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Abstract  39 

 40 

Aim: Current global warming is driving changes in biological assemblages by increasing 41 

the number of thermophilic species while reducing the number of cold-adapted species, 42 

leading to thermophilization of these assemblages. However, there is increasing evidence 43 

that thermophilization might not keep pace with global warming, resulting in thermal lags. 44 

Here, we quantify the magnitude of thermal lags of plant assemblages in Norway during the 45 

last century and assess how their spatio-temporal variation is related to variables 46 

associated with temperature-change velocity, topographic heterogeneity, and habitat type. 47 

Location: Norway 48 

Time period: 1905 - 2007 49 

Major taxa studied: Vascular plants 50 

Methods: We inferred floristic temperature from 16,351 plant assemblages and calculated 51 

floristic temperature anomaly (difference between floristic temperature and baseline 52 

temperature) and thermal lag index (difference between reconstructed floristic temperature 53 

and observed climatic temperature) from 1905 until 2007. Using generalized least square 54 

models, we analyzed how the variation in observed lags since 1980 is related to 55 

temperature-change velocity (measured as magnitude, rate of temperature change, and 56 

distance to past analogous thermal conditions), topographic heterogeneity, and habitat type 57 

(forest vs non-forest). 58 

Results: The floristic temperature anomaly increases overall during the study period. 59 

However, thermophilization falls behind temperature change, causing a constantly 60 

increasing lag for the same period. The thermal lag index increases most strongly in the 61 
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period after 1980, when it is best explained by variables related to temperature-change 62 

velocity. We also find a higher lag in non-forested areas, while no relationship is detected 63 

between the degree of thermal lag and fine-scale topographic heterogeneity. 64 

Main conclusions: The thermal lag of plant assemblages has increased as global warming 65 

outpaces thermophilization responses. The current lag is associated with different 66 

dimensions of temperature-change velocity at a broad landscape scale, suggesting 67 

specifically that limited migration is an important contributor to the observed lags.  68 

Keywords 69 

lag dynamics, mountain biodiversity, plant assemblages, shifting isotherms, migration lag, 70 

thermophilization 71 

 72 

1 | INTRODUCTION 73 

 74 

Current global warming is causing a global redistribution of species at different spatial scales 75 

with general poleward and upward shifts (Chen, Hill, Ohlemüller, Roy, & Thomas, 2011; 76 

Feeley, Bravo-Avila, Fadrique, Perez, & Zuleta, 2020; Lenoir et al., 2020; Lenoir & Svenning, 77 

2015; Rumpf et al., 2019; Steinbauer et al., 2018). Such directional shifts in species ranges 78 

cause changes in local plant assemblages, with thermophilic species increasing and cold-79 

adapted species decreasing, resulting in a thermophilization of the assemblages (Blonder et 80 

al., 2015; De Frenne et al., 2013; Gottfried et al., 2012). A growing number of studies suggest 81 

that the thermophilization of plant assemblages fails to keep pace with global warming 82 

(Bertrand et al., 2011; Freeman, Song, Feeley, & Zhu, 2021; Lenoir et al., 2020; Richard et 83 

al., 2021). Such delayed responses result in a so-called ´climatic lag´ or ´climate debt´, i.e. a 84 

discrepancy between the thermophilization response of the species assemblages and 85 

observed changes in climate. Given that these responses are related explicitly to 86 

temperature, we use the terms ´thermal lag´ and ´thermal debt´ to differentiate from studies 87 

that also include other climate variables alongside temperature.  88 

Thermal lags have been detected across a broad range of taxa and ecosystems, but with 89 

considerable variation in magnitude (Lenoir et al., 2020). For example, lowland forest 90 

assemblages in France are found to lag further behind shifting isotherms at the macroclimate 91 

scale than highland forest assemblages (Bertrand et al., 2011). Likewise, temperate 92 
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mountain assemblages are shown to be slower at tracking macroclimate temperature change 93 

than assemblages on tropical mountains (Freeman et al., 2021).  94 

Quantifying the magnitude of thermal lags and assessing the main underlying determinants 95 

for variations in thermal lags is needed to enhance our knowledge of broad-scale assemblage 96 

dynamics. Bertrand and collaborators (2016) observed that greater thermal lag occurs in 97 

plant assemblages found in historically warmer areas, and a recent study by Richard et al. 98 

(2021) found that forest-structure traits (e.g. stand age) and natural and anthropogenic 99 

disturbances modulate thermal lags in understory forest assemblages by altering 100 

microclimate conditions. However, we still need a better understanding of the spatio-temporal 101 

patterns of thermal lags to assess the impact of global warming on biodiversity and 102 

ecosystem functioning (Bertrand, 2019; Blonder et al., 2015; Svenning & Sandel, 2013).  103 

Another important factor to consider when trying to understand the causes of thermal lags is 104 

temperature-change velocity, i.e. the spatial distance a species must migrate per time unit to 105 

keep track of changing temperatures. This velocity is related to both the degree of 106 

temperature change and to how steep the temperature gradient is across spatial gradients 107 

(Garcia, Cabeza, Rahbek, & Araújo, 2014; Loarie et al., 2009). Areas with high topographic 108 

heterogeneity at broad scales will generally have lower temperature-change velocity as steep 109 

elevational gradients cover a wide temperature range within short geographical distances 110 

(Loarie et al., 2009). As a result, plant species may only need to shift short distances to find 111 

thermally suitable habitats in areas with low temperature-change velocity when climate is 112 

changing. On the other hand, if species migration is limited by dispersion and high 113 

temperature velocities occur, a greater thermal lag is more likely (Bertrand, 2019; Bertrand 114 

et al., 2016; Jump, Mátyás, & Peñuelas, 2009; Lenoir et al., 2020). Therefore, we expect the 115 

magnitude of thermal lag to be positively related to both temperature change (magnitude and 116 

rate of change) and the spatial distance plant species need to migrate to find analogous 117 

thermal conditions (i.e. conditions in which they occurred before the onset of global warming). 118 

Using a macroclimatic approach may overlook microclimatic variation that allows species to 119 

survive in a microclimatically heterogenous landscape (De Frenne et al., 2013; Graae et al., 120 

2018; Richard et al., 2021). Assuming that local species extirpations and colonization reflect 121 

an equilibrium condition between local thermophilization and microclimate, topographic 122 

heterogeneity at finer landscape scales may result in a perceived disequilibrium between 123 

thermophilization and macroclimatic conditions. Using broad-scale estimates of thermal 124 
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conditions may therefore lead to a greater perceived thermal lag in areas of fine-scale 125 

topographical heterogeneity (Alexander et al., 2018; De Frenne et al., 2013). 126 

In addition to topographic heterogeneity, the forest canopy may also affect macrothermal lags 127 

through microclimatic conditions. Some studies have demonstrated that thermal lag in forest 128 

plant assemblages is lower, as macroclimatic warming is buffered by canopy cover modifying 129 

the microclimate (De Frenne et al., 2019; Richard et al., 2021; Zellweger et al., 2020). Hence, 130 

the forest structure provides thermal microrefugia for species persistence (Zellweger et al., 131 

2020). Based on these findings, we also expect to find a larger macrothermal lag in forested 132 

areas than in non-forested areas.  133 

Our main aim is to quantify the magnitude of thermal lags of plant assemblages in Norway 134 

during the last century and assess how their spatio-temporal variation is related to variables 135 

associated with (i) temperature-change velocity, (ii) topographic heterogeneity at fine 136 

landscape scales, and (iii) habitat type (forest vs. non forest). To address this aim, we 137 

established a relationship between plant assemblages and temperature during a baseline 138 

period (before recent global warming), and subsequently inferred a floristic temperature from 139 

the composition of these assemblages. We use floristic temperature anomaly as our proxy 140 

for thermophilization which is represented by the difference between the floristic temperature 141 

and the temperature of the baseline period. The thermal lag index was correspondingly 142 

determined by taking the difference between the floristic temperature and the observed 143 

temperature of the sample year. 144 

We assessed the temporal trend of the floristic temperature anomaly and the thermal lag over 145 

the course of the 20th century. We then focused on the thermal lag after the onset of climate 146 

warming in the region and investigated how baseline temperature, temperature-change 147 

velocity, topographic heterogeneity, and habitat type (forest vs non-forest) are related to the 148 

thermal lag magnitude. 149 

We expect to find the most pronounced lag in warmer baseline conditions with the highest 150 

temperature-change velocities, i.e. higher rates of temperature change and/or longer 151 

distances to past analogous temperatures (Alexander et al., 2018; Loarie et al., 2009). On a 152 

fine landscape scale, we expect to find more pronounced macrothermal lags in landscapes 153 

with high topographic heterogeneity (due to a higher probability of finding suitable 154 

microclimatic conditions and microthermal refugium within a short distance). In contrast, we 155 
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expect smaller lags in forested areas caused by the buffering effect of the canopy cover 156 

(Bertrand et al., 2016; Zellweger et al., 2020). 157 

2 | MATERIALS AND METHODS 158 

 159 

We illustrate the workflow of our analyses in Figure 1 from the data compilation step (climate 160 

and plant assemblages) to the identification of the temperature breaking point and the 161 

subsets used for the analyses (Historical, Baseline, Contemporary), followed by the 162 

estimation of the floristic temperature anomaly and thermal lag index, and the final analysis 163 

related to the temporal trends and possible determinants of temporal lag. 164 

Compilation of plant assemblages (Figure 1a) 165 

We compiled an occurrence dataset from the Global Biodiversity Information Facility (GBIF), 166 

containing 605,637 records of terrestrial vascular plant species distributed across Norway. 167 

These datasets are species check-lists from individual locations that have been curated, 168 

digitized, and deposited to GBIF as occurrence data by university museums (Norwegian 169 

University of Life Sciences, 2019; Norwegian University of Science and Technology, 2021; 170 

University of Agder, 2021; University of Oslo, 2019a, 2019b). Each species occurrence in this 171 

dataset is provided with information on geographical coordinates, survey date, and 172 

collector(s). We standardized the coordinates for consistency and deleted occurrences with 173 

obviously incorrect coordinates, e.g. keeping only records within the Norwegian mainland. 174 

We harmonized the taxonomy using GBIF’s backbone taxonomy (The Global Biodiversity 175 

Information Facility, 2020). After these steps, we checked the species lists and merged sub-176 

species to the species level, removing non-vascular species and taxa identified at the genus 177 

level or above. We also deleted duplicated records that came with the same species names, 178 

coordinates, years, and collector(s) (e.g. as a result of merging subspecies). Only some of 179 

the species’ occurrences had elevation information, often as a minimum and maximum 180 

elevation (meters above sea level – m a.s.l.). Therefore, we extracted elevation values for all 181 

sampling points from a digital elevation model (DEM) at 25 m resolution obtained from the 182 

Copernicus Program (Copernicus, 2016). This process resulted in a cleaned dataset 183 

compilation of 511,170 occurrence records of plant species observations spread out over 184 

Norway. 185 

We reconstructed assemblages by assuming that a unique coordinate, survey date, and 186 

collector represented a unique species assemblage and grouped the occurrence data by 187 
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coordinates, date, and collector. After reconstructing the assemblages, we only kept species 188 

that occurred in more than five assemblages and only retained assemblages containing a 189 

minimum of five species. With these criteria, we ensured having sufficient species 190 

representation in each assemblage to estimate floristic temperature using a ´transfer 191 

function´ (see the section on Thermal lag index) (Bhatta, Grytnes, & Vetaas, 2018). This 192 

resulted in a dataset compilation of 17,086 plant assemblages covering 1,111 species (see 193 

Supplementary Information Table S1 for the full species list). The assemblages were 194 

sampled from the beginning of the 20th century until 2007. The sampling sizes of these 195 

assemblages are unknown and probably vary from a few square meters to more than one 196 

square kilometer. This is also reflected in the number of species per assemblage which 197 

ranges from 5 to 295, with an average of 10 species (SD ±11, see also Supplementary 198 

Information Figure S1), indicating that most assemblages represent a relatively small area. 199 

There were 76 assemblages with more than 80 species, and six of them are in the 200 

contemporary dataset. The crucial assumption for the analyses we have done is that the 201 

occurrences within a single assemblage represent the same macroclimatic conditions. Based 202 

on our knowledge of the original check-lists, we anticipate this to be a reasonable assumption 203 

and, given the large variation in macroclimatic variation between assemblages in this dataset, 204 

we can assume that any deviation within assemblages will be minor compared to the main 205 

trends between assemblages. 206 

Temperature data, break-point analysis, and dataset subsets 207 

We obtained macroclimatic temperature data (Figure 1b) from the global climate dataset 208 

CHELSAcruts at 30 arc-seconds (~1 km) resolution (Karger et al., 2017; Karger & 209 

Zimmermann, 2018), covering the time period from 1900 to 2016. For each assemblage, we 210 

calculated the following climatic variables: i) mean annual temperature (MAT), ii) mean 211 

temperature of the coldest month (Tcm), and iii) mean temperature of the warmest month 212 

(Twm). Each temperature variable was calculated based on an average of five years prior to 213 

the vegetation sampling year (including the survey year) to smooth out atypical extreme 214 

fluctuations (following Steinbauer et al., 2018).  215 

The analyses of floristic temperature anomaly and thermal lag only allow one temperature 216 

variable to be used. To select the temperature variable among the three potential variables 217 

(MAT, Tcm, Twm) that best explains the variation in species composition we used nonmetric 218 

multidimensional scaling (NMDS) ordination on the species assemblage dataset on a subset 219 

of the data from the time period prior to major temperature changes (Baseline subset; see 220 
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below) and added the three temperature variables passively. These preliminary analyses 221 

showed that mean annual temperature had the strongest correlation with plant assemblages 222 

(R2 =0.56), followed by Twm (R2 =0.42) and Tcm (R2 =0.37) (Figure S2). Therefore, we used 223 

mean annual temperature for all remaining analyses. The ordination analysis was conducted 224 

using the R package vegan, version 2.5-7 (Oksanen et al., 2013). 225 

To identify a time period of relatively stable temperature, we used a break-point analysis to 226 

identify the specific year that the trend of temperature increase started within our study area 227 

(Figure 1c). We performed a structural change analysis to find break-points using a Bayesian 228 

information criterion (BIC) (Andrews, 1993) and the strucchange package (Zeileis, Leisch, 229 

Homik, & Kleiber, 2002). The break-point analysis for the full period suggested only one 230 

break-point in mean annual temperature in the year 1988 (95% CI from 1983 to 1995, Figure 231 

2a, Figure S3). Based on this, we selected a period in advance of this break-point to establish 232 

a relationship between species assemblages and temperature. To make sure that the 233 

temperature increase did not influence our relationship we selected 1979 as the end year of 234 

this period and found that starting in 1950 ensured a large enough dataset to train the model. 235 

As a result we divided the species assemblage data into three subsets (Figure 1d, Figure 236 

S4): 1) Historical subset: for use in the backward prediction and also to evaluate the 237 

robustness of the model (years 1905 to 1949; 6,279 assemblages), 2) Baseline subset: the 238 

period before the temperature break-point with the purpose to train the transfer function 239 

(years 1950 to 1979; 4,109 assemblages), and 3) Contemporary subset: for use in the 240 

forward prediction and the thermal lag drivers analysis (years 1980 to 2007; 6,698 241 

assemblages).  242 

Floristic temperature anomaly and thermal lag index  243 

We inferred the floristic temperature (Figure 1e) using a ´transfer function´ based on the 244 

Hutchinsonian niche concept (Hutchinson, 1957), which assumes a unimodal response curve 245 

with an ecological optimum of species with respect to the climate variable considered. Hence, 246 

species assemblages can be used to infer climatic conditions of a particular area and time 247 

period (Birks & Simpson, 2013). This modeling approach has been one of the most widely 248 

used methods to reconstruct terrestrial paleoclimates (Chevalier et al., 2020). In 249 

paleoclimatology, a transfer function is established by finding the relationship between 250 

species assemblages and a specific climate variable for a training dataset from present-day 251 

assemblages (Salonen et al., 2011). This function is then used to reconstruct past climates 252 

from fossil assemblage data (Salonen et al., 2011). This principle can be applied more 253 
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broadly to climatic variables, which can be inferred from the assemblage in the training set 254 

during a specific time period. This can then be used to infer climatic conditions from 255 

assemblages during other periods of time (Bertrand et al., 2011; Riofrío-Dillon, Bertrand, & 256 

Gégout, 2012).  257 

We built our transfer function by first establishing the relationship between species in the 258 

assemblages and temperature using the Baseline period (1950–1979) as the training dataset, 259 

and then inferring the floristic temperature from the assemblages during the Historical (1905–260 

1949) and Contemporary periods (1980–2007). To minimize geographical bias when making 261 

the transfer function, we only used assemblages that were at least 500 m apart. We also 262 

used NMDS to detect and remove any unusual assemblages (we identified and removed two 263 

outlying assemblages) before using the Baseline subset to create the transfer function. To 264 

estimate the floristic temperature, we used weighted averaging partial least squares (WA-265 

PLS) (ter Braak & Juggins, 1993), which is a powerful inverse approach widely used to 266 

reconstruct climates in paleoecology (Liu, Prentice, ter Braak, & Harrison, 2020; ter Braak & 267 

Juggins, 1993). The performance of the transfer function models was assessed by leave-268 

one-out cross-validation. We selected the most significant component with the lowest root 269 

mean square error of prediction (RMSEP), the highest R2, and the lowest maximum bias (Liu 270 

et al., 2020). We also evaluated weighted averaging (WA) with different deshrinking 271 

(classical, inverse, or monotonic) techniques following Bhatta, Birks, Grytnes, & Vetaas 272 

(2019) but these did not improve the model. The transfer function analysis was performed 273 

using the fxTWAPLS package (Liu et al., 2020).  274 

One issue with WA-PLS is that estimated values based on the training dataset tend to be 275 

higher than observed values at the low end of the temperature range, and lower at the high 276 

end (Liu et al., 2020). To address this bias, we removed assemblages with extreme 277 

temperatures in the prediction phase and only included assemblages in the climatic 278 

temperature range between -2.5 and 8.5°C (Figure S5). As a result, the final dataset consists 279 

of 16,351 assemblages (Historical subset: 6,094 assemblages, Baseline subset: 4,049 280 

assemblages, and Contemporary subset: 6,208 assemblages). Since the overestimation at 281 

both ends persisted in the residuals, we subsequently used the residuals of the WA-PLS 282 

model to fit a local nonparametric regression (LOESS) with a span of 0.75 to correct for the 283 

remaining bias in the used temperature range. Finally, we corrected the predictions of the 284 

WA-PLS using the difference between the residuals from the WA-PLS and LOESS models 285 



10 
 

to infer the floristic temperature (Figure S5). This procedure was then used to estimate the 286 

floristic temperature for each assemblage in the full dataset. 287 

As a proxy of thermophilization we calculated the floristic temperature anomaly as the 288 

difference between the floristic temperature and baseline temperature within a 1 km2 grid cell 289 

(mean MAT1950-1979) for each assemblage (Figure 1f).  A positive value indicates an increase 290 

in the floristic temperature (meaning increasing number of thermophilic species and/or a 291 

decrease of cold-adapted species) compared to the baseline period (1950-1979).  292 

To estimate the presence and magnitude of thermal lags, we calculated a thermal lag index 293 

for each assemblage represented by the difference between the estimated floristic 294 

temperature and the observed macroclimatic temperature for the sample year (i.e. the 295 

average for the five years prior to sampling) (Figure 1f). The thermal lag index will be zero 296 

when the relationship between plant assemblages and climate during the Contemporary 297 

period (1980–2007) is the same as during the Baseline period (1950–1979). A positive 298 

thermal lag index would be found when the floristically inferred temperature is lower than the 299 

observed temperature, and indicates that plant assemblages lag behind the estimated 300 

warming (Bertrand et al., 2011). Note that with this approach the observed temperature 301 

difference between the baseline temperature and the observed temperature at the year of 302 

sampling is equal to the sum of the floristic temperature anomaly and thermal lag.. This 303 

means that the variation we observe in thermal lag will be 100% explained by a model 304 

containing the floristic temperature anomaly and the observed temperature change. 305 

Additionally, the transfer function, predictions, and comparison with observed temperatures 306 

are all based on macroclimatic data with a resolution of 1 km, meaning that the thermal lag 307 

index is a macrothermal lag. A microthermal equilibrium might still be a possibility with a large 308 

microclimatic heterogeneity within the 1 km cells, even if a large macrothermal lag is 309 

observed.  310 

Temporal analysis of floristic temperature anomaly and thermal lag 311 

Prior to the analyses of what causes the magnitude of lags in the Contemporary period, we 312 

assessed the temporal trends of floristic temperature anomaly and thermal lag indices during 313 

the full study period (1905–2007; Figure 1g). Because different geographic areas have 314 

warmed differently within Norway, the overall temperature trend is not directly comparable 315 

with the average floristic temperature anomaly (or thermal lag) trends using all samples. To 316 

be able to compare these trends with the overall temperature trend for Norway, we therefore 317 
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first removed potential spatio-temporal bias in the distribution of the assemblages. To do so, 318 

we divided Norway into seven geographical zones (Figure S7) and five-year time intervals 319 

and performed a stratified random sampling of five assemblages from each zone and time 320 

interval. Next, we assessed the temporal variation of the floristic temperature anomaly and 321 

the thermal lag using a generalized least square (GLS) model using the spatio-temporal bias-322 

corrected dataset. To explore any non-linear trends, we also visualized any trends by fitting 323 

generalized additive models (GAMs) with a logit link and smooth functions of k=4. After 324 

comparing the temporal trend of the thermal lag based on the uncorrected vs. bias-corrected 325 

dataset (see Figure S8 a vs. b, respectively) we performed all analyses showing the temporal 326 

trends with the latter dataset. 327 

Determinants of thermal lag in the contemporary period 328 

By using the Contemporary subset, we assessed the relationship between the thermal lag 329 

index of each assemblage and (a) baseline temperature conditions, (b) temperature-change 330 

velocity, (c) topographic heterogeneity at fine landscape scales, and (d) habitat type (forest 331 

cs non-forest cover) (Figure 1h).  332 

Macroscale 333 

(a) Baseline temperature conditions: Previous research has shown baseline MAT to be an 334 

important determinant of thermal lags in plant assemblages (Bertrand et al., 2016). 335 

Therefore, we computed baseline temperature conditions from CHELSA as the average of 336 

MAT1950-1979 values, i.e. 30-year average normally used to capture long-term climatic 337 

conditions.  338 

(b) Temperature-change velocity: To represent the velocity of temperature change, we 339 

calculated three different variables, namely (i) distance to past analogous thermal 340 

conditions, (ii) magnitude of temperature change, and (iii) rate of temperature change. 341 

Distance to past analogous thermal conditions was calculated by first identifying the 342 

temperature of the point of the assemblage at the time of sampling (as a five-year average 343 

before sampling) and then quantified the minimum Euclidean geographic distance to a 344 

location with the same temperature during the period of 1969–1979. The calculated 345 

distance represents the distance species have to migrate to encounter the same 346 

temperature as they had before global warming and is influenced by the magnitude of 347 

temperature change and broad-scale topographic heterogeneity. Distances were calculated 348 

using the R-package nngeo (Dorman, Rush, Hough, Russel, & Karney, 2020). The 349 
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magnitude of temperature change was estimated as the temperature change over time 350 

since the baseline period (i.e. since 1979). We estimated the rate of temperature change 351 

as:  352 

𝑅𝑎𝑡𝑒 𝑜𝑓 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 =  
𝑇𝑒𝑚𝑝 (𝑠𝑢𝑟𝑣𝑒𝑦 𝑦𝑒𝑎𝑟) − 𝑇𝑒𝑚𝑝 (𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑦𝑒𝑎𝑟)

𝑠𝑢𝑟𝑣𝑒𝑦 𝑦𝑒𝑎𝑟 − 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑦𝑒𝑎𝑟
 353 

where Temp (reference year) is the average temperature during the Baseline period (1950–354 

1979) at each assemblage location, and reference year is set to 1979. Temp (survey year) is 355 

the 5-year average prior to the survey year for each assemblage location, and survey year is 356 

the year of sampling for each assemblage. The outcomes represent thermal rate of change 357 

since 1979. 358 

Fine-scale 359 

(c) Topographic heterogeneity at fine landscape scales: Here we calculated the following 360 

topographic variables: (i) mean elevation, (ii) terrain ruggedness index (ruggedness), and (iii) 361 

Shannon index of geomorphological landforms. We derived these variables from the 25-m 362 

resolution DEM obtained from the Copernicus Program (Copernicus, 2016). Although mean 363 

elevation is not a direct measure of topographic heterogeneity, we included this variable as 364 

heterogeneity tends to increase with increasing elevation (Figure S10). We calculated the 365 

latter two variables by applying the methodology proposed by Amatulli et al. (2018). Terrain 366 

ruggedness measures the spatial variability in elevation and is estimated by the mean of the 367 

absolute differences in elevation between a center cell and its eight surrounding cells, i.e. this 368 

is a measure of heterogeneity within 3 x 3 grid cells (75 x 75 m) around the location of the 369 

sampled assemblage (Riley, DeGloria, & Elliot, 1999). Here, flat areas have a value of zero, 370 

whereas topographic heterogeneous areas have positive values (Amatulli et al., 2018). The 371 

Shannon index of geomorphological landforms categorizes the spatial variability within a 372 

certain area with the relative proportion of grid cells covered by landform types within a 3 x 3 373 

window (75 x 75 m). Landform types include flat, peak, ridge, shoulder, spur, slope, hollow, 374 

foot slope, valley, and pit (Amatulli et al., 2018). For this study and following Amatulli et al. 375 

(2018), the Shannon index represents the diversity of the land types in a 10 x 10 window (250 376 

meters); higher values indicate a higher diversity of landforms (Amatulli et al., 2018).  377 

(d) Habitat type (Forest vs-non Forest cover) : By using the Corine Landcover (CLC) for 378 

Norway (NIBIO, 2021), we determined for each assemblage whether its location concurred 379 

with the vegetation type classified as forest. We included the following CLC as forest cover: 380 
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“Forest” and “Shrub and /or herbaceous vegetation”. We assessed if setting the limit at 381 

different forest types (as defined by CLC) had an impact on the GLS models but found that 382 

this is not the case. Therefore, we include all the landcover types already mentioned as forest. 383 

To define the relationship between the thermal lag index and the above-mentioned variables, 384 

we used GLS models. Using the assemblages’ locations, we fitted different spatial correlation 385 

structures to account for spatial autocorrelation. The exponential spatial correlation with a 386 

nugget effect was selected based on its performance given by the Akaike information criterion 387 

(AIC) and spatial autocorrelation in residuals. Even after this step, a low degree of spatial 388 

autocorrelation remained in the residuals (Figure S11). We test-ran a limited number of 389 

models without any spatial autocorrelation but demands on computer resources multiplied 390 

manifold without substantial change in the outcomes. In addition, small levels of 391 

autocorrelation in the residuals do not necessarily indicate a critical issue in the model fitting 392 

(Beale, Lennon, Yearsley, Brewer, & Elston, 2010). We, therefore, opted to accept the low 393 

degree of spatial autocorrelation as depicted in Figure S11. 394 

We used the Contemporary dataset (1980–2007) to assess each explanatory variable 395 

separately (Figure 1h). When evaluating the univariate models, we included the year of the 396 

assemblage sampling as a covariable to account for the temporal variation in the thermal lag 397 

prior to testing of each variable. We subsequently built three multivariate models. The first 398 

one focuses on the macroscale baseline temperature and temperature-change velocity (i.e. 399 

rate of temperature change and distance to past analogous thermal conditions). The second 400 

one includes the above variables plus the magnitude of temperature change. In this model, 401 

we excluded year as an explanatory variable due to its high correlation with the magnitude of 402 

temperature change (Spearman’s r coefficient > 0.6, Figure S12). The third model focuses 403 

on the fine-scale topographic heterogeneity (i.e. mean elevation, ruggedness, Shannon index 404 

of landforms) and forest cover. Finally, we built a full model including all variables, but since 405 

rate of temperature change and magnitude of temperature change were highly correlated, 406 

we built two different models each including all the explanatory variables but one of either of 407 

the temperature-change variables. We assessed the goodness-of-fit for each GLS model 408 

through AIC where we gave preference to models with the lowest values of AIC. As a 409 

measure of goodness-of-fit, we computed the R2 likelihood-ratio using the rr2 package (Ives 410 

& Li, 2018). Note that correlation values among all our explanatory variables included in each 411 

of the full models did not exceed a Spearman’s r coefficient of 0.6 (Figure S12). 412 
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We conducted all data handling and analyses, and the creation of figures in the programming 413 

environment R v.4.2.0 (R Core Team, 2021). All GLS models were developed using the nlme 414 

package (Pinheiro, Bates, DebRoy, & Sarkar, 2020). Other R-packages used for data 415 

handling and extraction and graphical visualization are: tidyverse v.1.3.1 (Wickham et al., 416 

2019) , raster 3.5-15 (Hijmans, Robert J. ; van Etten, 2012), sf v.1.0-9 (Pebesma, 2018), and 417 

ggpubr v.0.4.0 (Kassambara, 2020). 418 

3 | RESULTS 419 

 420 

Temporal trends of observed temperature and break-point  (Figure 1c) 421 

We find a constant increase in temperature since the beginning of the century (1905–2007, 422 

9.8×10-3°C yr–1, 95% confidence interval (CI): 0.005–0.014), with an endpoint of 1.77°C for 423 

2007 compared to the overall mean of the baseline period (Figure 2a). The break-point 424 

analysis suggests one break-point in 1988. The temperature was relatively stable from 1900 425 

until 1988 (-7.2×10-5°C yr–1, 95% CI: -0.008–0.005). From 1988, we find a temperature break-426 

point followed by a steep increase in temperature afterward (linear regressions indicate that 427 

average temperatures in Norway increased by ~ 2.24 × 10-2°C yr–1, (CI: -0.02-0.07) Figure 428 

2a. The decade before 1988 was relatively cold, with the coldest five-year average occurring 429 

during 1980.  430 

Transfer function and floristic temperature reconstruction (Figure 1e-f) 431 

The transfer WA-PLS regression was built using the Baseline subset (1950–1979) which 432 

included 4,109 plant assemblages and 1,111 species. The second component of the WA-433 

PLS model has the smallest RMSEP (1.48), the highest R2 (0.73), and the lowest maximum 434 

bias (8.19). The model performance and comparisons are summarized in Table S2, and a 435 

scatter plot of the observed temperatures (MAT) against estimated floristic temperatures and 436 

their residuals is shown in Figure S5. Trimming the temperature edges and the correction 437 

fitting of the LOESS significantly improved the relationship between MAT and floristic 438 

temperature for the baseline dataset (R² reached 0.85). The method used here is built on the 439 

assumption that the plant assemblages are in approximate equilibrium during the period used 440 

to train the model (i.e. the Baseline period during 1950–1979). To evaluate this assumption, 441 

we tested for possible temporal trends in the thermal lag index during the Baseline period, 442 

but no statistically significant trend was found (Figure S13). 443 
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Temporal trends in floristic temperature anomaly and thermal lag index (Figure 1g) 444 

A linear regression indicates that the floristic temperature has an increasing trend with time 445 

since the beginning of the 20th century, with a slope of 0.003°C yr–1 (Figure 2b; SE=9 × 10-446 

4, R2=0.067, p<0.001). Looking at the contemporary period only (1980–2007), this trend is 447 

more pronounced with 0.010°C yr–1 (SE=0.005, R2=3.03 × 10-3).   448 

We identified a weak but linear increase in the thermal lag index with time since the beginning 449 

of the century (estimated slope = 0.0049 yr–1, R2=0.079, Table 1; Figure 2c). During the 450 

Contemporary period (1980–2007), the thermal lag index further increased to an average of 451 

0.0493 °C yr–1 (SE=0.005, p<0.001; Table 1). The GAM regression reveals that both the 452 

floristic temperature anomaly and the thermal lag index crudely follow the temperature 453 

oscillation during the 20th century (Figure 2a). When temperatures were particularly cold 454 

(until the end of the 1920s), we find negative floristic temperature anomaly. However, the 455 

temperature cooling in this period was still larger than the floristic temperature, and we 456 

observe a small negative thermal lag in the same period (Figure 2c). Floristic temperature 457 

followed temperature increases during the 1930–40s, and for this time period we do not see 458 

a thermal lag as the index was close to zero. However, these two events were minor 459 

compared with the steadily increasing trend after 1988 (Figure 2). According to the additive 460 

model, floristic temperature anomaly and thermal lag have increased monotonically since 461 

1988 (Figure 2 b,c) with an acceleration towards the beginning of the 21st century. For the 462 

endpoint year (2007), the linear models and GAMs suggested a floristic temperature anomaly 463 

of 0.37°C and 0.60°C and thermal lag of 0.27°C and 0.51°C, respectively.  464 

Variables influencing floristic temperature anomaly and thermal lag (Figure 1h) 465 

The variations in the floristic temperature anomaly and the thermal lag index during the 466 

Contemporary period (1980–2007) are influenced by different variables. On a macroscale, 467 

the magnitude of temperature change alone has a strong positive influence on both the 468 

floristic temperature anomaly (estimated slope=0.27, R2=0.085, p=<0.001, Figure 3a) and 469 

the thermal lag index (estimated slope=0.70, R2=0.076, Figure 3d, Table 2). Hence, 470 

assemblages located in areas with high temperature change experienced both higher floristic 471 

temperature and larger thermal lags, and our analyses indicate that approximately 30% of 472 

the warming is captured by the floristic temperature anomaly, while the remaining 70% 473 

remains as thermal lag. 474 
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From the univariate models accounting for time, we observe a positive relationship (Table 2) 475 

between the thermal lag index and distance to past analogous temperatures (estimated 476 

slope=0.14, p<0.001 Figure 3b, Table 2), rate of temperature change (estimated slope=2.13, 477 

p<0.001, Figure 3c, Table 2), and the baseline temperature (estimated slope=0.02, p<0.001, 478 

Figure 3e, Table 2). Hence, larger thermal lags are found in areas i) that are further away 479 

from past analogous thermal conditions, ii) that have a higher rate of temperature change, 480 

and iii) have warmer baseline conditions. The multivariate model to explain thermal lags for 481 

variables related to temperature-change velocity includes time, distance to past analogous 482 

thermal conditions, rate of temperature change, and baseline temperature (R2=0.126, Table 483 

2).  484 

At a final scale (Figure 1h), topographic heterogeneity explains a lower fraction of the 485 

variation in the thermal lag index compared to the temperature-change velocity variables. 486 

Including time in the univariate models, we found significant negative relationships between 487 

the thermal lag index and terrain ruggedness (estimated slope=- 6.30 × 10-3, p<0.001, Figure 488 

3f, Table2), suggesting that assemblages have a larger thermal lag in less rugged terrains. 489 

For both geomorphological landform diversity (Figure 3g, Table 2) and elevation (Figure 490 

3h), the relationship with the thermal lag index is not statistically significant (p>0.05). We 491 

detect a significant difference in the lag index between forested and non-forested areas with 492 

non-forested areas having on average 0.11 degrees larger lag than forested areas (p <0.001, 493 

Figure 3i, Table 2). The multivariate model combining the variables for topographic 494 

heterogeneity and forest cover has an R2 of 0.042 (Table 2) and includes time, elevation, 495 

Shannon index for landforms, ruggedness, and forest cover.  496 

The full model including all the variables explains around 14% of the variance. Looking at 497 

the marginal contribution (i.e. the contributions after all other variables in the model are 498 

included) of the individual explanatory variables reveals that only magnitude of temperature 499 

change and distance to past analogous thermal conditions have statistically significant 500 

marginal contributions to the variation in the thermal lag index (Table 3). None of the 501 

variables relating to topographic heterogeneity and forest cover explain a unique proportion 502 

of the variance in this model, as indicated by the p-values associated with the marginal 503 

contributions (Table 3). 504 

4 | DISCUSSION 505 

 506 
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Our analyses show that temperature in our study area has increased significantly since the 507 

onset of the 20th century, and floristic assemblages have experienced clear thermophilization 508 

(increase in floristic temperature compared to the baseline period) but also a strong lag in 509 

this period. Both the floristic temperature increases and the temperature increase were most 510 

pronounced in the period after 1980. However, the observed increase in floristic temperature 511 

fails to keep track of the concurrent regional changes in temperature, resulting in a steadily 512 

increasing thermal lag of species assemblages since 1980. Our thermal lags are consistent 513 

with previous studies around the world for both terrestrial and marine organisms (Lenoir et 514 

al., 2020), in different ecoregions across the Americas (Feeley et al., 2020), mountain forests 515 

in Taiwan (O’Sullivan, Ruiz-Benito, Chen, & Jump, 2021), and the European Alps (Rumpf et 516 

al., 2018).  517 

Our study provides the first evidence on how a thermal lag can change during a longer time 518 

period and supports the findings of Lenoir et al. (2013) that high latitudes have an increasing 519 

thermal lag over time. Our finding also adds to the mounting evidence that contemporary 520 

thermophilization of plant assemblages is occurring across different vegetation types around 521 

Europe (Bertrand et al., 2011; Gottfried et al., 2012; Grytnes et al., 2014; Steinbauer et al., 522 

2018). In comparison to other studies, our detected thermophilization (0.010°C yr–1, 1980–523 

2007) is similar to other studies (e.g. 0.02°C in forest lowlands, 1965–2008, Bertrand et al. 524 

2011) or somewhat lower (e.g. 0.08 to 0.10°C in forest, 1995–2015, Richard et al., 2021). 525 

Our results indicate that the magnitude of temperature change plays a key role in both 526 

thermophilization and thermal lag of plant assemblages, an observation which is in 527 

accordance with other studies (De Frenne et al., 2013; Feeley et al., 2020). We also 528 

demonstrate that after 1980, the magnitude of thermal lags has a clear spatio-temporal signal 529 

related to the temperature-change velocity, as we find that distance to past analogous 530 

thermal conditions as well as magnitude and rate of temperature change significantly matter 531 

in modulating thermal lags. In agreement with previous studies, our results also show that 532 

thermal lag appears to be considerably larger under warmer conditions (e.g. Bertrand et al., 533 

2016; Lenoir et al., 2020; Richard et al., 2021).  534 

Thermal lags can be caused by migration lags or extinction lags. Although it is challenging to 535 

disentangle migration and extinction lags for the current analyses, the positive relationship 536 

between thermal lags and distance to past analogous thermal conditions found in our study 537 

suggests that migration distance plays a role in causing thermal lags. The evidence 538 

presented here may therefore suggest that plant assemblages are too dispersal limited to 539 
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keep up with the contemporary temperature-change velocities. How migration distance 540 

influences thermal lags remains, however, poorly studied under current climate warming. 541 

Studies from the European mountains (e.g. Grytnes et al., 2014, Rumpf et al. 2018) failed to 542 

find a clear relationship between range shifts and traits associated to species’ dispersal 543 

capacity (i.e. the degree by which species persist in their range area).  544 

Contrary to our initial expectation, fine-scale topographic heterogeneity and forest cover show 545 

a less consistent and generally weaker relationship to our estimates of thermal lags than 546 

variables associated with temperature-change velocity. Earlier studies have indicated that 547 

microclimatic refugia in topographically heterogeneous terrains can facilitate the persistence 548 

of species outside their ‘ideal’ macroclimatic niche (De Frenne et al., 2019; Graae et al., 549 

2018), resulting in the detection of longer macrothermal lags. Nevertheless, based on the 550 

topographic variables used, we find no supporting evidence for an important role for 551 

microclimatic refugia in creating macroclimatic thermal lags (Figure 3 f-h). This is also the 552 

case when considering the buffering effects of forest canopy (Richard et al., 2021; Zellweger 553 

et al., 2020), potentially creating a higher perceived thermal lag in forested areas when 554 

considering the relationship between species assemblages and macroclimate. When looking 555 

at the differences between areas with forest canopy vs non-forested areas, we actually find 556 

the opposite pattern with a significantly greater lag in non-forested areas. One possible 557 

explanation of this discrepancy may be that a large part of our non-forest areas are from 558 

arctic-alpine areas, which generally have a higher number of long-living species compared 559 

to forest. Furthermore, the species response in these areas may also be slowed down by 560 

other factors, such as soil development or land use (Rumpf et al., 2018). In this context, we 561 

also note that we do not find any relationship with elevation, but this may be because the 562 

effects of long-lived species and soil development may be counteracted by the effects of 563 

distance to past analogous temperatures, which, in general, will be shorter in mountain areas.  564 

It is important to note that our dataset includes a broad spatial and temporal extent, as well 565 

as different types of vegetation, resulting in significant variation in the floristic temperature 566 

anomalies and thermal lags. This data heterogeneity might be reflected in the low predictive 567 

power of the models. However, we argue that regardless of the heterogeneity of the data, 568 

empirical studies such as presented here can assess and estimate temperature-change 569 

velocity and its ecological importance at the community level.  570 
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For many plant species it is unknown how much thermal flexibility remains in their niche space 571 

to respond to changing temperatures (Jackson & Sax, 2010), hence it is difficult to know when 572 

(or if) the thermal debt will be paid off. Since global warming began several decades ago, we 573 

could expect to see some signs of species assemblages catching up with temperature 574 

increases, and that thermal lags would stabilize or decrease (‘assemblage self-regulation’) 575 

(Blonder et al., 2015). However, after an initial warming phase and a slow vegetation 576 

response at the beginning of the Contemporary period (Figure 2), we do not detect any trend 577 

suggesting a slowdown or decrease, even after more than 20 years of warming. On the 578 

contrary, we detect an accelerating lag towards the present, suggesting that temperature 579 

change continues to outpace plant assemblages’ responses, as found for understory plants 580 

in France (Bertrand et al., 2011; Richard et al., 2021).These findings trigger the question of 581 

whether such thermal debts will continue to accumulate, pushing assemblages to potentially 582 

critical breakpoints for ecosystem functioning (Alexander et al., 2018; Bertrand et al., 2016; 583 

Lenoir et al., 2020), or whether other mechanisms are at play that will prevent loss of species 584 

and consequently ecosystems. 585 

Our chosen approach using transfer functions allowed us to gain new insights into the nature 586 

and magnitude of vegetation thermal lags in the face of global warming. This approach has 587 

previously been tested and used to study the effect of environmental change (Bertrand et al., 588 

2011; Riofrío-Dillon et al., 2012). One of the major assumptions of this approach is that there 589 

is an approximate equilibrium between floristic temperature and observed temperature during 590 

the period used for model calibration (our Baseline period). Since we have a dataset covering 591 

multiple decades and across different geographical areas, we could confirm that species 592 

assemblages in the baseline datasets were in a relatively stable equilibrium before the recent 593 

global warming (Figure S13). It is also reassuring that our analyses reveal both floristic 594 

temperature anomaly and thermal lag responses in the period prior to our Baseline period 595 

(Historic period, 1905–1949), and that we find a negative lag when temperatures were 596 

particularly colder (during the 1920s) and a positive lag when temperatures were warmer 597 

(during the 1930–40s) (Figure 2). Nevertheless, these deviations are still substantially smaller 598 

than those observed during the Contemporary time period. It is also important to consider 599 

that as long as we account for observed temperature change, it is equally valid to understand 600 

the described correlations with thermal lag as the correlation with the floristic temperature 601 

anomaly. 602 
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Assemblages are composed of individual species that respond to changes in their 603 

environment depending on their niche requirements. Hence, species do not necessarily 604 

respond synchronously in space and time to warming. However, our results suggest a 605 

generalized species response to temperature-change velocity. Including abundance data and 606 

functional groups might help to give a more detailed picture of the shifting dominance of 607 

functional groups and species within assemblages and subsequently to understand the 608 

consequences of assemblage reorganizations in response to global warming (Kullman, 2004; 609 

Rumpf et al., 2019). Finally, we highlight that, although we focus in our study on temperature 610 

change, combined effects with other climatic factors, such as precipitation (Feeley et al., 611 

2020) or vegetation structure (Richard et al., 2021) and non-climatic factors, such as land-612 

use change or populations dynamics (Bertrand, 2019), are needed in future studies to 613 

achieve a holistic perspective of drivers of the thermal lags in plant assemblages.  614 

5 | CONCLUSIONS  615 

 616 

Lagged responses in plant assemblages have a profound impact on vegetation functioning 617 

and ecosystem dynamics. Overall, we find an increasing floristic temperature anomaly (i.e. 618 

thermophilization) of the Norwegian plant assemblages during the last century, but also an 619 

increasing thermal lag as global warming outpaces species response. Additionally, our 620 

results suggest that thermal lags are associated with different dimensions of temperature-621 

change velocity on a broad landscape scale. More specifically, our study shows that the 622 

magnitude of thermal lags depends on the additive effect of temperature-change velocity, 623 

distance to analogous thermal conditions, baseline temperatures, and the length of time over 624 

which the temperature change occurs. These factors might limit species’ range shifts to keep 625 

track of their thermal niche under changing climate conditions and can result in increasing 626 

lags due to migration distance and low thermophilization. However, it remains uncertain how 627 

large the thermal lag can increase over time before critical tipping points are reached that 628 

threaten vegetation and ecosystem functioning. For instance, the observed thermal lag may 629 

reflect that the species live in suboptimal thermal conditions, potentially making them 630 

vulnerable to other factors, such as habitat fragmentation and destruction, or which could 631 

hinder their mobility in the landscape. Our study exemplifies that thermal lags are the result 632 

of very complex spatio-temporal processes. These responses need to be considered jointly 633 

to be able to obtain solid risk assessments of biodiversity responses to global warming and 634 
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to be able to predict the magnitude of critical consequences for ecosystems and human well-635 

being. 636 
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TABLES 823 

 824 

Table 1. Generalized least square models of the variation of plant assemblages’ thermal lags 825 

related to time (year) for the whole period (1905–2007) and the contemporary period (1980–826 

2007) using the temporal-spatial corrected subset.  827 

Period  Year Obs R2 

1905-2007 

Estimates 4.9 × 10-3 

3045 0.079 Std error 9 × 10-4 

P-value <0.001 

1980-2007 

Estimates 4.9 × 10-2 

850 0.093 Std error 5.5 × 10-3 

P-value <0.001 

Std error = standard error; Obs =number of assemblages included in the models. 828 

  829 
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Table 2. Generalized least square models of the variation of plant assemblages’ thermal 830 

lags related to temperature-change velocity, baseline temperature conditions, topographic 831 

heterogeneity, and forest: time, distance to past analogous thermal conditions, rate of 832 

temperature change, magnitude of temperature change and baseline temperature, 833 

elevation, terrain ruggedness, geomorphological landform diversity, and forest cover. 834 

  Model   Year 

Dist to 
analog 
past 

thermal 
conditions 

(log) 

Rate of 
temp 

change 

Magnitude 
temp 

change 

Baseline 
temp 

R2 AIC Obs 
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e

lin
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1 

Estimates 0.038         

0.041 19244 

6208 

Std error 0.002         

P-value <0.001         

2 

Estimates 0.038 0.142       

0.054 20691 Std error 0.002 0.014       

P-value <0.001 <0.001       

3 

Estimates 0.024   2.13     

0.055 20683 Std error 0.002   0.204     

P-value <0.001   <0.001     

4 

Estimates       0.701   

0.076 20535 Std error       0.030   

P-value       <0.001   

5 

Estimates 0.038       0.022 
 

0.041 
20776 Std error 0.002       0.006 

P-value <0.001       <0.001 

6 

Estimates 0.02 0.011 1.848 

  

-0.011 

0.126 19134 Std error 0.003 0.017 0.230 0.015 

P-value <0.001 <0.001 <0.001 0.467 

7 

Estimates   0.079   0.646 0.013 

0.082 20496 Std error   0.015   0.032 0.006 

P-value   <0.001   <0.001 0.041 

  Model   Year Elevation 
Shannon 

Landforms 
Ruggedness 

Forest 
cover 

R2 AIC 
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 h
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e
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re
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8 

Estimates 0.038 0       

0.040 19246 Std error 4.580 0       

P-value <0.001 0.656       

9 

Estimates 0.038   0.006     

0.040 19246 Std error 0.002   0.033     

P-value <0.001   0.85     

10 

Estimates 0.038     -0.006   

0.041 19244 Std error 0.002     0.002   

P-value <0.001     <0.001    

11 Estimates 0.04       -0.11 0.042 20775 
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Std error 0.002       0.029 

P-value <0.001       <0.001 

12 

Estimates 0.04 0 0.00 -0.001 -0.01 

0.042 19249 Std error 0.002 0 0.034 0.004 0.031 

P-value <0.001 0.511 0.896 0.100 0.728 

Std error = standard error; Dist = distance; temp = temperature; Obs = number of assemblages included in the 835 
models.  836 
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Table 3. Generalized least square models of the variation of plant assemblages’ thermal 837 

lags testing the relation with several potential determinants related to time, temperature-838 

change velocity, baseline temperature conditions, topographic heterogeneity, and forest 839 

cover. The correlation values among all the determinants included in each of the full models 840 

do not exceed a Spearman’s r coefficient of 0.6.  841 

  Model 13     Model 14 

Determinant Estimates Std error P-value Estimates Std error P-value 

Year 0.02 0.003 <0.001       

Rate of temp change 1.87 0.230 <0.001       

Dist analog past 
thermal conditions 

(log) 
0.11 0.017 <0.001 0.04 0.018 0.020 

Baseline temp -0.01 0.015 0.407 0.01 0.015 0.641 

Ruggedness -0.01 0.004 0.115 -0.01 0.003 0.065 

Shannon landforms -0.01 0.033 0.772 -0.00 0.033 0.828 

Forest cover 0.01 0.032 0.714 -0.00 0.032 0.962 

Magnitude temp 
change 

      0.70 0.037 <0.001 

R2 0.126 0.145 

AIC 19138 19020 

Obs 6208 

Std error = standard error; temp = temperature; Dist = Distance (to); Obs = number of assemblages included 842 
in the models. 843 

844 



32 
 

FIGURES 845 

 846 

Figure 1. | Workflow of our study from top to bottom.  847 
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 848 

Figure 2 | a) Temperature anomaly for Norway since 1905. Deviation from overall mean of 849 

1950–1979 mean. Black lines are linear and generalized additive model (k=4) regressions, 850 
horizontal bright red line shows breaking point confidence interval (95% CI from 1983 to 851 

1995). b) Temporal trends of floristic temperature anomaly based on the bias corrected 852 
dataset. c) Thermal lag index of the bias corrected dataset. For b) and c) the black line is a 853 
linear regression of the temporal generalized linear model; yellow line is a generalized 854 

additive model. Vertical dashed lines mark the start of the current global warming period as 855 
defined by the break-point analyses (1988). 856 

 857 
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 858 
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Figure 3 | a) Relationship between magnitude of temperature change and floristic 859 

temperature anomaly. Relationships between the thermal lag index and the following 860 
predictor variables: b) Distance to past analogous climatic conditions (log-transformed), c) 861 

Rate of temperature change, d) Magnitude of temperature change, e) Baseline 862 
temperature, f) Terrain ruggedness index, g) Shannon index of geomorphological 863 
landforms, h) Elevation, and i) Forest cover. Lines represent the fit of the univariate 864 
generalized least square (GLS) models (Table 3 and Table 4). Each point represents a 865 
plant assemblage in the Contemporary dataset (1980–2007). The color bars in a, c, and d 866 

reflect the year of assemblage sampling.  867 
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