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Highlights  17 

- Bacterial multicellular behaviour plays an important role in predatory interactions 18 

- Small molecules involved in signalling or chemical defense contribute to phage defense 19 

- Membrane vesicles can act as phage decoys 20 

- Biofilm matrix is an important barrier against phages 21 

 22 

Abstract 23 

Multicellular behaviour benefits seemingly simple organisms such as bacteria, by improving nutrient 24 

uptake, resistance to stresses or by providing advantages in predatory interactions. Several recent 25 

studies have shown that this also extends to the defense against bacteriophages, which are 26 

omnipresent in almost all habitats. In this review, we summarize strategies conferring protection 27 

against phage infection at the multicellular level, covering secretion of small antiphage molecules or 28 

membrane vesicles, the role of quorum sensing in phage defense, and the impact of biofilm 29 

components and architecture. Recent studies focusing on these topics push the boundaries of our 30 

understanding of the bacterial immune system and set the ground for an appreciation of bacterial 31 

multicellular behaviour in antiviral defense. 32 

 33 

Introduction 34 

“All for one and one for all, united we stand divided we fall.” Alexandre Dumas, The Three Musketeers 35 

Viruses infecting bacteria, so-called bacteriophages, represent the most abundant predator on this 36 

planet, shaping life in almost all ecosystems. The ongoing ‘arms race’ between phages and bacteria 37 

has led to the evolution of diverse antiphage strategies collectively referred to as the bacterial ‘immune 38 

system’ [1,2]. Classical examples are restriction-modification (RM), CRISPR-Cas and abortive infection 39 

encoded by a large fraction of bacterial genomes. Currently, we are experiencing an unprecedented 40 

expansion of our understanding of bacterial antiviral immunity driven by the identification of 41 

numerous new antiphage systems – several of which are hinting towards a prokaryotic origin of human 42 

cell-autonomous innate immune mechanisms [3,4]. These ground-breaking discoveries were made 43 

possible by the finding that antiviral systems often co-localize in so-called ‘defense islands’ in 44 

prokaryotic genomes and by intensive screenings based on functional selection [5-8].  45 

Effective antiviral defense of a single bacterial cell also protects the entire population, as it stops the 46 

spread of infection and prevents the release of new phages.  Most of the systems described recently 47 
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function at the intracellular level by targeting phage nucleic acids or by triggering death of the infected 48 

cell. However, several studies reported on bacterial antiphage strategies, which are shared by cells in 49 

a community and therefore can potentially be considered as antiviral public goods.  50 

In natural environments, microbial communities typically show a high order of organization and 51 

emergent properties of bacterial multicellularity. The advantages of multicellular behaviour are 52 

numerous and include the improved acquisition of nutrients, resistance to physical stresses or 53 

antimicrobial molecules, and the protection from predators [9]. In this short review, we will move 54 

towards the appreciation of bacterial multicellular behaviour in antiviral defense. These mechanisms 55 

include the production and secretion of antiphage small molecules, membrane vesicles, quorum 56 

sensing-based activation of defense systems and the impact of biofilm architecture.  57 

  58 
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Quorum sensing 59 

The concept of quorum sensing (QS) is at the heart of bacterial multicellularity as it defines the ability 60 

of bacterial populations to make group decisions. This communication between cells is mediated via 61 

the production and recognition of small molecules, so-called autoinducers, which can affect bacterial 62 

behavior associated with virulence, biofilm formation, horizontal gene transfer, and bioluminescence 63 

[10,11]. Several studies clearly show that QS also has an effect on the susceptibility of bacteria towards 64 

phage infection and on the coordination of phage defense strategies.  65 

In presence of the autoinducers AHL, CAI-1 or AI-2, phage adsorption was shown to be reduced for 66 

Escherichia coli phages λ and χ, as well as different Vibrio phages by downregulation of the respective 67 

receptor genes [12-14]. Communication via QS also led to the inactivation of phages via the production 68 

of hemagglutinin protease in Vibrio cholerae [12]. QS was further shown to affect the adaptive 69 

immunity of CRISPR-Cas by activating cas gene expression in Pseudomonas aeruginosa and a 70 

Serratia sp. [15,16]. Moreover, QS peptides from different species triggered abortive infection in E. coli 71 

through the mazEF toxin-antitoxin module, which was shown to inhibit the spread of phage P1 [17,18]. 72 

Besides this direct impact on phage defense, the influence of QS on phage susceptibility can also be 73 

indirect via the downregulation of metabolic activity affecting phage infection [19,20].  74 

Considering the diverse effects of QS on bacterial antiviral defense, it is not surprising that phages also 75 

eavesdrop on the communication of their host to optimize their infection strategy [11,21,22] or to 76 

disrupt key biological pathways [23]. 77 

 78 

Chemical defense 79 

Besides the exchange of information, small molecules produced by bacteria can also have themselves 80 

antiphage properties as recently described for compounds belonging to the classes of anthracyclines 81 

and aminoglycosides. Environmental bacteria, especially members of the genus of Streptomyces, are 82 

prolific producers of bioactive compounds, which are known to provide important fitness advantages 83 

in competitive, cooperative as well as predatory interactions [24]. Inhibition of phage infection by 84 

bacterial small molecules received first attention in the 1950s and 1960s with a special emphasis on 85 

the identification of antiphage molecules applicable in agricultural and medical sectors as summarized 86 

in a recent review article [25]. It is, however, striking that their potential role in the protection against 87 

the most abundant predator in the environment – viruses – remained a major blind spot.  88 

Recently, DNA-intercalating molecules belonging to the class of anthracyclines were shown to inhibit 89 

infection of several dsDNA phages infecting Streptomyces coelicolor, Escherichia coli or Pseudomonas 90 
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aeruginosa [26]. Anthracyclines are naturally produced by Streptomyces and are among the most 91 

efficient anticancer agents used in clinics [27]. Mechanistically, these compounds were proposed to 92 

interfere with phage infection at an early step of the phage life cycle, namely between DNA injection 93 

and replication [26].  94 

A second class of antibiotics, which recently gained interest in the context of phage defense are 95 

aminoglycosides [28]. Like anthracyclines, aminoglycosides are mainly produced by Streptomyces. 96 

These bactericidal, polycationic antibiotics act by targeting the 16S rRNA of the 30S ribosomal subunit, 97 

thereby interfering with bacterial protein translation [29]. Inhibition of phages by these compounds 98 

was observed for disparate dsDNA phages infecting Gram-positive and Gram-negative bacterial hosts.  99 

It is striking that several – if not most – of the previously described antiphage compounds produced by 100 

bacteria have antibacterial properties, too. In nature, producers of antimicrobial molecules typically 101 

express a sophisticated set of self-resistance mechanisms [30,31]. This needs to be considered to allow 102 

the appreciation of potential antiviral effects of the respective molecule. First insights gained for 103 

aminoglycosides suggests that the molecular targets for inhibition of bacteria and phages are distinct. 104 

Acetylation of the aminoglycoside antibiotic apramycin abolished the antibacterial activity of the 105 

compound, but did not affect its antiphage properties [32].  106 

The ecological relevance of chemical defense mediated antiphage defense by small molecules is 107 

supported by the inhibitory effect of culture supernatants of natural producer strains when added to 108 

phage infection experiments [26,32]. Accordingly, with their excretion into the environment and their 109 

broad-spectrum activity, these secondary metabolites – dependent on locally achieved concentrations 110 

– could provide a chemical defense against phages at the community level by creating an antiviral 111 

milieu. However, resistance to the antibacterial effect of the molecule(s) is prerequisite to be able to 112 

benefit from the antiviral properties of the respective molecule.  113 

Apart from a direct interference of bacterial small molecules with phage infection, bacteriostatic 114 

protein translation inhibitors can also provide protection against phage infection by increasing the 115 

efficiency of CRIPSR-Cas immunity. This can be achieved either by decelerating phage reproduction, 116 

which extends the time for the acquisition of adaptive CRISPR immunity [33], or by interfering with the 117 

production of phage-encoded anti-CRISPR proteins [34]. 118 

Notably, production of secondary metabolites is intricately linked to Streptomyces development. Just 119 

recently, Luthe and colleagues showed the importance of cellular development for the emergence of 120 

transient phage resistance overall highlighting the complexity of multicellular antiphage defense 121 

employed by Streptomyces (Luthe et al, in revision). 122 

 123 
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Membrane Vesicles 124 

Another protective shield has been shown to be provided by the secretion of membrane vesicles 125 

(MVs), which are generated by all living cells. As components of the extracellular space, membrane 126 

vesicles affect intercellular interaction in manifold ways including DNA transfer, metabolite export, 127 

virulence and cell-cell communication. Although the most extensively studied membrane vesicles are 128 

derived from the outer membrane of gram-negative bacteria, there are different routes and triggers 129 

of membrane vesicle formation in both Gram-negative and –positive cells [35,36].  130 

Several recent studies revealed that MVs may protect from viral predation by acting as phage decoys 131 

leading to adsorption of phages and resulting in less productive phage infections of the population [37-132 

41]. Phage-induced lysis of bacterial cells is supposed to contribute extensively to the formation of 133 

membrane vesicles in nature [42]. This raises the possibility that membrane vesicles may serve as a 134 

defense mechanism by transporting signaling molecules such as quorum sensing molecules in a 135 

concentrated manner, as has been observed in Paracoccus denitrificans [43,44]. This could help 136 

bacteria communicate and coordinate their defense against phages more effectively. Further research 137 

is needed to understand the exact role of membrane vesicles in bacterial antiviral defense.  138 

 139 

Biofilms 140 

Among the huge body of studies that have addressed the interaction of phages with their hosts, most 141 

of the data – in particular studies on molecular mechanisms underlying the phage-host tug-of-war – 142 

stems from planktonic cultures, where diffusing phages have more or less free access to their prey 143 

cells. However, in most environments the majority of bacteria exists in biofilms, where the bacteria 144 

are physically associated with each other in a self-produced matrix engulfing the community [45-47]. 145 

This results in a number of inherent properties of the biofilm community that drastically increases the 146 

tolerance of the bacterial populations against all kinds of environmental stresses. It has been observed 147 

that, most times, the inherent recalcitrance of cells in biofilms also extends to phage predation. 148 

Intuitively, a local accumulation of potential prey cells may seem beneficial for phage predation, 149 

however, the prey clustering is likely to result in increased co-infections causing a drop in phage 150 

progeny per cell [48]. In addition, all biofilm communities are characterized by a pronounced metabolic 151 

stratification due to different access to metabolites including oxygen. Thus, many cells within the 152 

community exhibit a reduced metabolic activity up to the point of dormancy [49].  Although there are 153 

some phages that are able to infect and lyse dormant cells, many if not most phages do not proliferate 154 

efficiently at low metabolic activity of the host cells [50-53]. Such dormant, dead or phage-resistant 155 

cells may still efficiently bind phage particles and thus serve as potent phage absorbers or a shield that 156 
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protect their susceptible counterparts [54-60]. In addition, as elaborated above, outer membrane 157 

vesicles (OMVs) produced by many bacteria are present within biofilms and act as additional decoys 158 

for phage predation. 159 

Another important factor that governs phage-biofilm interactions is the biofilm matrix, which is 160 

encasing the bacterial cells and commonly consists of various polymeric substances such as 161 

exopolysaccharides, various proteins, nucleic acids and lipids [46]. Intuitively and as predicted by a 162 

biofilm simulation network [61], the interaction of phages and bacteria depends on the ability of the 163 

rather large phage particles to diffuse through the biofilm and, thus, to a significant part on the 164 

interaction of phages with the matrix. Correspondingly, several studies demonstrate that the biofilm 165 

matrix limits phage diffusion and viral predation of the cells [62-66]. The exopolysaccharide stewartan 166 

showed concentration-dependent limiting of phage diffusion, unless the phages were decorated with 167 

corresponding depolymerases [67]. Another study showed that active phages are captured by 168 

extracellular proteinaceous assemblages referred to as curli. Notably, the tight binding of phages by 169 

these structures implicates that matrix components may have evolved to efficiently absorb specific 170 

intruding phages [68]. Phages can thus be efficiently retained in the biofilm, and it has been shown 171 

that this not only prevents the embedded cells from phage contact and infection but may also turn the 172 

captured phages into a protective barrier against other susceptible invading or evading bacteria [68-173 

70]. 174 

Taken together, cells in biofilms are generally more recalcitrant towards phage assaults. This can 175 

mainly be attributed to the biofilm structure and the resulting spatial and metabolic stratification, 176 

which in concert limit access to the prey cells and successful phage proliferation. The studies implicate 177 

that, as a whole, a biofilm community is a reservoir of a multitude of phage-host interactions, which 178 

we are only beginning to understand [71,72].  179 

 180 

Conclusions and future perspectives 181 

The recent discovery of numerous new systems impressively demonstrates the gaps in our 182 

understanding of the bacterial immune system [1,3]. In this short review, we summarize systems 183 

conferring protection at the multicellular level by the secretion of small molecules, membrane vesicles 184 

or via components of the biofilm matrix. In the past, antiviral defense has been mainly studied at the 185 

level of isolated systems. It is, however, the interaction between different lines of defense, which 186 

ultimately shapes the immune system – a notion which is well accepted for antiviral immunity in 187 

eukaryotes, but still very underdeveloped for the prokaryotic world. Technological advances now 188 

enable the spatiotemporal analysis of the interaction and complementation of different antiviral 189 

systems providing unprecedented insights into their interaction and interdependencies within 190 

bacterial species [73,74]. 191 
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The majority of microbial interactions take place in spatially structured environments. Consequently, 192 

several factors, like the physiological status of neighbouring cells and the structure and individual 193 

components of the biofilm, have important implications for the range of microbial interactions. Several 194 

recent studies reveal the predominance of short-range interactions in densely packed bacterial 195 

communities and the impact of system architecture and cell permeability on spatial scales [75,76]. 196 

Consequently, these factors likely also shape the dimensions of antiviral defense provided through the 197 

secretion of small molecules or membrane vesicles. 198 

The spatiotemporal analysis of antiviral defense at the multicellular level will also allow to study the 199 

response of bacterial populations to viral infection and represents a powerful approach for the 200 

identification of new multicellular strategies involved in the communication between cells or division 201 

of labor through genetic and/or phenotypic diversification. Genomic diversification has recently been 202 

shown for Streptomyces colonies leading to the emergence of hyperproducers of antimicrobial 203 

substances [77]. After their emergence, the fraction of genetically degenerated hyperproducers was 204 

shown to undergo further mutational meltdown leading to their removal from the population [78] – a 205 

concept which is reminiscent to altruism expressed by sterile castes in social insects.  206 

These recent examples provide first insights into the multiple dimensions of bacterial multicellular 207 

behaviour and its relevance for antiviral defense. Combining molecular mechanistic, evolutionary, and 208 

ecological approaches is now essential for a comprehensive understanding of the ecological relevance 209 

of these systems in the context of microbial interaction. 210 

 211 
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 436 

Figure 1: Bacterial multicellular strategies in antiviral defense. Protection against phages on a 437 

multicellular level can be mediated by i) extrusion of outer membrane vesicles sequestering phages, 438 

which prevents attachment to susceptible cells, ii) quorum sensing‐mediated activation of antiphage 439 

defense systems, iii) biofilm formation and trapping of phages via interaction with components of the 440 

extracellular matrix, iv) production of antiphage molecules used as chemical defense and v) cellular 441 

development allowing emergence of transient phage tolerance. 442 


