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Abstract25

As coral reefs endure increasing levels of disturbance, understanding recovery26

patterns of reef-building hard corals is paramount to assessing the sustainabil-27

ity of these ecosystems. At local scales, coral recovery slows down; however,28

it’s unclear how this trend propagates across spatial scales due to the inherent29

complexity of coral dynamics. In this paper, we aimed to learn about fine scale30

heterogeneity of coral dynamics and explore implications for assessing coral re-31

covery at larger spatial scales. We developed a spatio-temporal statistical model32

to estimate long-term trajectories of three types of corals and predict their re-33

covery patterns at unobserved locations within a reef. Then, model predictions34

were used to derive metrics that capture the interplay between coral growth and35

decline from disturbance(s) across time, space and growth morphology. This36

model is developed in the context of a substantive case study at Heron Reef us-37

ing a high spatio-temporal resolution dataset. Our results revealed that success-38

ful coral community recoveries took place in different habitats of Heron Reef39

and associated with various reasons. Branching corals recovered in the south-40

ern slope, due to fast growth in locations that were previously abundant. Plate41

corals flourished in the northern slope due to fast growth, despite a large decline42

and low baseline cover. They also recovered in the southern slope but in this case43

there was both a low decline and baseline cover. At Heron Reef, the recovery of44

coral communities followed specific conditions that were acting at a fine scale in45

a complex and heterogeneous way within habitat. This implies that capturing the46
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variability of fine-scale coral dynamics is an important first step to detect accu-47

rate signals of coral recovery at larger spatial scales. The approach proposes here48

can be further extend to the scale of a reef and beyond enabling assessment of49

recovery patterns representative at management scales.50

Introduction51

The data revolution provides new opportunities to estimate changes in biodi-52

versity as climate change unfolds (Dornelas et al., 2023). However, it has been53

shown that patterns of change can exhibit contradictory trends depending on spa-54

tial scales (Pereira et al., 2012; De Palma et al., 2018; Dornelas et al., 2023).55

One example of complexity inherent in this problem is long-term trajectories of56

hard coral communities on the Great Barrier Reef that show opposite trends be-57

tween sites separated by 100 meters only, resulting in high uncertainty in coral58

trends at larger spatial scales (Vercelloni et al., 2017; Mellin et al., 2019b). The59

fine-scale variability of coral dynamics complicates understanding of community60

changes and associated drivers of change at regional and global scales despite61

important progress in the estimation of status of coral reefs worldwide (Souter62

et al., 2021).63

Branching and plate corals play a critical role as reef builders providing habitats64

for a myriad of organisms living upon them (Kerry and Bellwood, 2012; Dar-65
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ling et al., 2013). It is therefore imperative to understand the dynamics of these66

coral types. Of particular interest is coral recovery in response to cumulative im-67

pacts of chronic and acute stressors (Adjeroud et al., 2009; Fisher et al., 2015;68

Kayal et al., 2018; Ortiz et al., 2018; Darling et al., 2019) which may be accen-69

tuated by large-scale, climate-driven disturbances that spatially isolate disturbed70

from undisturbed reefs across hundreds of kilometres (Hughes et al., 2018; Di-71

etzel et al., 2021) and inhibit connectivity and coral recruitment (Hughes et al.,72

2019). Patterns of coral reef recovery are driven by various variables acting at73

different spatial scales, such as aspects of recent and past disturbance(s) (Connell74

et al., 1997; Graham et al., 2011, 2015; Ortiz et al., 2018; Mellin et al., 2019a),75

community structure and demographic processes (Gilmour et al., 2013; Adjer-76

oud et al., 2017; Kayal et al., 2018; Holbrook et al., 2018; Darling et al., 2019),77

and the environmental climatology of the habitats (Connell et al., 1997; Gouezo78

et al., 2019; Castro-Sanguino et al., 2021; Tebbett et al., 2022). Understanding79

the impact of these drivers may enable more accurate prediction of recovery dy-80

namics of different communities and provide targeted information to assess re-81

covery progress towards pre-disturbed states within monitoring locations (Johns82

et al., 2014; Kayal et al., 2018; Mellin et al., 2019a; Darling et al., 2019; Gouezo83

et al., 2019).84

Spatial patterns are typically estimated at discrete hierarchical spatial scales,85
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including sites, reefs, habitats and regions where comparisons are made be-86

tween reef locations that have received different levels of stressors. This popu-87

lar “space-for-time substitution approach” tends to overestimate reductions in88

population abundance, diversity and composition compared to more controlled89

sampling designs such as before-after-control-impact studies (De Palma et al.,90

2018; Dornelas et al., 2023). Overestimation may arise when monitoring obser-91

vations are too narrow with respect to types and exposures of stressors and not92

sufficiently representative across the combination of reef habitats where different93

coral communities are found. This potential bias, in conjunction with the high94

uncertainty in coral trends at broad spatial scales, provides further motivation for95

exploring the influence of space in reef data.96

Obtaining accurate and robust information on coral community recovery is one97

of the core challenges that need to be tackled to support management interven-98

tions in the light of complex spatio-temporal dynamics and new environmental99

regimes (Cumming et al., 2017; Anthony et al., 2020; Condie et al., 2021). An100

alternative approach to space for time substitution is to model the spatial and101

temporal dynamics directly. By representing the space using continuous spatial102

processes, we allow information sharing between nearby locations and intro-103

duce a dependence (defined as spatial auto-correlation) into the observed data.104

This spatial dependency can be used to capture the fine-scale variability of coral105
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dynamics and estimate the spatial scale at which coral recovery patterns occur.106

It can also be used to estimate drivers acting at the fine scale, such as coral lar-107

val supply, coral recruitment and herbivory, in shaping those patterns (Hamyl-108

ton, 2013; Edwards et al., 2017) as well as providing insight into reef accretion-109

erosion balance (Jackson-Bué et al., 2021).110

In this paper, we introduce a spatio-temporal model to (1) estimate long-term111

trajectories of three types of hard corals at the scale of meters, (2) extract the112

spatial auto-correlation from the data, (3) use this information to predict coral113

cover at unobserved locations and (4) develop metrics from model predictions114

that capture the interplay between coral decline from disturbance(s) and growth115

across time, space and coral growth morphology. This model was developed in116

the context of a substantive case study. Since 2002, benthic communities have117

been monitored annually across different habitats at Heron Reef, situated in the118

Southern Great Barrier Reef (Roelfsema et al., 2021b). These surveys have cap-119

tured 11 years of coral recovery (2008 - 2018) following the impacts of the white120

syndrome coral disease outbreak and storm damage. We aim to learn about fine-121

scale heterogeneity of coral dynamics during recovery, and the associated impli-122

cations for assessing recovery patterns at the scale of a reef and beyond.123
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Methods124

Heron Reef Survey125

The ongoing Heron Reef Survey was originally designed to develop annual ben-126

thic habitat maps of the coral reef by integrating field image-based data and127

satellite imagery (Roelfsema and Phinn, 2010). The method uses geo-referenced128

photoquadrats collected at 2 - 3m intervals along random transects, where each129

photoquadrat represents a 1x1 m2 footprint of the benthos (see Roelfsema et al.130

(2021a) for additional details on the methodology). Random transects are de-131

ployed within different habitats defined by geomorphic zones. These zones were132

defined by physical attributes including depth and wave exposure (Kennedy133

et al., 2020a; Roelfsema et al., 2021a). Heron Reef is divided into four habi-134

tats (Figure 1a): the northern and southern reef slope areas are characterized by135

high and low wave intensities, respectively, and depth of 4 - 7m; the inner and136

outer reef flat are shallower areas (0 - 2m) without influences of wave exposure.137

Importantly for the purposes of our study, these four habitats exist within close138

spatial proximity of each other.139

The composition of benthic communities is estimated from photoquadrats us-140

ing machine learning algorithms (González-Rivero et al., 2020; Roelfsema et al.,141

2021a). In this study, coral communities were aggregated into branching, plate142
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and massive coral types to produce relative abundances of each coral type by143

photoquadrat. Sub-sites were defined as areas of 100 m2 in size in each surveyed144

year and generated using hierarchical clustering based on Euclidean distance145

between geo-located photoquadrats. This method of data aggregation has been146

previously used to forecast the effects of cumulative disturbances in the northern147

GBR (Vercelloni et al., 2020), assess the efficiency of management zoning in In-148

donesia (Kennedy et al., 2020b) and the identification of hotspots of coral cover149

across Heron Reef (Roelfsema et al., 2021b).150

Following this method, we generated 783 sub-sites across Heron Reef based on151

an average of 8.7 (± 4.6 standard deviation) photoquadrats per sub-site. The pro-152

portions of branching, plate and massive corals were then averaged within each153

sub-site across 16 years (2002 - 2018) and incorporated as a response variable154

into the statistical model.155

Spatio-temporal model for coral cover156

There is a growing body of literature demonstrating the importance of including157

the spatial structure of reef data in the assessment of the dynamics of coral cover158

(Levy et al., 2018), reef communities (Hamylton, 2013; Edwards et al., 2017;159

Aston et al., 2019; Ford et al., 2021) and habitat (Jackson-Bué et al., 2021).160

These papers employed various methods to characterize spatial auto-correlation161
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and hence to gain knowledge about the spatial scales on which biotic and abiotic162

drivers are acting. In the following, we develop a spatio-temporal model to go163

beyond these approaches, with the goal of reusing the estimated spatial structure164

to interpolate coral cover at unobserved locations and thus increase the volume165

of information to interpret. This aim is the essence of modern spatial statistical166

modelling: to estimate spatial patterns while considering the effects of drivers167

in species responses, and interpolate over a continuous spatial field to predict168

responses at unobserved locations (Lindgren et al., 2011).169

The aim of our Bayesian spatio-temporal model is to estimate long-term tra-170

jectories of three groups of corals from 2002 to 2018 (Eqs. 1). The coral cover171

yit ∈ (0,1) for observation i sampled at location si and time t was modelled in-172

dependently for branching, plate and massive corals.Since the observed values of173

coral cover are proportions bounded between 0 and 1, we use a Beta likelihood174

to represent the observation process. This ensures that predictions generated by175

our model will be appropriately constrained, avoiding issues with negative val-176

ues that otherwise might arise. The Beta likelihood is parameterized in terms of177

an overall precision parameter φ and linked to the linear model components via a178

logistic transformation, also known as an inverse-logit (Ferrari and Cribari-Neto,179

2004).180
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yit
ind∼ Beta

(
φ , logit−1(xT

i β j + r(si, t)+Vi)

)
,

r(si, t) = ω · r(si, t−1)+Z(si, t), (1)

Z(s, t)∼ G P(0,K), t = 2002, . . . ,2018

where explanatory variables xi have been transformed into dummy values en-181

coding the four habitats, β0 is an intercept term, β1, . . . ,β4 represent fixed effects182

of each habitat, and Vi are independent random effects at the sub-site level. The183

spatio-temporal random effects r(si, t) comprise a first-order autoregressive pro-184

cess in time, ω · r(si, t−1), and a Gaussian process Z(s, t) that is approximated185

using a Gaussian Markov random field (GMRF) and a covariance kernel, K. The186

GMRF approximation uses a stochastic partial differential equation approach187

(Lindgren and Rue, 2015). Under this approach, spatial covariance is assumed188

to be isotropic where only the distance between two observations is used to es-189

timate their correlation (Gómez-Rubio, 2020). See Appendix S1 for detailed190

information about the spatio-temporal modelling.191
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Metrics of coral recovery192

The years of recovery were set from 2008 to 2018 because no coral loss attributable193

to documented disturbances was reported during this period. Coral recovery fol-194

lowed the impacts of four years of white syndrome disease outbreak between195

2004 - 2008 and storm damage in 2008 (Haapkylä et al., 2010; Roff et al., 2011).196

Despite the proximity of cyclone Hamish in 2009, there was no recorded impact197

on Heron Reef (Haapkylä et al., 2010).198

Probability of recovery199

In this paper, recovery is defined as the capability of branching and plate corals200

to recover from disturbance(s) to within 80 % of pre-disturbance cover values.201

The uncertainty associated with this outcome is encapsulated into the estimation202

of the probability of recovery, calculated from the respective posterior distri-203

butions obtained from the model. For every unobserved location ŝi, and coral204

morphology, the probability of recovery, p̂rec, is estimated from the difference205

between predicted coral cover at time t of recovery (2008 - 2018) and 80 % of206

their baseline cover (Eq. 2). The baseline, ŷbaseline, corresponds to the maximum207

coral cover that was predicted by the model during the pre-disturbance period of208

2002 - 2007.209
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p̂rec,t =
1
N

N

∑
k=1

1
{(

ŷ(k)t −0.8ŷ(k)baseline

)
> 0
}
, t = 2008, . . . ,2018,

ŷbaseline = max
t∈{2002,...,2007}

ŷt , (2)

with N corresponding to 2000 draws from posterior distributions of estimated210

coral cover ŷŝit .211

Recovery was asserted when p̂rec was greater than 0.75 at any time during the212

years of recovery and locations ŝi. When this condition was satisfied, recovery213

was defined as successful. As such, successful recovery is interpreted as “75 %214

chance of recovering to at least 80 % of baseline coral cover.”215

Coral growth and decline216

growth is defined as the difference in percent cover between two consecutive217

periods. Our intention is to investigate changes in proportion of coral cover from218

t to t−2 from 2010 to 2018 (Eq. 3). Coral decline is expressed as the amount219

of coral loss relative to the baseline cover. Coral cover estimated in 2008 is used220

in the estimation of coral decline as the major coral disease outbreak occurred221

between 2004 - 2008 (Haapkylä et al., 2010; Roff et al., 2011).222
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Growth(t) =
1
N

N

∑
k=1

(
ŷ(k)t − ŷ(k)t−2

)
, t = 2010, . . . ,2018,

Decline=
1
N

N

∑
k=1

(
ŷ(k)t − ŷ(k)baseline

)
, t = 2008, (3)

with N corresponding to 2000 draws from the predictive posterior distributions223

and ŷbaseline as defined above in (Eq. 2). The posterior median coral growth and224

decline and associated 95 % credible intervals are estimated using the percentiles225

(50 %, 2.5 % and 97.5 % respectively) of their respective distributions.226

Thresholds of recovery227

We use estimates of coral growth and probability of recovery to determine mini-228

mum growth thresholds that ensured recovery. To do this, we developed logistic229

models for branching and plate corals where probabilistic outcomes of recovery230

were transformed into binary data with 1 when p̂rec were greater than 75 % and 0231

otherwise. The default threshold of 50% is used when interpreting the probabili-232

ties predicted by the logistic models. Models are fit on predictions from the reef233

slope south locations for branching corals in 2014 and reef slope north locations234

for plate corals in 2016. We assume that these years matched with the beginning235

of the exponential phase of coral growth as described in Ortiz et al. (2018).236
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Implementation237

Spatio-temporal Bayesian model238

Outputs from the spatio-temporal models are used to predict values of coral239

cover across the entire Heron Reef. To do this, the reef was divided into a grid240

of 2,384 locations (Figure 1b) and predictive values estimated for each of these241

new locations and surveyed years. The presence of residual spatial and temporal242

auto-correlation was tested using the DHARMa (Hartig, 2019) and glmmTMB243

(Brooks et al., 2017) R packages (Appendix S1). The spatio-temporal model was244

implemented using the r-INLA package (Rue et al., 2017) and run on a high-245

performance computer. The best model formulations were retained using visual246

and statistical diagnostics including model fit, residual patterns, basis dimen-247

sions, distributional assumption, and Akaike Information Criterion (AIC) val-248

ues. Auto-correlation tests, computational details of fitting the models, as well as249

prior specifications, are provided in Appendix S1.250

Metrics of recovery251

Metrics are estimated at 2384 predictive locations si across Heron Reef but in-252

terpreted within a smaller area on the western side of the reef (Figure 1b). This253

area corresponds to the geographical extent of the data and included 481 loca-254
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tions. This step ensured the detection of signals from metrics of recovery due to255

a higher uncertainty associated with the spatial predictions at locations further256

away from the data (Appendix S2). Metrics were also estimated at the habitat257

scale by averaging values within the same habitat and associated uncertainty for258

a given year. The logistic models were developed using the R package ”brms”259

(Bürkner, 2017) and thresholds were estimated by averaging model outputs from260

100 model iterations (Appendix S2).261

Results and Discussion262

Temporal changes of coral communities263

Pre-disturbance (2002 - 2008)264

In the period 2002-2008, before the major environmental disturbance(s), branch-265

ing corals were abundant in the southern and northern slopes of Heron Reef266

(Figure 2a). The maximum coverage is estimated at 37.3 % (27.6 - 47.4 %, 95267

% CI) in 2004 and 24.9 % (17.1 - 33.8 %) in 2006, respectively. A sizeable de-268

cline of branching corals is estimated in these habitats, with 93.4 % loss (86.8 -269

97.3 %) in four years for the south slope and 83.5 % loss (71.8 - 91.9 %) in five270

years for the northern slope.271

During the pre-disturbance period, plate corals dominated the northern slopes272
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with maximum coverage of 26.4 % (19.4 - 34.0 %) in 2004 (Figure 2b). The273

relative decline from its cover baseline is estimated at 70.8 % (58.3 - 72.7 %).274

Studies by (Haapkylä et al., 2010) and (Roff et al., 2011) described the extirpa-275

tion of corals, including plate corals during the major disease outbreak in 2004-276

2008 at different sites within these habitats. At the end of the outbreak, a shift in277

coral composition from plate to bushy corals was also recorded (Haapkylä et al.,278

2010; Roff et al., 2011).279

Post-disturbance (2008 - 2018)280

During the recovery period, branching corals mostly grew in the sheltered areas281

of the Reef Slope South that are protected from high wave exposure by adjacent282

reefs (Connell et al., 1997). In this habitat, coral cover is estimated to have in-283

creased from 2.5 % (0.9 - 4.9 %) in 2008 to 40.2 % (31.9 - 48.7 %) in 2014. In284

the northern slope, branching corals decreased until 2011 and then increased but285

in a lesser extent than in the south. This lack of growth for branching corals may286

be explained by the prominent increase of plate corals on the Reef Slope North287

which may benefited from the available space and favourable environmental con-288

ditions to grow (Figure 2b).289

Plate corals grew in the southern and northern slopes of Heron Reef to reach290

maximum values that were higher than pre-disturbance values (Figure 2b). The291
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prominent increase for plate corals occurred on the Reef Slope North, which292

is more exposed to frequent and higher intensity waves than the southern reef293

slope. In the northern slope, plate corals increased to 27.1% (20.9-33.7%) in294

2018 and 18.1% (13.3-23.5%) in 2016 for the south habitat.295

Through the years of recovery, coral community composition changed with a net296

dominance of plate corals in the northern section of the reef. The lack of recov-297

ery for branching corals cannot be explained by the nature of the disturbance as298

there is no clear evidence of what had impacted this reef section (Haapkylä et al.,299

2010; Roff et al., 2011). Differences in wave exposure between north and south300

and the high baseline prevalence of branching corals in the southern reef slope301

may have contributed to the rapid southern recovery due to their strong capabil-302

ity of recovery after fragmentation (Lirman, 2000). The study from Connell et al.303

(1997) indicated differences between mechanisms of declines and recoveries in304

northern and southern sections of Heron Island. Our results suggest that plate305

corals were able to recover from disease outbreaks, but this is less evident for306

branching corals on the northern slope. Coral colony size is an important factor307

associated with this type of disturbance (Roff et al., 2011), but the size was not308

recorded as part of the Heron Survey.309
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Spatial metrics of coral recovery310

Interplay between recovery and coral growth at the habitat scale311

Coral recovery is defined when a reef location reached 80 % of its baseline value.312

The rapid recovery of branching corals in the southern slope is well reflected by313

the dynamics of the probability of recovery, showing low chance of recovery314

during the first three years followed by high change of recovery (Figure 3a). In315

these locations, a ten-fold growth is estimated in four years, increasing from 0.05316

% (-2.2 - 1.8 %) to 10.4 % (7.5 - 13.3 %, Figure 3b). Thereafter, the growth de-317

creased to negative values reaching 4.5 % (6.8 - 2.4 %) in 2018. This decline318

in branching growth is likely related to a reduction in space availability during319

the years of recovery. The probability of recovery remained low for the northern320

slope habitat (Figure 3a), associated with a negative growth rate at the beginning321

and end of the surveyed years and a positive growth rate ranging between 1 - 2322

% between these years (Figure 3b). For the remaining habitats, branching growth323

fluctuated between negative and positive values close to zero (Figure 3b).324

On the south slope, the probability of plate recovery is estimated at 98.3 % (86.8325

- 99.8 %) in 2008 and remained above this value until 2018 (Figure 3c), despite326

a low growth throughout these years estimated at 2-3 % (Figure 3d). On the327

north slope, the probability of recovery was almost zero for the first four years328
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of the recovery phase and increased rapidly between 2012 and 2014 to reach the329

threshold of recovery in 2014 (Figure 3c) with an associated twelve-fold growth330

increase estimated between 2008 to 2014 (Figure 3d). This dynamic showcases331

the signature of plate corals. Indeed, these corals use the first years of recov-332

ery to build the base of their colony and then expand exponentially due to high333

growth rates and potential large sizes associated with their growth morphology334

(Ortiz et al., 2021).335

Fine-scale interplay between coral growth, decline and cover baseline336

At Heron Reef, branching corals recovered at 51.6 % of the fine-scale predictive337

locations across the north and south reef slopes in 6.90 years (± 1.25 SD). Our338

results show an unbalanced spatial recovery with 82.3 % of locations recovered339

in south slope and 14.2 % in the north (Figure 4a). In the locations that recov-340

ered, the average baseline cover was similar between south and north slopes, at341

around 33 % coral cover, but with a more uniform distribution for the southern342

locations where the cover baseline ranged from 20 % to 70% at 100m spatial343

scale (Figure 4b). These differences are also shown in the standard deviation344

of baseline cover distributions estimated at 3.2 and 16.8 % for north and south345

slopes, respectively. A higher heterogeneity in coral decline is captured in the346

southern slope habitat with an average decline of 25.5 % coral cover (± 0.11347
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SD) and 11.6 % decline (± 0.04 SD) in the north (Figure 4c). Interestingly, a348

similar range of coral growth is estimated between the two habitats during these349

years of recovery ranging from -16 % to 20 % (Figure 4d). However, the coral350

values for the southern locations were more highly concentrated around zero,351

indicating more homogeneous growth for this habitat (Figure 4d). The presence352

of more than one mode in the distributions of cover baseline, coral decline and353

growth estimated in the northern slope habitat may be a sign of very fine-scale354

drivers of coral dynamics splitting adjacent locations into groups. These loca-355

tions are within a distance of 300 meters so it is possible that a physical barrier356

may have influenced the split; however, additional investigations are needed to357

interpret the origin of these distributions. In the southern slope, successful re-358

covery were associated with a growth threshold of 4.30 % estimated from the359

logistic regression (Appendix S2). More than 75 % of locations situated in south360

slope reached this growth value only two years after the beginning of the recov-361

ery independently of their cover baseline and coral decline.362

The recovery of plate corals was more evenly spread across the north and south363

slopes (Figure 5a), with 85.5 % of locations showing recovery in 6.87 years (±364

2.43 SD). In locations that recovered, the average baseline was higher in south365

slope (estimated at 33.1 % ± 0.17 SD) compared to the north slope (18.9 % ±366

0.08 SD). Similar to the branching corals, the range of cover baseline values was367

21



higher in the south compared to the north (Figure 5b). The decline was more368

pronounced in northern locations, with two modes appearing at 55 % and 10 %369

loss (Figure 5c). Plate loss in the southern slope was lower with an average of370

27.7 % ± 0.12 SD. Growth values were higher in the northern slope with some371

growth values greater than 20 % (Figure 5d). In this habitat, the growth thresh-372

old that ensured recovery is estimated at 6.4 % (Appendix S2). Only 22 % of373

locations reached these growth values in 4–6 years. Overall, plate corals grew374

faster in the northern slope despite a low cover baseline and high decline. In a375

paper dedicated to tabular Acropora, Ortiz et al. (2021) describes the complex376

mechanism of coral settlement that is enhanced by the presence of dead colonies.377

Plate corals were mostly impacted by coral diseases that are known to preserve378

the dead skeletons of the corals on which potential new recruits can settle.379

Learning from spatio-temporal coral dynamics380

The presence of spatial and temporal auto-correlation in the long-term data of381

Heron Reef was demonstrated a long time ago by Connell et al. (1997). In this382

study, we refined this knowledge by quantifying spatial dependence during the383

recovery of different forms of corals after accounting for the influence of dif-384

ferent habitats defined by geomorphic zones. Our findings show that the spa-385

tial auto-correlation is within the same range as that estimated by Connell et al.386
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(1997) - up to 800 m - but that this varies by coral morphology. Spatial ranges387

were estimated as 1.02 km (0.75 - 1.30 km, 95 % CI), 1.46 km (1.07 - 1.90 km)388

and 12.76 km (7.24 - 18.97 km) for branching, plate and massive corals, re-389

spectively (Appendix S1). The presence of spatial auto-correlation is explained390

by the mechanisms of coral recruitment that are related to the supply of larvae391

from plankton, suitability of substrate for coral settlement and mortality post-392

settlement (Connell et al., 1997). Among these factors, only the supply of larvae393

from plankton has the potential to act at the kilometre scale in conjunction with394

the interaction between habitat and currents that drive the number of new recruits395

in these areas (Tebbett et al., 2022). Connell et al. (1997) and Tanner (2017) sug-396

gested that the supply of plankton is likely to be higher on the southern slope of397

Heron Reef due to the proximity to other reefs, which increases coral recovery398

rates. However, we found that branching corals drove the recovery on the south399

slope and plate corals on the north slope. Further investigations will focus on400

the interactions between branching and plate corals within habitats to better un-401

derstand the influences of connectivity, demographic traits of coral forms and402

competition for space in driving recovery patterns. For example, it is unclear if403

the recovery of branching corals didn’t occur in the northern slope during the404

surveyed years due to the growth of plate corals or because of something else.405
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Data-driven approaches to guide where and when to sample monitoring loca-406

tions are applied to coral reefs (Kang et al., 2016; Mellin et al., 2020; Abeysiri407

Wickrama Liyanaarachchige et al., 2022). The quantification of spatial auto-408

correlation is informative for the design of coral reef monitoring because it quan-409

tifies the similarity of collected information between two locations (Hamylton,410

2013). By extracting spatio-temporal structures of Heron Survey data, our results411

revealed that monitoring locations separated by 1 km and 1.5 km are pseudo-412

replicated observations for branching and plate corals, respectively. The pres-413

ence of redundant information in monitoring data violates the assumption of414

independence between observations in traditional statistical tests, which bias415

inferences and ecological interpretations (Ver Hoef et al., 2018). We recommend416

that future designs of monitoring programs should ensure that surveys include417

locations both within and between a radius of 1.5 km. This important aspect418

will allow for collecting both replicated and spatially independent information,419

thereby optimizing our understanding of underlying mechanisms that drive coral420

dynamics. Also, monitoring locations should be sampled across different habi-421

tats, especially in more than one flank of the reef slope. In this way, surveys can422

provide enough ecological and spatial information about recovery patterns of the423

entire coral community. For example, without observations in the southern slope424

of Heron Reef, the lack of recovery of branching corals in the northern slope425
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could have been generalized at the reef scale (and maybe region) whereas they426

have grown back in other reef flanks. Incorporating these additional aspects of427

reef data are key to capturing fine-scale variability of coral dynamics throughout428

the reef.429

Scaling-up detection of spatial recovery430

Disentangling the influence of space and time on coral recovery showcases dif-431

ferent recovery scenarios across habitat and coral morphology (Figure 6). Branch-432

ing corals successfully recovered in the southern slope, mostly due to high and433

fast growth in locations that were previously abundant. However, they didn’t re-434

cover in the northern slope due a lack of growth. Plate corals flourished in the435

northern slope due to high growth, despite a large decline and medium-low base-436

line cover. They also recovered in the southern slope but in this case there was437

both a low decline and baseline. These complex scenarios highlight the fine-438

scale variability of coral dynamics, where recovery patterns of reef locations439

separated by small distances (only a hundred metres in this study) can be driven440

by different variables. Not considering this variation by, for example, averaging441

values across monitoring locations, contributes to uncertainty when estimating442

patterns at broader spatial scales. Our spatio-temporal model captures hetero-443

geneous coral dynamics from three model parameters only, namely: spatial au-444
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tocorrelation; range and variance; and temporal autocorrelation (Appendix S1).445

These parameters are used to estimate coral cover at predictive locations, along446

with other model parameters including habitat. Predictions are summarized via447

posterior distributions, which are key to propagating uncertainty across spatial448

scales. This bottom-up approach facilites consideration of heterogeneous fine-449

scale interplay between decline, growth, and baseline. It also enables prediction450

of patterns of recovery from finer to broader scales while propagating uncer-451

tainty appropriately. In this study, we used this method to model patterns of re-452

covery from sub-site to the habitat scale.453

We acknowledge that the high volume of data required to fully exploit the bene-454

fits of spatio-temporal statistical models is a limitation to their widespread adop-455

tion. Additional work is needed to estimate the minimum amount of data that456

will enable the implementation of spatio-temporal models to more than one reef.457

New coral-reef monitoring techniques, including the use of machine learning458

(González-Rivero et al., 2020), citizen science (Santos-Fernandez et al., 2021)459

and combined approaches (Peterson et al., 2020) to boost collection, processing460

and open access of reef data are rapidly being adopted by research and govern-461

mental institutions across the Indo-Pacific. Another limitation is the need for462

high computing power to employ complex Bayesian statistical models. Excit-463

ing advancements in statistical ecology that aim to address these challenges in-464
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clude the use of deep learning (Wikle and Zammit-Mangion, 2022) and a hybrid465

modelling framework (Sainsbury-Dale et al., 2021) to speed up estimation of the466

spatio-temporal structure from data. These advancements will allow models to467

include more detailed interactions between coral communities and to be scaled468

up to additional reefs and regions.469

Conclusion470

Assessment of coral recovery at large spatial scales is the first step to monitor-471

ing the efficiency of management actions (Anthony et al., 2020). The fine-scale472

variability of coral dynamics can contribute to increasing uncertainty and mask473

positive or negative changes in recovery patterns. In their recent review, Dor-474

nelas et al. (2023) call for increased recognition of the variability in biodiversity475

changes across space and time and identification of blind spots in our knowl-476

edge. This study contributes to this dialogue by showing that the fine-scale in-477

terplay between coral growth and decline drove recovery patterns of branching478

and plate corals at Heron Reef. Despite being variable, fine-scale coral dynamics479

are well-captured by spatio-temporal random effects, allowing propagation of480

uncertainty across spatial scales and estimation of recovery patterns at the habitat481

scale. This bottom-up approach can be further extended to identifying recovery482

at the scale of a reef and beyond, enabling characterization of representative re-483
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covery patterns at management scales. In this way, complex fine-scale coral dy-484

namics can be considered when assessing recovery at large spatial scales, and the485

associated uncertainty can be viewed as indicator of the current state of knowl-486

edge. The integration of this concept into global assessment of reef recovery487

will therefore give equal weight to reefs and regions with different disturbance488

regimes.489
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Figure captions

Figure 1: Locations of Heron Reef, observations and spatial predictions. a) Lo-

cations of Heron Reef in the Great Barrier Reef, Queensland, Australia. b) Dots

show the locations of surveyed 100m sub-sites across Heron Island Reef and

habitats c) Predictive locations used in the spatio-temporal model. The boxed

area indicates the area used to interpret the metrics of coral recovery.

Figure 2: Long-term trajectories of cover estimated by the model at the habitat

scale for a) branching, b) plate, and c) massive corals. The dots and error bars

denote the observed values and associated 95 % confidence intervals under the

assumption of a normal distribution. The line and shaded areas are the model es-

timates showing the mean and 95% credible intervals estimated from the model

posterior distributions. Note that the y-axis is on a different scale for the massive

corals in panel c.

Figure 3: Metrics developed to characterize coral recovery by habitat and coral

growth morphology. a) Probability of recovery changes through time for branch-

ing corals, b) Associated coral growth, c) Probability of recovery changes for

plate corals and d) Plate growth at the habitat scale. Note that coral growth is

expressed as a percentage.

Figure 4: Fine-scale characterization of successful recovery for branching corals.
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a) Predictive locations on the reef slopes where branching corals recovered be-

tween 2008-2018, distributions of b) cover baseline, c) coral decline and d) coral

growth by habitat.

Figure 5: Fine-scale characterization of successful recovery for plate corals. a)

Predictive locations on the reef slopes where plate corals recovered between

2008-2018, distributions of b) cover baseline, c) coral decline and d) coral growth

by habitat.

Figure 6: Visualisation of the four scenarios (two habitats and coral growth mor-

phology) of recovery patterns characterized at Heron Reef. Symbols represent

values of growth as a function of probability of recovery and decline for each re-

covery year. Bigger symbols indicate the first year of recovery. The horizontal

dotted line shows the threshold used to determine successful recovery. Grey stars

denotes minimum coral growth values associated with successful recovery.
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