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Abstract 39 

Nearly all wild populations live in seasonal environments in which they experience regular 40 

fluctuations in environmental conditions that drive population dynamics. Recent empirical 41 

evidence from experimental populations of fruit flies suggests that demographic signals inherent 42 

in the counts of seasonal populations, including reproduction and survival, can indicate when in 43 

the annual cycle habitat loss occurred. However, it remains unclear whether these signatures of 44 

season-specific decline are detectable under a wider range conditions. Here, we use a bi-seasonal 45 

Ricker model previously developed and applied to the same experimental system to examine 46 

season-specific signals of population decline induced by different rates of habitat loss in the 47 

breeding or non-breeding season and different strengths of density dependence. Consistent with 48 

the findings in Drosophila, breeding habitat loss was accompanied by reduced reproductive 49 

output and a density-dependent increase in survival during the subsequent non-breeding period. 50 

Non-breeding habitat loss resulted in reduced non-breeding survival and a density-dependent 51 

increase in reproduction in the following breeding season. These season-specific demographic 52 

signals of decline were present under a wide range of habitat loss rates (2-25% per generation) 53 

and different density-dependent regimes (weak, moderate, and strong). We show that stronger 54 

density dependence can negatively influence time to extinction when non-breeding habitat is 55 

lost, whereas the strength of density dependence does not influence time to extinction with 56 

breeding habitat loss (although, in all cases, density dependence itself was an important 57 

modulator of population dynamics). Our results illustrate the need to incorporate seasonality in 58 

theoretical models to better understand when populations are being driven to decline. 59 

 

Keywords: bi-seasonal, breeding, carrying capacity, density dependence, extinction, non-60 

breeding, Ricker model, vital rates  61 
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Introduction 62 

Habitat loss and fragmentation due to human land-use, have been identified as the leading causes 63 

of the dramatic declines in wild populations observed in recent decades (Pimm et al. 2014; Díaz 64 

et al. 2019; but see Fahrig 2003, 2019). Habitat deterioration is the primary risk to approximately 65 

30 percent of threatened species and one of the major threats to 85 percent of all species 66 

identified on the IUCN’s Red List (World Wildlife Fund 2018; Intergovernmental Science-67 

Policy Platform on Biodiversity and Ecosystem Services 2019). An understanding of not only 68 

what environmental factors are driving these populations to extinction, but also when and where 69 

these forces play out within the annual cycle, is imperative to global conservation efforts. Simple 70 

demographic models provide a theoretical underpinning to our understanding of the dynamics of 71 

natural systems, and represent an important tool in our arsenal for characterizing, managing, and 72 

conserving threatened populations (Beissinger and Westphal 1998; Gimona 1999; Norris 2004; 73 

García-Díaz et al. 2019). 74 

Climatic seasonality is a fundamental component of natural environments, driving the 75 

regular fluctuations in resource availability and quality to which most species and populations 76 

are subjected. And yet, early models of population growth, such as the logistic growth curve 77 

(Verhulst 1845; Pearl and Reed 1920) and the Ricker model (Ricker 1954) did not explicitly 78 

incorporate the potential for seasonal dependence, and the population dynamical implications of 79 

seasonality are generally underappreciated (White and Hastings 2020). Despite their simplicity, 80 

these models can still offer important insights into fundamental ecological processes that 81 

underpin the dynamics of a wide range of natural systems (Ricker 1963; Borlestean et al. 2015; 82 

Romero et al. 2017; Bolser et al. 2018). Although population models are still frequently framed 83 

around a stationary, or ‘aseasonal’, context (Ludwig 1996; Mueller and Joshi 2000; Lande et al. 84 

2003; Otso and Meerson 2010), explicit incorporation of the impacts of seasonality on 85 

population dynamics has proven fruitful (Skellam 1967; Fretwell 1972; Kot and Schaffer 1984; 86 

Sutherland 1996; Norris 2005; Liz 2017). 87 

Despite lacking explicit seasonality, the strength of simple population models like the 88 

logistic and Ricker models is that they capture the important role of density dependence in 89 

explaining fluctuations in abundance over time. Density-dependent mechanisms arise when the 90 

rate of population growth at any given time is, at least in part, contingent on the current 91 

population density (Hassell 1986). The strength of density dependence is expected to modulate 92 
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the effects of habitat loss and impact population responses to environmental change (Sutherland 93 

1996; Agrawal et al. 2004; Norris 2005). Sequential density dependence, through which 94 

population abundance in one season influences population vital rates in the next (Norris 2005; 95 

Ratikainen et al. 2007; Betini et al. 2013a), may affect the capacity for populations to respond to 96 

environmental change, and may also result in different system dynamics in those losing breeding 97 

or non-breeding habitat. In a series of studies, Betini et al. (2013a, 2013b, 2014) demonstrated 98 

how density dependence acts to regulate seasonal population dynamics in an experimental 99 

population of Drosophila melanogaster with distinct breeding and non-breeding periods.  100 

In a recent experimental study, we investigated how seasonal changes in habitat 101 

availability influenced the dynamics of the same seasonal Drosophila populations, and found 102 

that populations losing breeding versus non-breeding habitat responded in the different ways 103 

(Burant et al. 2019). In the experiment, seasonality was induced by manipulating the quality food 104 

provided (Betini et al. 2013b) and chronic, season-specific habitat loss was imposed over 105 

multiple generations by systematically reducing the volume of food provide in one period while 106 

holding it constant in the other (Burant et al. 2021). The loss of breeding habitat resulted in a 107 

decline in per capita reproduction and, as a consequence of fewer individuals entering the 108 

subsequent non-breeding period, a positive density-dependent increase in non-breeding survival. 109 

Conversely, non-breeding habitat loss had the opposite effects: non-breeding survival declined 110 

due to resource limitation, while per capita reproduction showed a density-dependent increase in 111 

the subsequent breeding period (Burant et al. 2019). Moreover, we demonstrated that simple 112 

demographic and statistical signals derived from population counts and vital rates, including 113 

non-breeding survival, reproduction and other statistical indicators inherent in time series of 114 

population abundance, can be used to identify the season in which habitat loss occurred (Burant 115 

et al. 2019). However, the experiment only considered two different rates of breeding or non-116 

breeding habitat loss (10% and 20% per generation) and was conducted under levels of breeding 117 

and non-breeding density dependence characteristic of a specific, laboratory-evolved strain of 118 

Drosophila. Thus, the extent to which these empirical results are relevant for other populations 119 

under a broader range of strengths of density dependence and rates of habitat loss remains 120 

unclear.  121 

 In this study, we use a bi-seasonal Ricker model (Betini et al. 2013a) to explore how 122 

different rates of habitat loss in either the breeding or non-breeding period and the strength 123 
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density dependence influence the production of simple, season-specific signals of population 124 

decline and time to extinction in silico. The original (aseasonal) Ricker model was developed in 125 

the context of fisheries harvesting (Ricker 1954) and has since been extended for application in a 126 

variety of contexts, modelling the population dynamics for a broad range of taxa, including 127 

fishes (e.g., Myers et al. 1999), crustaceans (e.g., Twombly et al. 2007), and insects (e.g., Dey 128 

and Joshi 2006; Estay et al. 2009). Here, we incorporate the effects of season-specific habitat 129 

loss on carrying capacity and growth in each period of the bi-seasonal model, and use 130 

simulations to explore how habitat loss operates under a range of initial parameter values, 131 

strengths of density dependence, and rates of seasonal habitat loss. We derive season-specific 132 

vital rates (survival and reproduction) to look at sequential density-dependence between periods 133 

of breeding and non-breeding (Betini et al. 2013a), rather than density dependence in population 134 

growth between generations.  135 

Given the discrete nature of our model, with breeding and non-breeding conditions 136 

modelled as two separate equations and resource pools (habitats), we expect that this model may 137 

be particularly relevant for migratory species (e.g., migratory birds) that occupy distinct breeding 138 

and non-breeding habitats. For example, our model captures the plausible scenario in which a 139 

population experiences habitat loss (or other environmental forcing) on the breeding grounds, 140 

while the non-breeding sites remain relatively stable (or vice versa). However, even in resident 141 

species that occupy the same habitat throughout the year, populations may experience 142 

differential changes in resource availability and quality during periods of breeding and non-143 

breeding, which may similarly impact their overall dynamics. Thus, the model we present and 144 

others that explicitly incorporate seasonality (White and Hastings 2020) have a broad scope of 145 

application.  146 

 

Methods 147 

Bi-seasonal Ricker model with season-specific habitat loss 148 

The Ricker model (eq. 1) was first introduced by W.E. Ricker (1954) in the context of fisheries 149 

management, following his observation that the convex relationship between net reproduction 150 

and population density resulted in oscillations in population abundance. Since then, the Ricker 151 

model has become one of the classical theoretic models to describe density-dependent dynamics 152 
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in populations with discrete time intervals (Fretwell 1972; Kot and Schaffer 1984; Turchin 2003; 153 

Geritz and Kisdi 2004; Wysham and Hastings 2008). The Ricker model can be expressed as: 154 

 
𝑁(𝑡+1) =  𝑁(𝑡)𝑒

𝑟(1−
𝑁(𝑡)

𝐾
)
 

(eq. 1) 

where N represents the number of individuals in the population at a given time t, r is the intrinsic 155 

growth rate (‘Malthusian parameter’; Fisher 1930), and K indicates a population’s carrying 156 

capacity (Pearl and Reed 1920). The simple Ricker model has been used previously to model the 157 

population dynamics of Drosophila (Mueller and Joshi 2000; Dey and Joshi 2006). This 158 

aseasonal model results in stable population cycles for a range of r and K, which can be either 159 

arbitrary or empirically defined, but generates chaotic dynamics when r is large (r > ~2.7; May 160 

and Oster 1976; May 1987). Griffen and Drake (2008) showed that reductions in habitat quality 161 

produced reductions in both r and K, as modelled for experimental populations of the water flea 162 

Daphnia magna.  163 

 To investigate the dynamics of D. melanogaster with distinct breeding and non-breeding 164 

periods, Betini et al. (2013a) extended the Ricker model to include season-specific parameters 165 

for population growth and carry capacity. For this ‘seasonal’ Ricker model, temporal changes in 166 

breeding (Nb) and non-breeding (Nnb) population abundance can be modelled using a set of two 167 

interacting equations (eq. 2.1, 2.2). For each generation, population size at the beginning of the 168 

non-breeding period (i.e., the number of offspring produced; maximum population size in a 169 

given generation) can be written as the difference equation: 170 

 
𝑁𝑛𝑏(𝑡+1) =  𝑁𝑏(𝑡)𝑒

𝑟𝑏(1−
𝑁𝑏(𝑡)

𝐾𝑏
)
 

(eq. 2.1) 

where rb and Kb are the maximum growth rate (reproduction) and carrying capacity for the 171 

breeding period, b, respectively. In this way, nonbreeding, nb, population size (Nnb) is a product 172 

of the number of breeders (Nb) and density-dependent interactions between them (Betini et al. 173 

2013a, 2013b). Population size at the beginning of the breeding period (i.e., the number of 174 

potentially breeding adults that survived the previous non-breeding period) can be described as: 175 

 
𝑁𝑏(𝑡+1) =  𝑁𝑛𝑏(𝑡+1)𝑒

𝑟𝑛𝑏(1−
𝑁𝑛𝑏(𝑡+1)

𝐾𝑛𝑏
)
 

(eq. 2.2) 

where rnb and Knb are the maximum growth rate (mortality) and carrying capacity for the non-176 

breeding period, respectively. 177 
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 In this study, we were interested in modelling the impacts of chronic, season-specific 178 

habitat loss on the predicted changes in breeding and non-breeding population size under a range 179 

of conditions. In a previous experiment (Burant et al. 2019), we systemically reduced the amount 180 

of food provided to replicate populations of Drosophila in either the breeding or non-breeding 181 

period over multiple generations, until the populations went extinct. In our experiment, and in 182 

the theoretical model presented here, season-specific habitat loss followed an exponential decay, 183 

with the proportion of food provisioned in the season of habitat loss in a particular generation 184 

H(t) prescribed as:  185 

 𝐻(𝑡) = (1 − 𝑣)𝑡 (eq. 3) 

𝑤here 𝑣 is the rate of habitat loss and t is the number of generations since habitat loss treatment 186 

commenced. 187 

In an attempt to replicate the experimental reductions in habitat, we represented habitat 188 

loss by altering season-specific r and K parameters. Given that both population growth rate and 189 

carrying capacity have been shown to be dependent on the quantity of food provisioned (Griffen 190 

and Drake 2008), we scaled both parameter values proportionally with the rate of habitat loss. 191 

For populations losing breeding habitat, our model assumed that both rb and Kb would decrease 192 

proportionally with the rate of habitat loss (eq. 4.1), such that the total number of offspring 193 

produced by the previous generation Nnb(t+1) would also decrease. Changes in population growth 194 

rates and carrying capacities with breeding habitat loss can be summarized as: 195 

 𝐾𝑏(𝑡) = 𝐾𝑏
∗𝐻𝑏(𝑡) 

𝑟𝑏(𝑡) = 𝑟𝑏
∗ − 𝑟𝑏

∗(1 − 𝐻𝑏(𝑡)) = 𝑟𝑏
∗𝐻𝑏(𝑡) 

𝐾𝑛𝑏(𝑡) = 𝐾𝑛𝑏
∗  

𝑟𝑛𝑏(𝑡) = 𝑟𝑛𝑏
∗  

(eq. 4.1) 

where Kb
* and rb

* are the estimated carrying capacity and intrinsic growth rate during the 196 

breeding period under control (no habitat loss) conditions, respectively, Knb
* and rnb

* are the 197 

corresponding non-breeding values, and Hb(t) is the proportion of breeding habitat remaining. 198 

For populations losing non-breeding habitat, we expected the opposite effects on season-199 

specific growth rates and carrying capacities. We predicted that Knb would decrease 200 

proportionally to the rate of habitat loss and rnb would become more negative (increasing 201 
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mortality) as the proportion of habitat remaining continued to decline (eq. 4.2). Changes in 202 

population growth rates and carrying capacities with non-breeding habitat loss can be 203 

summarized as: 204 

 𝐾𝑏(𝑡) = 𝐾𝑏
∗ 

𝑟𝑏(𝑡) = 𝑟𝑏
∗ 

𝐾𝑛𝑏(𝑡) = 𝐾𝑛𝑏
∗ 𝐻𝑛𝑏(𝑡) 

𝑟𝑛𝑏(𝑡) = 𝑟𝑛𝑏
∗ − |𝑟𝑛𝑏

∗ |(1 − 𝐻𝑛𝑏(𝑡)) 

(eq. 4.2) 

where Hnb(t) is the proportion of non-breeding habitat remaining. Scaling the season-specific 205 

growth rates and carrying capacities in this way had the effect of holding the strength of density 206 

dependence (see below) constant in the season of habitat loss. 207 

 

Theoretical model simulations 208 

To explore the dynamics of our bi-seasonal Ricker model with season-specific habitat loss, we 209 

first parameterized the model using estimates derived from a set of input-output experiments in 210 

seasonal populations of Drosophila (Betini et al. 2013a). In these trials, populations of breeding 211 

and non-breeding fruit flies were initiated at a range of densities, and their subsequent 212 

reproductive output (breeding) and survival (non-breeding) were measured. The experimental 213 

density dependence reference parameters from Betini et al. (2013a) were: rb = 2.24, αb = 9.86 x 214 

10-3, rnb = -0.0568, and αnb = 6.72 x 10-4, where α describes the strength of density dependence in 215 

an alternative form of the Ricker model and can be calculated as αi = ri / Ki (see Supplementary 216 

Information for results of model parameterization with empirical values; Fig. S3). 217 

 To investigate how the strength of density dependence influenced the trajectories of 218 

populations and the production of seasonal signals of decline, we further explored three other 219 

parameterizations in which the strength of density dependence was manipulated by changing the 220 

value of r (in the same direction) in both seasons: (1) weak density dependence (rb = 1.3, rnb = -221 

0.033); moderate density dependence (rb = 2, rnb = -0.051); strong density dependence (rb = 2.65, 222 

rnb = -0.069). These values of rb are selected somewhat arbitrarily to sample the range of the non-223 

zero equilibrium, non-chaotic phase of the Ricker model (r < 1 results in populations shrinking 224 

to zero; chaotic dynamics set in at r ≈ 2.7). The corresponding rnb values are matched based on 225 
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the ratio of the experimentally-derived parameters (e.g., rnb(moderate) = rnb(experimental) x 2 / 2.24). 226 

This manipulation of r is consistent with previous experimental work, which has shown that, 227 

intuitively, maximum growth rates may be useful as a predictor of the strength of density 228 

dependence in systems that conform to the monotonic definition of density dependence inherent 229 

in most simple population models (Agrawal et al. 2004). Because carrying capacity is largely a 230 

function of the volume of food provided (e.g., Griffen and Blake 2018; Burant et al. 2020), and 231 

not the strength of density dependence, the season-specific carrying capacities (Kb = 227, Knb = -232 

84.5) were the same for all three theoretical scenarios and the initial empirical parameterization. 233 

 To simulate some degree of variability in the baseline parameters, which should be 234 

expected for real world replicate populations, we treated these parameters as normal distributions 235 

N(μ, σ2) from which the initial values Kb
*, rb

*, Knb
*, and rnb

* could be sampled. For the season-236 

specific carrying capacities, the standard deviation of Ki was set as √|𝐾𝑖|. Since the square-root 237 

of a value < 1 is larger than the initial value, the standard deviation for the season-specific 238 

growth rates ri was set as ri /10. 239 

 We simulated a range of rates of season-specific habitat loss, with populations losing 240 

habitat at a rate of 2%, 5%, 10%, 20%, or 25% per generation in either the breeding or the non-241 

breeding period. We also included control simulations, in which habitat availability was constant 242 

in both seasons. As with our experiment, which included 10% and 20% rates of habitat loss 243 

(Burant et al. 2019), replicate simulations were initiated with a non-breeding population size of 244 

20 individuals. We simulated 20 generations of ‘pre-treatment’ population growth in which the 245 

proportion of habitat provisioned in the treatment period remained at 100%. Starting in 246 

generation 21, the simulated proportion of habitat provisioned in the treatment period 247 

corresponded to the rate of loss following eq. 3. We ran each model simulation for 50 248 

generations (including the pre-treatment period), or until the population went extinct. 249 

 For each strength of density dependence scenario, we performed 1,000 model simulations 250 

for different rate of loss and season of loss combinations (e.g., 2% breeding, 2% non-breeding, 251 

5% breeding, etc.), with 10 rate-by-season treatment combinations plus controls. In order to 252 

avoid overfitting our statistical models (see Supplementary Information), and to introduce an 253 

additional degree of randomness in the initial parameter values that were used to specify each 254 

run, we randomly sampled 25 of the 1,000 simulations for each treatment for analysis. 255 
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From each replicate, we derived time series of the following metrics: (1) breeding 256 

abundance (i.e., the number of potential breeders, the number of individuals at the end of the 257 

non-breeding period); (2) non-breeding abundance (i.e., the number of offspring produced, the 258 

number of individuals at the start of the non-breeding period); (3) per capita reproduction (i.e., 259 

the relative change in abundance between the beginning and end of the breeding period, non-260 

breeding abundance / breeding abundance); and (4) non-breeding survival (i.e., the relative 261 

change in abundance between the beginning and end of the non-breeding period, breeding 262 

abundance / non-breeding abundance). Time to extinction was calculated as the number of 263 

generations from the initiation of habitat loss (i.e., generation – 20) until abundance ≤ 2 264 

individuals in the breeding period. 265 

 

Relative strength of density dependence 266 

To explore the density-dependent nature of time to extinction that we identified in our model 267 

simulations of non-breeding habitat loss, we systemically varied the strength of density 268 

dependence in either the breeding and non-breeding period independently while holding density 269 

dependence constant (moderate) in the other season. As with all parameterizations, the relative 270 

strength of density dependence was always higher in the breeding period (αweak = 5.73 x 10-3, 271 

αmoderate = 8.81 x 10-3, αstrong = 1.17 x 10-2) than that in non-breeding period (αweak = 3.91 x 10-4, 272 

αmoderate = 6.00 x 10-4, αstrong = 8.11 x 10-4; see Theoretical model simulations). Extinction time 273 

was determined by performing a single iteration of the non-breeding habitat loss model with each 274 

combination of breeding and non-breeding strengths of density dependence. 275 

 

The theoretical model was constructed in the R statistical environment (v. 4.0.2; R Core Team 276 

2020). The code and data used in these analyses have been made publicly available (Burant and 277 

Norris 2022). 278 

 

Results 279 

Bi-seasonal population dynamics with habitat loss 280 

Simulations of a bi-seasonal Ricker model with season-specific habitat loss (see Theoretical 281 

model simulations in Methods) produced two counts in each generation (breeding abundance and 282 

non-breeding abundance), with distinct dynamics that varied with the season and rate of habitat 283 
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loss (Fig. 1). In the initial pre-treatment generations, during which all replicate populations were 284 

allowed to grow from an initial non-breeding population size of 20 individuals, all treatment 285 

scenarios showed a rapid increase towards carrying capacity and stable seasonal oscillations in 286 

the generations preceding the introduction of treatment. For control replicates, in which habitat 287 

availability remained constant in both the breeding and non-breeding period, population 288 

abundances in both seasons were stable throughout the treatment period. Control breeding 289 

abundance was largely similar across the different strengths of density dependence (mean 290 

breeding abundance: weak DD = 206 ± 2.48 (mean ± SE); moderate DD = 200 ± 3.89; strong 291 

DD = 199 ± 2.51; Fig 1a; Fig. S1). In contrast, control non-breeding abundance increased with 292 

the strength of density dependence (mean non-breeding abundance: weak DD = 233 ± 3.20; 293 

moderate DD = 247 ± 5.54; strong DD = 276 ± 26.5; Fig. 1a; Fig. S2). Between-season 294 

variability in abundances increased with stronger density dependence (Fig. 1). 295 

With reductions in breeding habitat, there were similar patterns of decline in both 296 

breeding and non-breeding abundance, with declines in both seasons beginning within 1-2 297 

generations of the onset of treatment (Fig. 1b; Fig. S1; Fig. S2). In contrast, when non-breeding 298 

habitat was lost, breeding and non-breeding population abundance appeared to diverge in 299 

simulations (Fig. 1c; Fig. S1; Fig. S2). Breeding population abundance declined steadily as non-300 

breeding habitat was lost, whereas non-breeding population abundance remained relatively stable 301 

for several generations before declining rapidly. At lower rates of non-breeding habitat loss (2% 302 

and 5% per generation), non-breeding abundance actually increased slightly for several 303 

generations preceding the rapid decline (Fig. 1b; Fig. S2). The transition from high, stable non-304 

breeding abundance to rapid decline occurs around generation 21, 16, 14, 12, and 11 for non-305 

breeding habitat loss treatments of 2%, 5%, 10%, 20%, and 25% habitat loss per generation (Fig. 306 

S3). 307 

 

Response of vital rates to season-specific habitat loss 308 

As expected, breeding and non-breeding habitat loss generated distinct changes in population 309 

vital rates (Fig. 2; Fig. 3; Supplementary Information). For control replicates, per capita 310 

reproduction declined rapidly as populations grew towards carrying capacity in the pre-treatment 311 

period, and remained stable during the treatment generations (mean per capita reproduction = 312 

1.13 ± 0.004, 1.28 ± 0.04, and 2.07 ± 0.40 offspring/breeder with weak, moderate, and strong 313 
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density dependence, respectively; Fig. 2a). When breeding habitat was lost, per capita 314 

reproduction dropped and remained below one (i.e., the replacement value) as the amount of 315 

breeding habitat available in each generation continued to decline. Per capita reproduction 316 

shifted from being relatively stable in the generations preceding population collapse to zero 317 

within a single generation (Fig. 2b). In contrast, non-breeding habitat loss generated a steady 318 

increase in per capita reproduction, with values exceeding those observed for control 319 

simulations, as one might expect given the assumed pattern of compensatory density dependence 320 

(Fig. 2c). As the rate of non-breeding habitat loss increased, the relative increase in per capita 321 

reproduction decreased, likely as a result of reduced time available for simulations to respond to 322 

shifting conditions. 323 

Non-breeding survival remained relatively high throughout the treatment period for control 324 

simulations (mean non-breeding survival = 88.4 ± 0.003%, 79.1 ± 0.006%, and 75.7 ± 0.02% for 325 

weak, moderate, and strong density dependence, respectively), and was as high as 100% in the 326 

initial generations of the pre-treatment period (Fig. 3a). When breeding habitat was lost, the 327 

proportion of individuals that survived the non-breeding period increased to one as the number of 328 

individuals entering the non-breeding period decreased (Fig. 3b). With non-breeding habitat loss, 329 

non-breeding survival decreased proportionally with the rate of habitat loss (Fig. 3c). 330 

Interestingly, all non-breeding habitat loss simulations reached a plateau around 20-25% non-331 

breeding survival in later generations (i.e., when the volume of non-breeding habitat provisioned 332 

was low), with non-breeding survival actually increasing in the generation preceding population 333 

collapse, before declining to zero as the populations went extinct. This result may provide some 334 

evidence for an Allee effect on survival with non-breeding habitat loss, likely because relatively 335 

few offspring are produced by breeders at very low densities. 336 

 

Time to extinction  337 

Season-specific habitat loss resulted in rapid changes in bi-seasonal population dynamics, with 338 

breeding and non-breeding habitat loss generating different patterns of population decline and 339 

timing of population collapse (Fig. 1b, c). As expected, the pace at which populations declined 340 

towards extinction increased with the rate of habitat loss. However, there was a notable 341 

difference between simulations of breeding and non-breeding habitat loss in the effect of the 342 

strength of density dependence on the timing of population collapse (Fig. 4). When breeding 343 
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habitat was lost, the timing of population collapse appeared to be almost entirely dependent on 344 

the rate of habitat loss, with relatively little impact of the strength of density dependence 345 

imposed on the population (Fig. 4a). With breeding habitat loss, all replicate populations went 346 

extinct within 19, 11, 7, 4, and 3 generations with the onset of habitat loss treatments of 2%, 5%, 347 

10%, 20%, and 25% loss per generation, respectively. In contrast, when non-breeding habitat 348 

was lost, the time to extinction was negatively related to the strength of density dependence (Fig. 349 

4b), such that populations subjected to weak density dependence collapsed later than those 350 

subjected to strong density dependence. Across all scenarios, populations losing non-breeding 351 

habitat went extinct earlier than those losing breeding habitat (Fig. 1; Fig. 4; Fig. S3). 352 

Because we varied the strength of density dependence simultaneously in both seasons, we 353 

were also interested in examining whether season-specific variation in density dependence could 354 

be driving the negative relationship between density dependence and time to extinction when 355 

non-breeding habitat was lost. To do this, for the non-breeding habitat loss scenarios, we varied 356 

the strength of density dependence in one period while holding the other at a moderate level, and 357 

then examined the time to extinction. When the strength of non-breeding density dependence 358 

was held at a moderate level and non-breeding habitat was lost, stronger breeding density 359 

dependence resulted in earlier population extinction (Fig. 5a), similar to the results reported 360 

above. In contrast, when breeding density dependence was held at a moderate level and non-361 

breeding habitat was lost, variation in the strength of non-breeding density dependence had no 362 

impact on the timing of population collapse (Fig. 5b). 363 

 

Discussion 364 

We were interested in exploring whether a simple phenomenological model could be used to 365 

capture and extend the dynamics observed in experimental populations exposed to chronic, 366 

season-specific habitat loss. In our previous experiment, we showed that when and where habitat 367 

was lost had important consequences for the way in which populations decline, and had unique 368 

effects on seasonal vital rates (Burant et al. 2019). Several broad similarities in the overall 369 

patterns of decline from our experiment and theoretical model suggest that the latter does a 370 

reasonable job of approximating the former. First, while mean extinction times estimated from 371 

the model (see Bi-seasonal population dynamics with habitat loss in Results) were earlier than 372 

experimentally-induced collapses (average times to extinction with 10% and 20% habitat loss per 373 
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generation were 14 and 7 generations for breeding treatments, and 14 and 8 generations for non-374 

breeding treatments; Burant et al. 2019), the relative order in extinction of populations losing 375 

breeding and non-breeding habitat was consistent with experimental observations. Likewise, in 376 

both the experiment and the model presented here, non-breeding habitat loss produced large 377 

fluctuations between breeding and non-breeding population abundance (as a result of density-378 

dependent reproduction), while breeding habitat loss resulted in consistent, directional decline 379 

(compare Fig. 1 herein with Figure 2 in Burant et al. (2019)).  380 

 Our theoretical results demonstrate the important role that the strength of density 381 

dependence plays in determining how populations decline with seasonal habitat loss. Based on 382 

our simulations, the timing of population collapse with habitat deterioration during the breeding 383 

period was almost entirely dependent on the rate at which habitat was lost, with no impact of 384 

changes in the strength of density dependence. In contrast, strong density dependence amplified 385 

the impacts of non-breeding habitat loss, such that increased density dependence resulted in 386 

steeper population declines and earlier extinctions. The difference in the influence of density 387 

dependence with season-specific habitat loss is consistent with our predictions, and is ultimately 388 

a reflection of differences in the capacity of populations to respond to habitat loss in either the 389 

breeding or non-breeding period. With non-breeding habitat loss, populations may experience a 390 

'seasonal compensation effect’ (Norris 2005) that results in increased reproduction in the 391 

subsequent breeding period. A similar compensatory effect should not necessarily be expected 392 

with breeding habitat loss, since, by definition, populations cannot grow during the subsequent 393 

non-breeding period. Moreover, any seasonal compensation effect with breeding habitat loss is 394 

constrained by ceiling effects, since the proportion of individuals that survive the non-breeding 395 

period cannot exceed 100 percent. This conclusion was supported by an exploratory analysis in 396 

which we manipulated the strength of density dependence separately in each period, which 397 

showed that changing non-breeding density dependence did not affect time to extinction when 398 

breeding density dependence was moderate.  399 

 Inspection of the breeding and non-breeding population abundance time series revealed a 400 

number of important differences between our theoretical and experimental results (see 401 

Supplementary Information). First, while the relative (but not absolute) timing of collapse was 402 

consistent between the experiment and model (see above), the way in which these declines 403 

unfolded differed. Although experimental populations did not appear to respond immediately to 404 
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breeding habitat loss, with population size remaining relatively stable for several generations 405 

before declining precipitously (largely due to stable breeding abundances resulting from the 406 

strong filter of the non-breeding period; Burant et al. 2019), our theoretical model generated 407 

steady declines in abundance in both seasons with the onset of breeding habitat loss. Non-408 

breeding habitat loss had similar effects on seasonal abundances, with delayed declines in non-409 

breeding population size relative to breeding (as a result of density-dependent reproduction; 410 

Burant et al. 2019). Despite the fact that the control conditions in the experimental seasonal 411 

Drosophila system were empirically derived (G.S. Betini and D.R. Norris, unpublished data), it 412 

is possible that initial breeding food availability in our experiments was in excess of what was 413 

required to maintain stable bi-seasonal dynamics. This could have resulted in a delayed 414 

population response to reductions in breeding habitat. Moreover, carrying capacity in either 415 

season is not solely a function of the volume of food provided, since there is only so much space 416 

the flies can occupy in a closed system, and so there is the potential for overcrowding (rather 417 

than absolute food availability) to limit food access and ultimately affect differences in survival 418 

and reproduction (Burant et al. 2020; Kilgour et al. 2020). The potential for overcrowding was 419 

not accounted for in our theoretical model, and so changes in carrying capacity were assumed to 420 

be simply a function of food availability (see Bi-seasonal Ricker model with season-specific 421 

habitat loss in Methods). As a consequence of these intricacies, relative to our experiment 422 

(Burant et al. 2019), the simple theoretical model generally underestimated breeding and non-423 

breeding population abundance with breeding habitat loss, and overestimated breeding 424 

abundance when non-breeding habitat was lost. 425 

 We noted that, for non-breeding habitat loss simulations, non-breeding survival appeared 426 

to temporarily plateau in later generations when little non-breeding habitat remains and, in some 427 

instances, briefly increased in the generation preceding extinction (Fig. 3c). While not 428 

specifically encoded in the model, this is reminiscent of an Allee effect (Allee 1927; Stephens et 429 

al. 1999) in which population growth is limited at low breeding densities. In essence, low non-430 

breeding habitat availability means only a few individuals survive to the next breeding period 431 

and, as a result, reproductive output and population growth are reduced due to low densities. In 432 

turn, only a few individuals enter the subsequent non-breeding period, where habitat availability 433 

continues to decline. Thus, non-breeding densities may be better matched to habitat availability 434 

than in previous generations when non-breeding survival declined rapidly due to the breeding 435 
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season density-dependent, rebound-induced mismatch between the number of individuals 436 

entering the non-breeding period and the declining habitat availability. This plateau means 437 

populations persist longer than might otherwise be anticipated based on the steep decline in non-438 

breeding survival observed at earlier timepoints. Why this arises in our model is not necessarily 439 

intuitive, but is possibly a product of the interplay between the density-dependent rb (stable) and 440 

rnb (increasingly negative). Allee effects have been explicitly incorporated in other modifications 441 

of the Ricker model (Elaydi and Sacker 2009), including the periodic Ricker map (Sacker 2006). 442 

 There are several other potential explanations for discrepancies between our previous 443 

observational results and theoretical outcomes. Betini et al. (2013a) showed that sequential 444 

density dependence and carry-over effects between seasons can influence reproductive output 445 

and regulate population abundance. However, fluctuations in population density and food 446 

availability between seasons are also expected to influence other aspects of individual and 447 

population performance, which may help to buffer populations against deteriorating 448 

environmental conditions. For example, reproductive output is known to be influenced by 449 

individual body condition, such that individuals who enter the breeding period in poor condition 450 

produce fewer offspring (Betini et al. 2014), and non-breeding food availability carries over to 451 

indirectly influence reproductive performance (Burant et al. 2020). These phenotypic traits, and 452 

their changes in response to seasonal variation, effectively link environmental conditions in one 453 

season with individual performance in the next (O’Connor et al. 2014). Similarly, intraspecific 454 

interactions among individuals in a population can be density-mediated, with individual 455 

behavioural expression modulated by the social context (Sokolowski et al. 1997; Kilgour et al. 456 

2018; Leatherbury and Travis 2019). Importantly, the impacts of density-dependent changes on 457 

population growth and individual traits are not necessarily immediately observable (Ratikainen 458 

et al. 2007). These are but a few examples of the mechanisms through which individuals and 459 

populations can respond to changing environmental conditions (Colchero et al. 2018). Although 460 

the purpose of simple population models is not necessarily to reproduce all possible mechanisms 461 

of change, discrepancies between our theoretical and empirical results demonstrate the 462 

importance of considering carry-over effects and other non-abundance traits that are expected to 463 

shift as the environment deteriorates. Indeed, recent theoretical work has demonstrated the 464 

importance of considering the impacts of seasonal carry-over effects on individual performance 465 

and, ultimately, how these effects scale up to influence population vital rates (e.g., Liz and Ruiz-466 
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Herrera 2016). Failure to fully consider carry-over effects is likely to limit our understanding of 467 

the dynamics of declining populations, and so also limit efforts to conserve them (O’Connor and 468 

Cooke 2015). 469 

 The present model is not the first to consider how seasonality shapes the dynamics of 470 

animal populations. Fretwell (1972) expounded at length about the various ways regularly 471 

varying environments influences individual reproduction and survival and, ultimately, population 472 

persistence. Others have considered the more general case of resource variability across different 473 

temporal scales (e.g., Hastings 2014). In its original formulation, the bi-seasonal Ricker model 474 

from Betini et al. (2013a) was important for demonstrating how explicit incorporation of density-475 

mediated carry-over effects better captures long-term vital rate dynamics and population 476 

stability. The interplay between seasonality and stability was also explored by Kot and Schaffer 477 

(1984), who showed theoretically how moderate seasonality may stabilize populations in 478 

productive environments. Consistent with our findings, Kot and Schaffer (1984) also showed 479 

how increasing ‘imbalance’ between breeding and non-breeding seasons periods can have 480 

contrasting effects. Sutherland (1996) more explicitly considered the effects of season-specific 481 

habitat loss on the dynamics of migratory populations, and similarly found differential effects of 482 

breeding and non-breeding habitat loss. Although time to extinction was not directly evaluated, 483 

Sutherland (1996) showed that, compared to breeding habitat loss, the same amount of non-484 

breeding habitat loss had more than twice the effect in terms of percent population decline. This 485 

is consistent with our finding that populations losing non-breeding habitat go extinct earlier than 486 

those losing breeding habitat. Our analysis complements these previous studies by showing how 487 

sequential density-dependent effects can modulate patterns of population decline and time to 488 

extinction with chronic, season-specific forcing. By simulating habitat deterioration in one 489 

season and holding it fixed in the other, we begin to explore how seasonal populations may be 490 

temporarily buffered against decline through density-dependent survival and reproduction. 491 

Finally, while we implement a seasonal formulation of the Ricker model, many other simple 492 

demographic models exist and predictions from these models may differ from those presented 493 

here. Previous comparison of the utility of different aseasonal models for predicting extinction in 494 

a community context has shown that the strong density dependence inherent in the Ricker model 495 

best matched results from simple microcosms (Ferguson and Ponciano 2013). 496 
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 Along with understanding the demographic mechanisms underlying patterns of 497 

population decline, it is relevant to consider whether the predictability of collapse differs 498 

between populations losing breeding and non-breeding habitat. In our chronic habitat loss 499 

experiment, we showed that whether a set of indicators derived from time series of population 500 

abundance (e.g., coefficient of variation, lag-1 autocorrelation) and fitness-related traits (e.g., 501 

body size, activity) served as early warning indicators of population collapse was dependent on 502 

the season of habitat loss (Burant et al. 2021). Moreover, in a similar theoretical approach to the 503 

one presented here, Bury (2020) showed that the nature of early warning signal production 504 

differed between simulations of breeding and non-breeding habitat degradation. This theoretical 505 

work also suggests the potential for using early warning indicators to identify the season in 506 

which populations are being driving to decline, which we also previously demonstrated in our 507 

experimental system (Burant et al. 2019). These results suggest that simple demographic vital 508 

rates like survival and reproduction, as well as early warning indicators, may be useful for 509 

detecting and predicting season-specific drivers of population decline across a wide range of 510 

density-dependent systems. 511 

In summary, the results from our theoretical model of the impacts of season-specific 512 

habitat loss on population dynamics through changes in growth and carrying capacity bolster our 513 

understanding of how populations decline in seasonal environments. By comparing our 514 

theoretical simulations to results from an earlier chronic habitat loss experiment, we are able to 515 

identify some of the ways in which simple population models can elegantly capture real-world 516 

phenomena. Along with experiments and observational studies, theoretical models represent an 517 

important tool, not only for understanding how the natural world works but particularly for 518 

efforts aimed at conserving threatened species in an era of rapid environmental change.519 
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Figure Captions 699 

Figure 1. Population dynamics generated from a bi-seasonal Ricker model with season-specific 700 

habitat loss. Each generation is comprised of two counts: non-breeding population abundance 701 

(i.e., the number of individuals at the start of the non-breeding period; peaks), and breeding 702 

population abundance (i.e., the number of potential breeders at the start of the breeding period; 703 

troughs). Replicate populations were simulated under control (no habitat loss conditions) for 20 704 

generations while they grew toward carrying capacity (shaded grey region). In subsequent 705 

generations, season-specific habitat loss was simulated at 2%, 5%, 10%, 20%, or 25% per 706 

generation (see Theoretical model simulations in Methods). Sample size = 25 replicates per 707 

treatment. 708 

 

Figure 2. Response of per capita reproduction to season-specific habitat loss with varying 709 

strengths of density dependence. In each generation, per capita reproduction was calculated as 710 

the number of offspring divided by the number of breeders. All replicates were simulated under 711 

control (no habitat loss conditions) for 20 generations while they grew toward carrying capacity 712 

(shaded grey region). In subsequent generations, season-specific habitat loss was simulated at 713 

2%, 5%, 10%, 20%, or 25% per generation (see Theoretical model simulations in Methods). 714 

Sample size = 25 simulations per treatment. 715 

 

Figure 3. Response of non-breeding survival to season-specific habitat with varying strengths of 716 

density dependence.  In each generation, non-breeding survival was calculated as the number of 717 

individuals at the end of the non-breeding period divided by the number initial non-breeding 718 

abundance (i.e., the proportion of individuals who survived through the non-breeding period). 719 

All replicates were simulated under control (no habitat loss conditions) for 20 generations while 720 

they grew toward carrying capacity (shaded grey region). In subsequent generations, season-721 

specific habitat loss was simulated at 2%, 5%, 10%, 20%, or 25% per generation (see 722 

Theoretical model simulations in Methods). Sample size = 25 simulations per treatment. 723 
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Figure 4. Rate of habitat loss, strength of density dependence, and the timing of population 724 

collapse with season-specific habitat loss. To explore how the strength of density dependence 725 

influences the timing of population collapse, we parameterized our bi-seasonal Ricker model 726 

under three different theoretical scenarios of density dependence and using the experimental 727 

parameters obtained from our seasonal populations of Drosophila (see Theoretical model 728 

simulations in Methods). The time to extinction was calculated as the number of generations of 729 

season-specific habitat loss at a particular rate before the populations collapsed, excluding the 20 730 

generations of ‘pre-treatment’ in which populations were simulated under control conditions.  731 

 

Figure 5. Effect of changing the strength of (a) non-breeding and (b) breeding density 732 

dependence for simulations of 10% non-breeding habitat loss. To explore the effect of density-733 

dependence on time to extinction with non-breeding habitat loss, we systemically varied the 734 

strength of density dependence in either the breeding or non-breeding period, while holding 735 

density dependence constant in the other period (e.g., by setting breeding density dependence as 736 

moderate and vary the strength of non-breeding density dependence; see Relative strength of 737 

density dependence in Methods). Single, deterministic model runs were conducted for each 738 

pairwise combination of strengths of breeding and non-breeding density dependence. Extinction 739 

time was determined by performing a single iteration of the non-breeding habitat loss model with 740 

each combination of breeding and non-breeding strengths of density dependence.  741 
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Figures 742 

Figure 1. 743 
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Figure 2. 745 
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Figure 3. 747 
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Figure 4. 749 
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Figure 5. 751 
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Figurer S1. Breeding population abundance was calculated as the number of potentially breeders 760 

at the beginning of the breeding period (i.e., the number of individuals who survived through the 761 

previous non-breeding period. All replicates were simulated under control conditions (no habitat 762 

loss) for 20 generations prior to the onset of treatment. Sample size = 25 replicates season and 763 

rate of habitat loss.  764 

  765 
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Figure S2. Non-breeding population abundance was calculated as the number of individuals at 766 

the start of the non-breeding period (i.e., the number of adult offspring produced by the previous 767 

generation). All replicates were simulated under control conditions (no habitat loss) for 20 768 

generations prior to the onset of treatment. Sample size = 25 replicates per season and rate of 769 

habitat loss. 770 

  771 



  Burant & Norris

  

 36 

Figure S3. Bi-seasonal and season-specific population abundances from models parameterized 772 

with empirical values from seasonal populations of Drosophila melanogaster (Part 1). All 773 

replicates were simulated under control (no habitat loss conditions) for 20 generations while they 774 

grew toward carrying capacity (shaded grey region). In subsequent generations, season-specific 775 

habitat loss was simulated at 2%, 5%, 10%, 20%, or 25% per generation (see Theoretical model 776 

simulations in Methods). Sample size = 25 replicates per season and rate of habitat loss. 777 

  778 
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Figure S4. Per capita reproductive output (breeding period) and survival (non-breeding period) 779 

from model simulations of chronic habitat loss parameterized with empirical values from 780 

seasonal populations of Drosophila melanogaster (Part 2). In replicate simulations, populations 781 

were exposed to (a) no habitat loss (control), (b) breeding habitat loss, or (c) non-breeding 782 

habitat loss. In each generation, per capita reproduction was calculated as the number of 783 

offspring divided by the number of breeders, and non-breeding survival was calculated as the 784 

number of individuals at the end of the non-breeding period divided by initial non-breeding 785 

population size. All replicates were simulated under control (no habitat loss conditions) for 20 786 

generations while they grew toward carrying capacity (shaded grey region). In subsequent 787 

generations, season-specific habitat loss was simulated at 2%, 5%, 10%, 20%, or 25% per 788 

generation (see Theoretical model simulations in Methods). (d, e) per capita reproduction as a 789 

function of breeding population size. (f, g) non-breeding survival as a function of non-breeding 790 

population size. In general, for d-g, seasonal population abundances shifted from right (high) to 791 

left (low) along the x-axis as habitat loss progressed (see Fig. 3, Fig. 4 in main text). Number of 792 

observations: nreproduction(B loss) = 1488; nreproduction(NB loss) = 1311; nsurvival(B loss) = 1408; nsurvival(NB loss) 793 

= 1500. Sample size (N) = 25 simulations per treatment. 794 
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Statistical analysis for Fig. S4 796 

We used simulations from bi-seasonal Ricker model parameterized using information 797 

empirically-derived from seasonal Drosophila populations (see above; Betini et al. 2013a) to 798 

investigate how the seasonal vital rates (reproduction and non-breeding survival) changed in 799 

response to changes in seasonal population abundance with habitat loss. To do this, we used four 800 

separate mixed effects models (Bolker et al. 2009): two models for each vital rate (one for 801 

breeding habitat loss treatments and one for non-breeding habitat loss treatments). All statistical 802 

models were fitted in a Bayesian framework (Ellison 2004). In each model, the seasonal vital 803 

rate of interest was regressed against the two-way interaction between the corresponding 804 

abundance value (integer) and the rate of habitat loss treatment (5-level factor: 2, 5, 10, 20, 25). 805 

Simulation number was fitted as a random effect, with a random slope term included for the rate 806 

of habitat loss. Because we were interested in modelling the effects of habitat loss, we only 807 

included data from the treatment period (after 20 generations of control conditions; see 808 

Theoretical model simulations above).  809 

Per capita reproduction was modelled as a function of breeding population abundance 810 

with linear mixed effects models (LMM; family = Gaussian, link-function = identity). Non-811 

breeding survival, a proportion ranging [0, 1], was modelled as a function of non-breeding 812 

population abundance with generalized linear mixed effects models (GLMM; family = Beta, 813 

link-function = logit; Ferrari and Cribari-Neto 2004). Importantly, the beta distribution cannot be 814 

used to model zeroes and ones, and so does not include the maximum bounds of the data range 815 

(Duoma and Weedon 2019). To account for this, non-breeding survival for populations losing 816 

non-breeding habitat (range = [0, 1)) was modelled as (survival + 0.0001) to account for zeroes 817 

in the dataset. In contrast, populations losing breeding habitat reached 100% non-breeding 818 

survival at low non-breeding densities, and so all values were modelled as (survival – 0.0001). 819 

 We specified the statistical models using flat priors, with each model consisting of four 820 

chains of 5,000 iterations, a burn-in period of 1,000 iterations per chain, and post-sampling 821 

thinning to every fourth iteration (nchain = 1,000 iterations; nmodel = 4,000 iterations). Model 822 

convergence was confirmed by consulting �̂� values (equal to 1 at convergence), as well as 823 

inspecting the posterior distributions of fitted values and caterpillar plots (Bürkner 2017). 824 

Estimates of the effect size of predictor variables were taken from the posterior distributions of 825 

the model parameters, with 95 percent credible intervals (C.I.) around the means (β) made based 826 
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on the 4,000 samples from each statistical model (Cumming and Finch 2005). Model fit was 827 

estimated using Bayesian 𝑅2 as the proportion of variance explained (Gelman et al. 2018). 828 

 

Summary of results in Fig. S4 829 

Simulations from our theoretical models produce clear evidence for an impact of sequential 830 

density dependence on the population vital rates: per capita reproduction and non-breeding 831 

survival. When breeding habitat was lost, per capita reproduction declined as habitat loss 832 

progressed. As a consequence, there was strong evidence for a positive relationship between 833 

breeding population abundance (i.e., the number of potential breeders) and per capita 834 

reproductive output (breeding habitat loss: 𝑅𝑟𝑏~𝑁𝑏

2 = 0.377, 95% C.I. = (0.344, 0.408)), such that 835 

as populations lost breeding habitat and the number of breeding individuals declined, per capita 836 

reproductive output also declined (Table S1). The strength of the relationship between breeding 837 

abundance and per capita reproduction increased (and so the intercept got smaller) with the rate 838 

of breeding habitat loss treatment (Table S1). By contrast, non-breeding habitat loss generated an 839 

increase in per capita reproduction as habitat loss progressed, since fewer potential breeders 840 

survived the previous non-breeding period. We found strong evidence for a negative relationship 841 

between per capita reproduction and breeding abundance for non-breeding habitat loss 842 

treatments (non-breeding habitat loss: 𝑅𝑟𝑏~𝑁𝑏

2 = 0.881, 95% C.I. = (0.875, 0.885)), such that as 843 

simulations lost non-breeding habitat and the number of potential breeders declined, per capita 844 

reproductive output increased (Table S1). The strength of the relationship between breeding 845 

abundance and per capita reproduction decreased (and so the intercept got smaller) with the rate 846 

of non-breeding habitat loss treatment (Table S1). 847 

 Non-breeding survival increased with breeding habitat loss treatments, since fewer 848 

offspring were produced by the preceding generation and so individuals experienced reduced 849 

density dependence in the non-breeding period. As a result, we found strong evidence for a 850 

negative relationship between non-breeding population abundance and non-breeding survival 851 

(breeding habitat loss: 𝑅𝑟𝑛𝑏~𝑁𝑛𝑏

2 = 0.726, 95% C.I. = (0.720, 0.732)), such that as breeding habitat 852 

loss progressed and so initial non-breeding abundance decreased, non-breeding survival 853 

increased (Table S2). With non-breeding habitat loss, non-breeding survival decreased as 854 

treatment progressed with relatively dampened changes in non-breeding population abundance 855 

until later generations, due to density-dependent reproduction. For non-breeding treatments, 856 
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there was a positive relationship between non-breeding abundance and non-breeding survival 857 

(non-breeding habitat loss: 𝑅𝑟𝑛𝑏~𝑁𝑛𝑏

2 = 0.210, 95% C.I. = (0.188, 0.234); Table S2), although this 858 

relationship was highly nonlinear. 859 
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Table S1. Effect size estimates from models of per capita reproduction. Two univariate linear 875 

mixed effects models were used to test the influence of breeding population abundance (Nb) on 876 

changes in per capita reproduction (rb). Separate statistical models were fitted for the results 877 

from simulations of the impacts of breeding and non-breeding habitat loss on the relationship 878 

between population vital rates (per capita reproduction; non-breeding survival) and the 879 

corresponding abundance measure (breeding; non-breeding) for models parameterized with 880 

empirical values from seasonal populations of Drosophila melanogaster (see Statistical 881 

analysis). Effect size estimates (β) and 95% credible intervals (C.I.) were taken from the 882 

posterior distribution of model parameters.   883 
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 Breeding habitat loss Non-breeding habitat loss 

Fixed effect 
Estimate  

(β) 

Lower  

95% C.I. 

Upper  

95% C.I. 

Estimate  

(β) 

Lower 

95% C.I. 

Upper 

95% CI 

(Intercept) 0.839 0.792 0.887 8.41 8.07 8.77 

Count 0.002 0.001 0.002 -0.037 -0.039 -0.036 

Treatment (B05) -0.132 -0.204 -0.059 0.234 -0.353 0.827 

Treatment (B10) -0.371 -0.451 -0.290 0.507 -0.081 1.08 

Treatment (B20) -0.549 -0.642 -0.453 -0.173 -0.744 0.399 

Treatment (B25) -0.673 -0.763 -0.582 0.234 -0.473 0.932 

Count:B05 3 x 10-4 -3 x 10-4 0.001 -3 x 10-4 -0.002 0.002 

Count:B10 0.001 0.001 0.002 -0.003 -0.005 -2 x 10-4 

Count:B20 0.002 0.001 0.003 -0.001 -0.003 0.002 

Count:B25 0.002 0.002 0.003 -1 x 10-4 -0.003 0.003 

Random effect 
Estimate  

(σ) 

Lower  

95% C.I. 

Upper  

95% C.I. 

Estimate  

(σ) 

Lower 

95% C.I. 

Upper 

95% CI 

sd(Intercept) 0.053 0.022 0.080 0.772 0.572 1.01 

sd(B05) 0.035 0.001 0.099 0.724 0.066 1.56 

sd(B10) 0.032 0.001 0.086 0.628 0.034 1.52 

sd(B20) 0.033 0.001 0.093 0.417 0.015 1.19 

sd(B25) 0.033 0.001 0.094 0.880 0.106 1.76 

Family-specific 
Estimate  

(σ) 

Lower  

95% C.I. 

Upper  

95% C.I. 

Estimate  

(σ) 

Lower 

95% C.I. 

Upper 

95% CI 

Sigma (σ) 0.322 0.310 0.334 1.16 1.12 1.21 

  884 
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Table S2. Effect size estimates from models of non-breeding survival. Two univariate linear 885 

mixed effects models were used to test the influence of non-breeding population abundance (Nnb) 886 

on changes in non-breeding survival (rnb). ). Separate statistical models were fitted for the results 887 

from simulations of the impacts of breeding and non-breeding habitat loss on the relationship 888 

between population vital rates (per capita reproduction; non-breeding survival) and the 889 

corresponding abundance measure (breeding; non-breeding) for models parameterized with 890 

empirical values from seasonal populations of Drosophila melanogaster (see Statistical 891 

analysis). Effect size estimates (β) and 95% credible intervals (C.I.) were taken from the 892 

posterior distribution of model parameters. To be interpreted on the scale of the input data 893 

(proportions; (0, 1)), estimates of the intercept for each rate of habitat loss must be back-894 

transformed from beta regression estimates using inverse-logit function: 𝑙𝑜𝑔𝑖𝑡−1(𝑛) =  𝑒𝑛/(1 +895 

𝑒𝑛) (Douma and Weedon 2019).  896 
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 Breeding habitat loss Non-breeding habitat loss 

Fixed effect 
Estimate  

(β) 

Lower  

95% C.I. 

Upper  

95% C.I. 

Estimate  

(β) 

Lower  

95% C.I. 

Upper  

95% C.I. 

(Intercept) 3.14 3.03 3.24 -1.84 -2.03 -1.64 

Count -0.008 -0.009 -0.008 0.006 0.005 0.007 

Treatment (B05) -0.010 -0.177 0.154 -0.146 -0.435 0.154 

Treatment (B10) -0.095 -0.285 0.092 -0.340 -0.691 -0.005 

Treatment (B20) -0.521 -0.723 -0.319 -0.494 -0.879 -0.128 

Treatment (B25) -0.020 -0.228 0.187 -0.287 -0.710 0.114 

Count:B05 0.001 -3 x 10-4 0.001 -1 x 10-4 -0.001 0.001 

Count:B10 0.001 -4 x 10-4 0.002 -3 x 10-4 -0.002 0.001 

Count:B20 0.003 0.001 0.004 -1 x 10-4 -0.002 0.002 

Count:B25 0.001 -4 x 10-4 0.002 -0.002 -0.004 -0.001 

Random effect 
Estimate  

(σ) 

Lower  

95% C.I. 

Upper  

95% C.I. 

Estimate  

(σ) 

Lower 

95% C.I. 

Upper 

95% CI 

sd(Intercept) 0.065 0.004 0.146 0.095 0.004 0.260 

sd(B05) 0.108 0.006 0.254 0.094 0.004 0.275 

sd(B10) 0.120 0.006 0.283 0.089 0.004 0.260 

sd(B20) 0.124 0.006 0.297 0.106 0.004 0.304 

sd(B25) 0.090 0.004 0.247 0.095 0.004 0.260 

Family-specific 
Estimate  

(φ) 

Lower  

95% C.I. 

Upper  

95% C.I. 

Estimate  

(φ) 

Lower 

95% C.I. 

Upper 

95% CI 

Phi (φ) 15.82 14.63 17.09 2.18 2.04 2.33 

 897 


