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Abstract23

As coral reefs endure increasing levels of disturbance, understanding patterns of24

recovery following disturbance(s) is paramount to assessing the sustainability25

of these ecosystems. Given the slow dynamics of coral reefs and the increasing26

frequency of environmental pressures, management strategies focus on under-27

standing recovery patterns to drive efforts and actively promote the recovery of28

key coral populations. However, the fine spatial scale heterogeneity of coral dy-29

namics challenges our capacity to understand recovery patterns at large spatial30

scales and guide effective management actions. In this study, we developed a31

spatio-temporal statistical model to estimate the long-term trajectories of branch-32

ing, plate and massive corals at fine-spatial scales and predict their recovery pat-33

terns at unobserved locations within a reef. We parameterized the model using34

repeated and georeferenced observations from 783 locations during 16 years at35

Heron Reef (Great Barrier Reef, Australia). We then developed indicators of36

recovery that capture the interplay between coral growth and relative decline37

from disturbance(s) across time, space and growth morphology. Our results re-38

veal that successful recoveries, expressed in terms of probability, are associated39

with minimum growth rate thresholds of 4.3% and 6.4% (absolute growth, y-2)40

for branching and plate corals in reef locations that were impacted by distur-41

bance(s) at medium-high levels and historically abundant. As a product of the42

data revolution, predictive maps from statistical models support the development43

of new indicators that can support the identification of areas of concern to priori-44
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tise management intervention. They should be used into larger spatially explicit45

modelling framework for decision-making in reef conservation and restoration.46

Introduction47

Impaired recovery of hard coral communities has mainly been attributed to cu-48

mulative disturbances (Halpern et al., 2008; Darling et al., 2013; Osborne et al.,49

2017; Vercelloni et al., 2017; Hughes et al., 2018; Ortiz et al., 2018; Mellin50

et al., 2019; Vercelloni et al., 2020; Bozec et al., 2022). The poor recovery of51

critical communities, including branching and plate coral morphologies, dimin-52

ish their function as habitat providers and threatens the high marine diversity53

associated with these species (Adjeroud et al., 2009; Fisher et al., 2015; Kayal54

et al., 2018; Ortiz et al., 2018; Darling et al., 2019). Traditionally, management55

strategies have focused on preserving ecosystem resilience (i.e., resistance and56

recovery) by reducing chronic pressures, such as nutrient pollution, overfish-57

ing, and predators, to enhance coral survival (Gilmour et al., 2013; Mcleod et al.,58

2019). More recently, active management interventions such as restoration are59

being explored to mitigate future effects of climate change by promoting faster60

rates of recovery, controlling chronic pressures and promoting the adaptive ca-61

pacity of corals to thermal stress (Anthony et al., 2017). Notwithstanding these62

efforts, the effectiveness of management interventions is challenged by the im-63
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pacts of large-scale climate-driven disturbances that spatially isolate disturbed64

from undisturbed reefs across hundreds of kilometres (Dietzel et al., 2021), in-65

hibit connectivity and coral recruitment (Hughes et al., 2019) and may accentu-66

ate delays in coral reef recovery (Ortiz et al., 2018; Warne et al., 2022). Rapid67

assessment of the effectiveness of management interventions is one of the core68

challenges that need to be tackled to adapt management strategies in the light69

of new environmental regimes, and complex spatial dynamics (Anthony et al.,70

2020; Condie et al., 2021).71

Modern coral reef management approaches propose using advanced technologies72

and analytical tools to model coral community coverage across space and time,73

considering future changes in environmental conditions (Hickey et al., 2020).74

The final products include predictive maps of reef indicators across management75

areas. On the Great Barrier Reef (GBR), predictive maps have been developed76

based on diverse information, including drivers of coral dynamics, environmen-77

tal gradients, exposure to disturbances from present and future regimes, green-78

house gas emissions and data integration from different monitoring programs,79

including citizen science and remote sensing (Mumby et al., 2014; De’ath et al.,80

2012; Wolff et al., 2018; Mellin et al., 2019; Peterson et al., 2020; Roelfsema81

et al., 2021; Bozec et al., 2022). A limitation of these maps is the dependence82

on coral reef monitoring data to predict changes at unobserved locations (Bozec83
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et al., 2022). Uncertainty in predictions arises when monitoring observations84

are (1) too scarce in space to allow inferences about new locations, (2) not suffi-85

ciently representative across the combination of reef habitats and (3) too narrow86

with respect to types and exposures of disturbances and environmental gradients.87

This is particularly relevant to coral reef ecosystems when considering the high88

spatial heterogeneity of community composition resulting from complex space-89

time interactions throughout the time (Cumming et al., 2017). Consequently,90

robust estimation of coral cover trends at management scales (i.e., much larger91

than monitoring locations) continues to be a challenge (Vercelloni et al., 2017;92

Mellin et al., 2019). This motivates the development of spatially-explicit frame-93

works that can better accommodate the fine spatial scale variability of commu-94

nity assemblages, recovery rates and susceptibility to a disturbance and provide95

management-ready products to inform effective decision-making.96

Spatial patterns of coral reef recovery are driven by many variables acting at dif-97

ferent spatial scales, including aspects of recent and past disturbance(s) (Connell98

et al., 1997; Graham et al., 2011; Ortiz et al., 2018; Mellin et al., 2019), commu-99

nity structure and demographic processes (Gilmour et al., 2013; Adjeroud et al.,100

2017; Kayal et al., 2018; Holbrook et al., 2018; Darling et al., 2019), and the101

environmental climatology of the habitats (Connell et al., 1997; Gouezo et al.,102

2019; Castro-Sanguino et al., 2021; Tebbett et al., 2022). Combined, this knowl-103

6



edge enables more accurate prediction of recovery dynamics of different pop-104

ulations and communities within a reef. Importantly, it provides more targeted105

information to manage recovery progress towards pre-disturbed states and asso-106

ciated demographic drivers (Kayal et al., 2018; Mellin et al., 2019; Darling et al.,107

2019).108

However, these spatial patterns are typically estimated at discrete hierarchical109

spatial scales, including sites, reefs, habitats and regions to accommodate a high110

variability of recovery patterns within a reef (Hughes et al., 2012; Tebbett et al.,111

2022). The systematic lack of studies accounting for fine-scale variability high-112

lights the need to explore the influence of space in the estimations of coral reef113

recovery patterns to support model-based decision-support that better aligns with114

management goals (Zurell et al., 2022). By representing the space using continu-115

ous spatial processes, we allow information sharing between nearby locations116

and introduce a dependence (defined as spatial auto-correlation) into the ob-117

served data. Considering spatial dependency is key to estimating the spatial scale118

of coral recovery patterns and understanding the importance of drivers acting119

fine-scale, such as coral larval supply, coral recruitment and herbivory in shaping120

those patterns (Fletcher and Fortin, 2018).121

Here, we developed a spatio-temporal model to (1) estimate long-term trajecto-122

ries of three groups of hard corals based on their growth morphology, (2) extract123
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the spatial auto-correlation from the data, (3) use these information to predict124

coral cover at unobserved locations within a reef and (4) develop new indicators125

of coral recovery. Since 2002, benthic communities have been monitored annu-126

ally at Heron Reef, situated in the Southern Great Barrier Reef (Roelfsema et al.,127

2021). These surveys have captured 11 years of coral recovery (2008-2018)128

following the impacts of the white syndrome coral disease outbreak and storm129

damage. Spatial patterns are estimated using the complete time series (16 years,130

2002-2018) of fine-scale observational changes in branching, plate and massive131

corals across different habitats. The new indicators capture important aspects132

of coral recovery that can be used to assess the potential success of restoration133

measures and explore alternative management options in the light of new envi-134

ronmental regimes.135

Methods136

Heron Reef Benthic Surveys and Geomorphic Zonation137

The Heron Island field survey was originally designed to develop annual benthic138

habitat maps of coral reef by integrating field data and satellite imagery (Roelf-139

sema and Phinn, 2010). The benthic compositions are semi-automatically de-140

rived from georeferenced photoquadrat collected at 2-3m interval along a tran-141
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sect in different zones. Each photoquadrat represents a 1x1 m2 footprint of the142

benthos (see Roelfsema et al. (2021) for additional details on the methodology).143

The geomorphic zones define different habitats across a reef that are formed by144

physical attributes including depth and wave exposure (Kennedy et al., 2020;145

Roelfsema et al., 2021). Using this method, Heron Reef is divided into four geo-146

morphic zones (Figure 1a). The northern and southern reef slope areas are char-147

acterized by high and low wave intensities, respectively, and depth of 4-7m. The148

inner and outer reef flats are shallower areas (0-2m) without influences of wave149

exposure.150

The composition of coral community is estimated using a convolutional neu-151

ral network and point-sampling methodology (González-Rivero et al., 2020;152

Roelfsema et al., 2021). Coral communities are subsequently aggregated into153

branching, plate and massive coral types to produce relative abundances of each154

of the three types for each photoquadrat. Sub-sites are defined as areas of 100 m2
155

in size in each surveyed year and generated using hierarchical clustering based156

on Euclidean distance between geo-located photoquadrats (Roelfsema et al.,157

2021). This method of data aggregation has been used previously to forecast the158

effects of multiple and intensifying disturbances in the northern GBR (Vercelloni159

et al., 2020), the efficiency of management zoning in Indonesia (Kennedy et al.,160

2020) and the identification of hotspots of coral cover across Heron Reef using161
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the same datasets (Roelfsema et al., 2021).162

The generated result is a total of 783 sub-sites based on an average of 8.7 (± 4.6163

standard deviation) photoquadrats per sub-site for each of the 16 years (2002-164

2018). The abundances of branching, plate and massive corals are then averaged165

within each sub-site and year. Observations of coral cover at the sub-site scale166

were used to model 16 years of coral changes across the habitats and three forms167

of corals within Heron Reef.168
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Figure 1: Locations of the data and spatial predictions. a) Dots show the lo-
cations of surveyed 100m sub-sites across Heron Island Reef and geomorphic
zones b) Predictive locations used in the spatio-temporal model. The boxed area
indicates the area used to interpret the indicators of coral recovery. Data avail-
able from the Pangea Digital Repository: https://doi.pangaea.de/10.
1594/PANGAEA.907025

Spatio-temporal model for coral cover169

Recently published studies have shown the importance of the spatial structure of170

benthic data to estimate long-term trajectories and highlight the strength of spa-171

tial clustering of coral communities (Aston et al., 2019; Ford et al., 2021; Levy172
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et al., 2018). The typical methods employed in these papers characterize spa-173

tial auto-correlation across different forms of corals and reef locations and gain174

knowledge about the spatial scales on which ecological drivers are acting. We175

developed a spatio-temporal model to go beyond these approaches, with the goal176

of reusing the estimated spatial structure to interpolate coral cover at unobserved177

locations and thus increase the volume of information to interpret. This aim is178

the essence of modern spatial statistical modelling: to estimate spatial patterns179

while considering the effects of drivers in species responses, and interpolate over180

a continuous spatial field to predict responses at unobserved locations (Lindgren181

et al., 2011).182

A spatio-temporal Bayesian model is developed to estimate the trajectories of183

three groups of corals from 2002 to 2018 (Eqs. 1). The cover of branching, plate184

and massive corals (yit), for observations i sampled at location si and time t was185

modelled independently. For each model, a Beta distribution is used because186

observed values of coral cover are proportions bounded between 0 and 1. The187

Beta likelihood is parameterized in terms of a variance φ and linked to the linear188

model components via a logit transformation (Ferrari and Cribari-Neto, 2004).189
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yit ∼ Beta

(
φ , logit−1(xT

i β j + r(si, t)+Vi)

)
r(si, t) = ω · r(si, t−1)+Z(si, t), (1)

Z(s, t) ind∼ G P(0,K), t = 2002, . . . ,2018

where, xT
i β j is a function of an intercept β0 and the four habitats β j and Vi inde-190

pendent random effects at the sub-site level. The spatio-temporal random effects,191

r(si, t), is composed of a first-order autoregressive process, ω · r(si, t−1), in time192

and a Gaussian field, Z(s, t), that is approximated using a Gaussian Markov ran-193

dom field (GMRF) and a covariance kernel. The GMRF is approximated using a194

stochastic partial differential equation (Lindgren and Rue, 2015). See Appendix195

S1 for more information about the spatio-temporal modelling.196

Indicators of coral recovery197

The years of recovery were set from 2008 to 2018 because no coral loss attributable198

to documented disturbances that was reported during this period. Coral recovery199

followed the impacts of four years of white syndrome disease outbreak between200

2004-2008 and storm damage in 2008 (Haapkylä et al., 2010; Roff et al., 2011).201
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Despite the proximity of cyclone Hamish in 2009, there was no recorded impact202

on Heron Reef (Haapkylä et al., 2010).203

Preliminary analyses presented in Appendix S2 showed that the use of partial204

recovery (80% of pre-disturbance values) instead of the full recovery (100% of205

pre-disturbance values) allowed almost double the number of reef locations to be206

considered as recovered. This is mostly due to the high pre-disturbance cover of207

branching corals in some locations of Heron Reef.208

Probability of recovery209

The probability of recovery was used to determine the outcome of recovery210

while considering uncertainty in the capability of branching and plate corals to211

recover from the disturbance(s). For every unobserved location ŝi, and coral mor-212

phology, the probability of recovery is estimated from the difference between213

predicted coral cover at time t of recovery (2008-2018) and their pre-disturbance214

values (ŷbaseline, Eq. 2).215

p̂rec,t =
1

2000

2000

∑
k=1

I
{(

ŷ(k)t −0.8ŷ(k)baseline

)
> 0
}
, t = 2008, . . . ,2018

ŷbaseline = max
tbaseline∈{2002,...,2007}

ŷtbaseline (2)
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with 2000 corresponding to the number of draws from posterior distributions of216

estimated coral cover ŷŝit .217

Recovery was asserted when p̂rec was greater than 0.75 at any time during the218

years of recovery and locations ŝi. When this condition was satisfied, recovery219

was defined as successful. As such, successful recovery is interpreted as ”75%220

chance of recovering to at least 80% of pre-2008 coral cover”.221

Growth rate222

The growth rate corresponds to the absolute growth rate between two consec-223

utive sampling periods because hard corals are growing slowly. It is estimated224

from the posterior distributions of the differences between ŷ(k)t and ŷ(k)t−2 for every225

k draws (Eq. 3).226

GrowthRate(t) =
1

2000

2000

∑
k=1

(
ŷ(k)t − ŷ(k)t−2

)
, t = 2010, . . . ,2018 (3)

A total of 2000 draws from the predictive posterior distributions were used to es-227

timate the growth rate. The average growth rate and associated 95% credible in-228

tervals are estimated using the percentiles (50%, 2.5% and 97.5% respectively).229
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Relative decline230

The relative decline expressed the amount of coral loss from disturbance(s).231

It was estimated using the maximum predicted coral cover pre-disturbance,232

ŷbaseline, at every predictive location and its corresponding value in 2008 (Eq.233

4).234

RelativeDecline=
ŷ2008− ŷbaseline

ŷbaseline
(4)

The average decline and associated 95% credible intervals were then categorized235

into levels of decline (low, medium, high) using the percentiles (50%, 2.5% and236

97.5% respectively).237

Growth rate thresholds238

Absolute growth rates and probability of recovery were used to estimate min-239

imum growth rate thresholds that ensured recovery. To do this, we developed240

logistic models for branching and plate corals with probability of recovery as re-241

sponse variables transformed into binary data with 1 when p̂rec were greater than242

75% chance of recovery and 0 otherwise. Logistic models were fit on the reef243

slope south locations for the branching corals in 2014 and reef slope north loca-244
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tions for the plate in 2016. We assumed that these years matched with the begin-245

ning of the exponential phase of coral growth as described in (Ortiz et al., 2018).246

The thresholds were defined when the probabilities of recovery (i.e >75% chance247

of recovering to at least 80% of pre-2008 coral cover) estimated by the logistic248

models were greater than 50%.249

Implementation250

Spatio-temporal Bayesian model251

Model outputs were used to predict values of coral cover across the entire Heron252

Reef. To do this, the reef was divided into 2,384 locations (Figure 1b) and pre-253

dictive values and associated uncertainties were estimated for each of these new254

locations and surveyed years. The presence of residual spatial and temporal255

auto-correlation was tested using the DHARMa (Hartig, 2019) and glmmTMB256

(Brooks et al., 2017) R packages. The spatio-temporal model was implemented257

using the r-INLA package (Rue et al., 2017) and run on a high-performance258

computer. The best model formulations were retained using visual and statis-259

tical diagnostics including model fit, residual patterns, basis dimensions, dis-260

tributional assumption, and Akaike Information Criterion values (AIC). Auto-261

correlation tests, computational details of fitting the models, as well as prior262

specifications, are provided in Appendix S1.263
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Indicators of recovery264

Indicators were estimated at 2384 predictive locations si across Heron Reef but265

interpreted within a smaller area on the western side of the reef (Figure 1b). This266

area corresponded to the geographical extent of the data and included 481 loca-267

tions. This step ensured the detection of signals from the indicators of recovery268

due to a higher uncertainty associated with the spatial predictions at locations269

further away from the data (see Appendix S1). Indicators were also estimated270

at the habitat scale by averaging the values within the same habitat and associ-271

ated uncertainty for a given year. The logistic models were developed using the272

R package ”brms” (Bürkner, 2017) and thresholds were estimated by averaging273

model outputs from 100 model iterations (see Appendix S1).274

Results and Discussion275

Temporal changes of coral communities276

Pre-disturbance (2002-2008)277

In the period 2002-2008, before the major environmental disturbance(s), branch-278

ing corals were abundant in the southern and northern slopes of Heron Reef279

(Figure 2a). The maximum coverage is estimated at 37.3% (27.6-47.4%, 95%280
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CI) in 2004 and 24.9% (17.1-33.8%) in 2006, respectively. A sizeable relative281

decline of branching corals is estimated in these habitats, with 93.4% loss (86.8-282

97.3%) in four years for the south slope and 83.5% loss (71.8-91.9%) in five283

years for the northern slope.284

Plate corals dominated the northern slopes (Figure 2b) with maximum coverage285

of 26.4 % (19.4-34.0%) in 2004, decreasing to a minimum of 7.7% (5.0-11%) in286

2010 (70.8 % 58.3-72.7%, relative decline). Studies by (Haapkylä et al., 2010)287

and (Roff et al., 2011) described the extirpation of corals, including plate corals288

during the major disease outbreak in 2004-2008 at different sites within these289

habitats with a shift in coral composition from plate to bushy corals.290

Post-disturbance (2008-2018)291

Branching corals mostly grew in the sheltered areas of the Reef Slope South292

(Figure 2a) that are protected from high wave exposure by adjacent reefs, includ-293

ing Wistari, Sykes, and One Tree Reefs (Connell et al., 1997). In this habitat,294

the model estimates a relative increase of 1527 % (720-1587%) from 2008 to295

2014, with a maximum amount of cover of 40.2 % (31.9-48.7%). Branching in296

the northern slope increased to a maximum of 13.8% (9.0-19.3%) in this period.297

Plate corals grew in the southern and northern slopes of Heron Reef to reach298

maximum values that were higher than pre-disturbance values (Figure 2b). The299
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prominent increase for plate corals occurred on the Reef Slope North, which300

is more exposed to frequent and higher intensity waves than the southern reef301

slope. In the northern slope, plate corals increased to 27.1% (20.9-33.7%) in302

2018 and 18.1% (13.3-23.5%) in 2016 for the south habitat.303

Through the years of recovery, coral community composition changed with a net304

dominance of plate corals in the northern section of the reef. The lack of recov-305

ery for branching corals cannot be explained by the nature of the disturbance as306

there is no clear evidence of what had impacted this reef section (Haapkylä et al.,307

2010; Roff et al., 2011). Differences in wave exposure between north and south308

and the high prevalence of branching corals in the southern reef slope before the309

decline may have contributed to the rapid southern recovery due to their strong310

capability of recovery after fragmentation (Lirman, 2000). The study from (Con-311

nell et al., 1997) indicated differences between mechanisms of declines and re-312

coveries in northern and southern sections of Heron Island. Our model estimates313

suggest that plate corals were able to recover from disease outbreaks, but this is314

less evident for branching corals on the northern slope. Coral colony size is an315

important factor associated with this type of disturbance (Roff et al., 2011), but316

the size was not recorded as part of the Heron survey.317
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Figure 2: Long-term trajectories of cover estimated by the model at the habitat
scale for a) branching, b) plate, and c) massive corals. The dots and error bars
denote the observed values and associated 95% confidence intervals. The line
and shaded areas are the model estimates showing the mean and 95% credible
intervals estimated from the model posterior distributions. Note that the y-axis is
on a different scale for the massive corals in panel c.

Spatial indicators of coral recovery318

Probability of recovery and associated growth rate319

Coral recovery is defined when a reef location reached 80% of its pre-disturbance320

value with the pre-disturbance value corresponding to the maximum estimated321

cover before 2008. As expected, branching corals were abundant in the south-322

ern slope from 2002 to 2005, then decreased until 2008 and recovered gradually323

until 2018 (Figure 3a). The rapid recovery is reflected by the dynamics of the324

21



probability of recovery showing less than 75% chance of recovery from 2008325

(36.6%, 12.4 - 64.0%) to 2012 (62.6%, 13.9 - 86.7%) and then high probabili-326

ties of recovery (greater than the threshold of 0.75) from this year (Figure 3b).327

In these locations, the growth rate increased from 4.8% (2.2 - 6.8 % y-2 between328

2010-2012 to a maximum of 10.4% (7.5 - 13.3 % y-2) until 2014 (Figure 3c).329

Thereafter, the growth decreased to negative values reaching 4.5 % (6.8 - 2.4%330

y-2) in 2018. This decline in branching growth is likely related to a reduction in331

space availability during the years of recovery. The probability of recovery re-332

mained low for the northern slope habitat (Figure 3b), associated with a negative333

growth rate at the beginning and end of the surveyed years (-4.4%, -6.1 - -2.9%334

y-2 in 2008 and -1.3%, -2.9 - -0.1% y-2 in 2018) and a positive growth rate rang-335

ing between 1-2% between these years (Figure 3c).336
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Figure 3: Spatial and temporal changes in branching corals. a) Predicted coral
cover estimated at unobserved locations between 2002-2018, b) Temporal
changes of the probability of recovery at the habitat scale. The dotted line shows
the threshold of successful recovery and c) Estimated growth rate at the habitat
scale across years.

Plate corals recovered in the slope habitat in the north and south during the sur-337

veyed period (Figure 4a). On the south slope, the probability of recovery was338

estimated at 98.3% (86.8 - 99.8%) in 2008 and remained above this value until339

2018, despite a low growth rate of 3.0% (1.2 - 7.8%) estimated in 2014 (Figure340

4b). On the north slope, the probability of recovery was almost zero for the first341

four years of the recovery phase and increased rapidly between 2012 and 2014342

to reach more than 75% chance of recovery in 2014-2018 (Figure 4b). In these343
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locations, the growth rate increased from - 1.3% y-2 (-2.2 - -0.1% y-2) in 2008344

to 12.2% y-2 (8.7 - 15.8% y-2) in 2014 before being negative again (-0.2% y-2,345

-2.0 - 0.9% y-2) in 2016 (Figure 4c). This rapid increase is the signature of plate346

corals that use the first years of recovery to build the base of their colony and347

then expand exponentially due to high growth rates and potential large sizes as-348

sociated with their growth morphology (Ortiz et al., 2021).349

Figure 4: Spatial and temporal changes in plate corals. a) Predicted coral cover
estimated at unobserved locations between 2002-2018, b) Temporal changes
of the probability of recovery at the habitat scale. The dotted line shows the
threshold of successful recovery and c) Estimated growth rate at the habitat scale
across years.
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Growth rate, relative decline and cover baseline350

Overall, branching corals recovered (to within 80% of baseline) at 53.4% of lo-351

cations across the north and south reef slopes in 6.90 years (± 1.25 SD). The352

fastest recovery occurred in six years at 20 locations within the south slope, and353

the longest recovery was estimated at ten years at three locations on the north354

slope. Most of the reef locations recovered on the south slope (87.1%)m com-355

pared with 12.9% of locations on the north slope (Figure 5a). On the south slope,356

locations that recovered were medium (15-37% relative decline) to highly (>357

37% relative decline) impacted by the disturbance(s) (Figure 5b). The cover358

baseline was mostly high (> 40% branching cover) and medium (20-40% branch-359

ing cover, Figure 5c). Branching corals at most of the locations grew above360

the growth rate threshold estimated at 4.30% y-2 (± 0.01 SD) from the logis-361

tic model in 2012 and 2014 (Figure 5d, Appendix S2). Only four years of high362

growth rate were needed to recover branching corals in previously abundant363

places and medium-highly impacted by disturbance(s). The disturbances highly364

impacted branching corals in the north slope (Figure 5b). The low baseline abun-365

dance of branching corals in these locations (Figure 5c) is likely related to the366

low growth rate (Figure 5d) due to environmental conditions that are not favourable367

for this form of corals (Connell et al., 1997; Tanner, 2017). The high decline368

in branching (> 37% relative decline) in association with a low growth rate re-369
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sulted in a lack of recovery for most of the locations in the north slope. However,370

the medium-high relative decline did not interfere with the recovery of branching371

corals in the southern slope because environmental conditions are prone to a fast372

growth rate, as shown by the medium-high cover baseline.373

Figure 5: Indicators of recovery for branching corals. a) Predictive locations on
the reef slope on which branching corals recovered or not using the 75% chance
of recovery across 2008-2018 as threshold, b) Associated levels of relative de-
cline estimated from the overall distribution within the reef slope of the small
area, c) Associated levels of baseline cover estimated from the overall distribu-
tion within reef slope of the small area and d) Temporal changes of the branch-
ing absolute growth rate in y-2 between 2010 and 2018 for the south reef slope.
Line colours denote the presence and absence of recovery at the predictive loca-
tions, and the solid black line shows the growth rate threshold of recovery esti-
mated by the logistic model.

The recovery of plate corals was more generally spread across the north and374
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south slopes, with 91.4% of locations showing recovery in 6.87 years (± 2.43375

SD). The fastest recovery occurred in only two years at eight locations in the376

south slope but it took a maximum of ten years to recover for six locations. More377

locations recovered in the south slope (58.5%) compared to the north slope (41.5%,378

Figure 6a). The highest decline occurred in the north slope with some loss esti-379

mated at more than 58% (Figure 6b) in locations with medium (13-27%) and380

high (> 27%) cover baseline (Figure 6c). Plate corals at locations the most im-381

pacted by the disturbance(s) grew the fastest with a maximum growth rate es-382

timated around 20% y-2 in 2016 and above the growth rate threshold of 6.31%383

y-2 (± 0.02 SD) in 2014 (Figure 6d, Appendix S2). Plate corals at locations that384

were impacted by disturbance(s) at a medium level grew above this threshold in385

2016, and locations impacted at a low level never reached the threshold. These386

results emphasize the interplay between relative decline and growth rate by cre-387

ating free space for new plate recruits to settle after the disturbance(s) in 2008388

and grow until saturation in 2018. In a paper dedicated to tabular Acropora,389

Ortiz et al. (2021) describes the complex mechanism of coral settlement that is390

enhanced by the presence of dead colonies. Plate corals were mostly impacted391

by coral diseases that are known to preserve the dead skeletons of the corals on392

which algae and potential new recruits can settle. They also show high potential393

connectivity from locations that were less impacted by the disturbance(s) and394
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favourable environmental conditions suggested by the high and medium levels395

in the cover baseline before the disturbance(s). The last point has also been rele-396

vant for the branching corals, where the recovery occurred in locations that were397

historically abundant.398

Figure 6: Indicators of recovery for plate corals. a) Predictive locations on the
reef slope on which branching corals recovered or not using the 75% chance of
recovery across 2008-2018 as threshold, b) associated levels of relative decline
estimated from the overall distribution within the reef slope of the small area, c)
Associated levels of baseline cover estimated from the overall distribution within
reef slope of the small area and, d) Temporal changes of the branching absolute
growth rate in y-2 between 2010 and 2018 for the south reef slope. Line colours
denote the presence and absence of recovery at the predictive locations, and the
solid black line shows the growth rate threshold of recovery estimated by the
logistic model.
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Spatial auto-correlation during coral recovery399

The presence of spatial and temporal auto-correlation in the long-term data of400

Heron Reef has been demonstrated by (Connell et al., 1997). In this study, we401

refined this knowledge by quantifying spatial dependence during the recovery402

of different forms of corals after accounting for the habitat effect defined by ge-403

omorphic zones. Our findings show that the spatial auto-correlation is within404

the same range as that estimated by (Connell et al., 1997) (up to 800m) but that405

this varies by coral morphology. Spatial ranges were estimated as 1.02km (0.75406

- 1.30km, 95% CI), 1.46km (1.07 - 1.90km) and 12.76km (7.24 - 18.97km) for407

branching, plate and massive corals, respectively (Appendix S1). The presence408

of spatial auto-correlation is explained by the mechanisms of coral recruitment409

that are related to the supply of larvae from plankton, suitability of substrate for410

coral settlement and mortality post-settlement (Connell et al., 1997). Among411

these factors, only the supply of larvae from plankton has the potential to act at412

the kilometre scale in conjunction with the interaction between habitat and cur-413

rents that drive the number of new recruits in these areas (Tebbett et al., 2022).414

Connell et al. (1997) and Tanner (2017) suggested that the supply of plankton415

is likely to be higher on the southern slope of Heron Reef due to the proxim-416

ity to other reefs, which increases coral recovery rates. However, we found that417

branching corals drove the recovery on the south slope and plate corals on the418
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north slope. Further investigations should focus on the interactions between419

branching and plate corals within habitats to better understand the influences420

of connectivity, demographic traits of coral forms and competition for space in421

driving recovery patterns.422

Analytical approaches to improve the effectiveness of long-term monitoring and423

increase the amount of knowledge extracted from the data have been applied424

to coral reefs (Kang et al., 2016; Thilan et al., 2019; Mellin et al., 2020). The425

quantification of spatial auto-correlation is informative for the design of coral426

reef monitoring (Hamylton, 2013). Using a combination of spatio-temporal427

modelling and fine-scale data, the estimated values of spatial ranges reveal that428

surveyed locations separated by 1km and 1.5km can be considered pseudo-429

replicated observations for branching and plate corals during recovery, respec-430

tively. The presence of redundant information in monitoring data violates the431

assumption of independence between observations in traditional statistical tests,432

which may bias ecological interpretations (Ver Hoef et al., 2018) about drivers433

of coral recovery. We recommend that future surveys that aim to understand434

mechanisms underlying coral recovery should ensure that the survey includes435

locations within and between a radius of 1.5km allowing for replications and col-436

lection of data that are not spatially auto-correlated. Locations should also be437

sampled across different habitats, especially in more than one flank of the reef438
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slope. In this way, monitoring surveys can provide an optimized amount of eco-439

logical and spatial information about the recovery patterns of the entire coral440

community.441

Spatio-temporal modelling for coral reef data442

Analyses of the influence of spatial variation during years of recovery allowed443

us to identify spatial patterns of recovery for different types of corals within a444

reef. The application of spatio-temporal models to this unique dataset reveals445

that consideration of interactions between space and time is essential in order446

to predict recovery patterns and investigate the fine-scale variability of coral447

dynamics (Appendix S1). Such interactions are challenging to compute, even448

using Bayesian approaches, but improvements in the field of computational sci-449

ence and applied statistics will ease their inclusion in future statistical modelling450

frameworks (Wikle and Zammit-Mangion, 2022). Moreover, these computa-451

tional improvements will enable the scaling-up of the approach to more than one452

reef.453

We acknowledge that the high volume of data needed in order to fully exploit the454

benefits of spatio-temporal statistical models is another limiting condition in the455

field of coral reef research. Additional work is needed to estimate the minimum456

amount of data that will enable the implementation of spatio-temporal models to457
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more than one reef. The development of new coral-reef monitoring techniques,458

including the use of machine learning (González-Rivero et al., 2020), citizen sci-459

ence (Santos-Fernandez et al., 2021) and combined approaches (Peterson et al.,460

2020) to boost collection, processing and exploration of reef data and their de-461

mocratization are rapidly being adopted by research and governmental institu-462

tions across the Indo-Pacific. In combination with advanced modelling tech-463

niques able to handle large and complex datasets, outputs from data-driven ap-464

proaches should be systematically integrated into the reef management toolbox465

(Zurell et al., 2022). They are keys to providing rapid and up-to-date information466

to reef managers, supporting the development of adaptive strategies and assess-467

ment of management interventions.468

Conclusions469

The spatial mismatch between the large spatial scale of climate-driven distur-470

bances and the finer spatial scale of management interventions (Cumming et al.,471

2017; Bellwood et al., 2019) forces the development and implementation of new472

types of measures to support coral recovery (Anthony et al., 2020). In this study,473

we developed new indicators of coral recovery that have been estimated based474

on the fine spatial scale variability of coral changes within a reef and the spatio-475

temporal structures of data. The resulting predictive maps of indicators of coral476
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recovery across Heron Reef show clear zonation of recovery probabilities that477

is different between coral morphology and related to the decline from distur-478

bance(s) and historical abundance.479

If management interventions ignore this information and only use locations480

where long-term monitoring sites are located, the benefits of interventions may481

be lost because of uninformed spatial prioritization (Anthony et al., 2020). This482

is especially important considering that existing monitoring only represents 40%483

of the environmental regimes of the GBR (Mellin et al., 2020). Importantly, be-484

cause the scale for management of local stressors is only a fraction of the global485

scale of influence of climate change, managers are likely to be forced to increas-486

ingly consider prioritization of reef areas with high intrinsic resilience capacity487

(GAME et al., 2008). Predictive maps from spatio-temporal models have the po-488

tential to fill a gap by gathering information from existing knowledge underlying489

coral recovery, learning from data to infer at unobserved locations and develop-490

ing useful indicators for decision-making.491

Data Science, including the combination of machine learning algorithms to492

rapidly process a large amount of information and statistical modelling to de-493

velop robust ecological knowledge, has the potential to radically change the way494

of managing coral reef. The use of this approach is still in its infancy in Aus-495

tralia, but current research efforts bridge the gap between data scientists, coral496

33



reef ecologists and reef managers to provide more comprehensive information497

about the decline of the condition of coral reef habitats in the Great Battier Reef498

and support the development of mitigation interventions under future climate499

scenarios. Importantly, while there is an increasing trend of incorporating cli-500

mate change into spatial prioritisation, serious gaps still exist in current method-501

ologies (Jones et al., 2016). This study provides a contribution to this increas-502

ingly challenging field by developing methodologies that recognise discrete and503

long-term impacts on ecosystem recovery potential. Our approach can be easily504

integrated into broader spatial prioritisation frameworks that respond to spatial505

and temporal scales of the processes being managed.506
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