo (MCMC): A class of algorithms to obtain a sample of a probability 669 
distribution, beginning from an arbitrarily chosen set of starting points and proceeding by 670 
moving at random from the starting point towards representative samples of the distribution 671 
based on some distance or rejection criterion 672 
 673 
Posterior distribution: Refers to a posterior probability distribution, or the updated 674 
probability distribution for a model parameter after taking into account information (new 675 
information in the form of data) 676 
 677 
Prior distribution: Refers to a prior probability distribution, or the expression of an uncertain 678 
distribution for the probability of different values of a model parameter, which captures prior 679 
expectations for the shape or structure of the parameter 680 
 681 
Process-based mechanistic model: A mechanistic model is a characterization of the state 682 
of a system as explicit functions of component parts and their associated actions and 683 
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interactions, and a process-based model is a model that characterizes changes in a system’s 684 
state as explicit functions of the events that drive those state changes [106] 685 
 686 
Summary statistic: A descriptive statistic calculated from data that gives compressed, 687 
summarized information, used to reduce data dimensionality (though information in the 688 
original data can be lost); may be referred to as ‘features’ in machine learning applications 689 
 690 
 691 
Outstanding questions: 692 
1. Does the occurrence of eco- evolutionary feedbacks depend on a few alleles with large 693 
effects or on many alleles with small effects in numerous directly and indirectly interacting 694 
species? 695 
 696 
2. Under what conditions and how often do the time scales of ecological and evolutionary 697 
dynamics overlap, and does evolution lead to ecological dynamics that cannot be predicted 698 
by ecological processes alone, and vice versa? 699 
  700 
3. How do sexual selection, genetic drift, or evolutionary mismatch structure genetic 701 
architecture, population demography, species interactions, and eco-evolutionary dynamics?  702 
 703 
4. What is the role of eco-evolutionary dynamics for large-scale properties such as diversity, 704 
stability, and ecosystem functioning? 705 
 706 

Tables & Figures: 707 
Figure 1. Eco-evolutionary hypotheses for the structure of observed disease and biodiversity 708 
dynamics. (A) Simulations of an eco-evolutionary epidemiological model with virulence 709 
evolution [26] are shown with many of the same model parameters (e.g., S0 = 107, α0 = 4, γ 710 
= 2; see supplemental material S1A for additional parameter values), but under three 711 
alternative hypotheses that can be compared to observed data. Population sizes of 712 
susceptible (S, blue) and infected (I, gray) individuals (left y-axis), and pathogen virulence (α, 713 
red, right y-axis), are given for: hypothesis 1 (H1, unbroken line) in an ecological-only model 714 
where pathogen traits (α) cannot evolve, hypothesis 2 (H2, broken line) in an eco-evolutionary 715 
model where pathogen virulence can evolve and impacts host population size, and 716 
hypothesis 3 (H3, dotted line) in an ecological and evolutionary model where virulence 717 
evolves independently from host population size. Points show a coarser time series that could 718 
potentially be used for comparing observed to model-simulated data (red points are the final 719 
values for pathogen virulence), as fine time series with records of all population and trait 720 
dynamics are difficult to obtain. These comparisons of observed to model-generated data 721 
under alternative hypotheses (Box 2) can help identify whether trait evo- lution and/or eco-722 
evolutionary feedbacks structured the observed data. (B–E) Simulations of speciation, trait 723 
evolution, and community assembly using the gen3sis eco-evolutionary simulation engine 724 
[14], for a hypothetical community of ten ancestral species, randomly placed as a single initial 725 
population on the map of South America (an 81 x 71 grid with cell-specific temperature values 726 
that impact carrying capacity and also population growth via the distance between a 727 
population’s trait value and the local optimum). Movement is via a cost function based on the 728 
distance between sites and a species-specific dispersal value, and evolution and speciation 729 
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occur across the dynamic landscape over 40 million years (see supplemental material S1B 730 
for additional parameter values). We run simulations under four alternative eco-evolutionary 731 
hypotheses: (B) hypothesis 1 with evolution in a single temperature-related trait that 732 
determines population growth, (C) hypothesis 2 with evolution proceeding at the same rate 733 
in the temperature trait and in an additional dispersal-related trait that impacts the scale of 734 
the dispersal kernel, (D) hypothesis 3 with evolution in these two traits that proceeds at 735 
different rates, and (E) hypothesis 4 with evolution in the two traits at differing rates, where 736 
the two traits are correlated. For all four hypotheses, the final alpha diversity (local species 737 
richness, color-scale per grid cell in map) and time series of some summary statistics (number 738 
of speciation and extinction events, total regional richness) are shown. These summary 739 
statistics could be compared to observed values to distinguish among alternative hypotheses 740 
that may have structured observed data (Box 2). 741 
  742 
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Box 1. Workflow for model-based hypothesis testing in eco-evolutionary dynamics 743 

1. Identify research question and data 744 

(i) Establish research questions, identify mechanisms thought to underlie expected dynamics 745 
and patterns, collect data (observational, experimental, field or lab- based, according to 746 
research needs). 747 

(ii) Identify relevant summary statistics that are emergent properties of the data: for example, 748 
nucleotide diversity, within- and among-population genetic variation, species diversity (alpha, 749 
beta, gamma), center and width of phenotypic distributions, phylogenetic structure, total 750 
community abundance, rank abundance curves, normalized lineage-through-time 751 
diversification curves [14], variation in range sizes, summary statistics across three data axes 752 
(species abundances, population genetic variation, trait values [12]). Choosing the most 753 
informative summary statistics emerges from the research question and available data (e.g., 754 
total abundance data at one time point is unlikely to produce informative model comparisons). 755 
Summary statistics should be assessed before data collection (steps 2–4) and inform the 756 
type of data needed to capture the signature of particular eco-evolutionary dynamics. 757 
Summary statistics can come from time series or individual time points, and one should 758 
consider diverse summary statistics across different scales and biological levels to address 759 
the problem of equifinality [11]. 760 

2. Choose a mechanistic model for eco-evolutionary hypothesis testing 761 

(i) Identify relevant biodiversity (from genes to communities), spatial, and temporal scales, 762 
single or multiple species, intraspecific and interspecific interactions (e.g., consumer 763 
resource, infectious disease dynamics, multispecies competition). 764 

(ii) Use theoretical or general-use eco-evolutionary simulation model (Figure I) that best 765 
matches Step 1 and 2(i) and implements evolution (e.g., molecular genetics, quantitative 766 
genetics, or trait adaptive dynamics), ecology (e.g., density-dependent processes, 767 
consideration of species interactions), and coupled eco-evolutionary processes. 768 

3. Generate alternative hypotheses for processes that structure observed data 769 

(i) Formulate null and alternative hypotheses expressed as competing models differing in 770 
ecological, evolutionary, and coupled eco-evolutionary processes. Model alternatives may 771 
include varying forms of ecological (e.g., neutral or niche-based species interactions), 772 
evolutionary (e.g., correlated traits, neutral versus adaptive evolution), or eco-evolutionary 773 
feedback (e.g., density-dependent trait evolution, dispersal-driven maladaptation impacting 774 
local fitness) relationships (Figure I). 775 

(ii) Run simulations under each model, sampling candidate parameter values from a 776 
proposed prior distribution based on the biology of the system (e.g., a uniform distribution 777 
between 0 and 1 for a heritability parameter) or system knowledge. 778 

4. Compare simulated data under each alternative hypothesis to observed data 779 

(i) Identify algorithm to compare simulated and observed data: 780 
• Least squares 781 
• Markov Chain Monte Carlo (MCMC) 782 
• Machine learning (ML) 783 
• Aproximate Bayesian computation (ABC) 784 
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(ii) Evaluate summary statistics in simulated data for sufficiency to discriminate among 785 
alternative hypotheses and their associated distinct eco-evolutionary mechanisms (i.e., test 786 
classification ability using training and test data, revisit summary statistics to maximize 787 
posterior probabilities from data simulated under known conditions); note potential summary 788 
statistics that are emergent signatures of underlying eco-evolutionary dynamics (e.g., shifts 789 
in phase of predator–prey cycles [3]); see step 1(ii). 790 

(iii) Compare summary statistics in simulated data and observed data. 791 

(iv) Exclude simulations based on broad criteria (e.g., where a simulated population becomes 792 
extinct but an observed population persists) where simulation does not resemble main 793 
features of observed data. 794 

(v) For ABC: compare simulated summary statistics to observed, reject simulations above a 795 
threshold similarity. For all: generate posterior probabilities for observed data under each 796 
alternative candidate model. 797 

5. Parameter estimation, model validation, and generating future predictions 798 

(i) Consider whether to use the model with the highest posterior probability support or to 799 
average over the models with weights based on their relative posterior support [52,53]. 800 

(ii) Use posterior predictive checks to evaluate model fit [48,49]. 801 

(iii) Use predictive simulations to determine the importance of eco-evolutionary dynamics and 802 
feedbacks for critical emergent properties (e.g., stability, extinction risk, biodiversity 803 
maintenance). 804 

 805 

Box 1, Figure I. Summary of simulation models of eco-evolutionary dynamics and their 806 
relevant scales, which can be used to simulate the processes that structure observed 807 
biodiversity data. Models are given along with the modeled spatial, temporal, and biodiversity 808 
scales. Filled symbols indicate whether a biodiversity level is modeled, and open symbols 809 
indicate some special considerations needed to apply the model to that scale (corresponding 810 
numbers are explained in online supplemental material S1E). We use +, – , and 0 to indicate 811 
positive, negative, or neutral interactions between species considered in a model (and a filled 812 
circle for species interactions means that all types are considered). 813 

  814 



gene protein genome quantitative
trait

population
dynamics

species
interactions

community
dynamics

spatial scale temporal scale

regional

biogeographic

rapid (few generations)

microevolution

macroevolution

MESS
gen3sis 

BioGEEM 
sPEGG 
NEMO 

RangeShifter microevolution

regional, biogeographic
2 1 3

-/-,0/0

phylogenetic
dynamics

micro & macroevolution

regional, biogeographic

4 macroevolution

regional, biogeographic 65 -/-,0/07
macroevolution

local, regional

local, regional

8

model source language

C++ : Windows GUI, Linux
batch-mode, R package

Python

R, C++

C++

C++

C++

Code URL

https://github.com/rangeshifter

https://github.com/messDiv/MESS

https://cran.r-project.org/package=gen3sis

https://github.com/julianoscabral/BioGEEM

https://github.com/kewok/spegg

http://nemo2.sourceforge.net/

SLiM microevolutionlocal, regional C++, C, Eidos -->
multi-platform GUI

http://messerlab.org/slim



 

 21 

Box 2. Five-step process of eco-evolutionary hypothesis testing with ABC 815 
Candidate model development 816 
Our example observations are biweekly abundance data (Figure IA, points) of three 817 
coexisting species that compete for a shared resource, and have a key trait x (represented 818 
by the length of the pictured organisms) that impacts mean fitness. The two time series were 819 
produced by a model with identical growth and competition parameters (intransitive 820 
competition [108], additional parameter values in supplemental material S1C) but trait values 821 
are fixed in Case 1 and can evolve in Case 2 (evolutionary rescue) [102]. We focus on the 822 
data in Case 2 for alternative hypothesis testing to identify the processes (ecological or eco-823 
evolutionary) that produced the observed data. 824 
 825 
Simulations 826 
The first step is to come up with a model that could realistically produce the observed data 827 
under alternative hypotheses (Figure 1B). We use a Beverton–Holt model with evolution in 828 
a heritable trait x that impacts population growth. We compare hypothesis 1 (H1) without 829 
evolution (h2 = 0 for all species) and hypothesis 2 (H2) with evolution (h2 ≥ 0 for all species) 830 
to our observed data (Figure IA, Case 2). We ran 100,000 simulations under the two 831 
alternative models. For all unknown or unmeasured parameters, a given simulation uses a 832 
random draw from a prior distribution, chosen to be uninformative (Figure IB; i.e., for model 833 
H2, heritability is drawn from a random uniform distribution between 0 and 1), informed by 834 
prior knowledge about the system (i.e., interaction coefficients are drawn from a beta 835 
distribution with increased likelihood of weak interactions (α ~ beta(0.25,10) [34]), or using 836 
some value generator [14]. For the random draws from the prior distribution of w (width of the 837 
Gaussian fitness function; example draws are shown as orange points), the associated 838 
fitness functions (the relationship between fitness, y-axis, and trait value, x-axis) are shown. 839 
 840 
Model selection 841 
For each simulation run, the candidate parameter values drawn from prior distributions 842 
produce a simulated dataset, which is then compared to the observed summary statistics 843 
(points and xt=300 trait values in Figure IA) using a distance function (Figure IC) (a hidden-844 
layer neural network that minimizes distance between observed and simulation summary 845 
statistics; R package abc [45]). Simulations below a threshold distance are accepted (green 846 
checks) and above this threshold are rejected (red X). Here, we limited simulations to those 847 
where all three species had a population size >0 (black boxes), to better match the observed 848 
data. From this proportion of accepted models (black box, green check) under each 849 
alternative hypothesis, a posterior model probability is generated (PostPr). This indicates the 850 
probability that the observed data were produced by each model. 851 
 852 
Parameter estimation 853 
Once a hypothesized model is identified (H2 with evolution, 81% posterior probability), the 854 
randomly drawn parameter values that produced accepted simulations can estimate the 855 
posterior distributions of model parameters [37] (Figure ID). Here, the ABC process can 856 
successfully detect that species 3 (orange) is unlikely to be evolving as the most probable 857 
values of h2 are centered around 0, but it cannot clearly resolve the true system state that 858 
h21,3 = 0 and h22=0.25 (species 2: blue, species 3: gray). We also show posterior distributions 859 
for the strength of selection w (prior: dashed blue line, true value: dashed black line, posterior 860 
distribution: solid black line) and interaction coefficients (αii and αij). 861 
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 862 
Posterior predictions 863 
The quality of the selected model (H2, with evolution) is assessed by comparing the data 864 
(Figure IA, Case 2) to predictions made under the accepted model and associated parameter 865 
posterior distributions. The 95% confidence intervals (Figure IE, blue broken lines) were 866 
obtained by running simulations using the parameter values from a subset of accepted 867 
simulations with lowest Euclidean distance to the observed values of summary statistics. 868 
 869 
Box 2, Figure I. Illustrated five-step process of eco-evolutionary hypothesis testing with ABC 870 
(full methods are given in supplementary material S1C). 871 
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