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Abstract 39 

Nearly all wild populations live in seasonal environments in which they experience regular 40 

fluctuations in environmental conditions that drive population dynamics. Recent empirical 41 

evidence from experimental populations of Drosophila suggests that demographic signals 42 

inherent in the counts of seasonal populations, including reproduction and survival, can indicate 43 

when in the annual cycle habitat loss occurred. However, it remains unclear whether these 44 

signatures of season-specific decline are detectable under a wider range of demographic 45 

conditions and rates of habitat loss. Here, we use a bi-seasonal Ricker model to examine season-46 

specific signals of population decline induced by different rates of habitat loss in the breeding or 47 

non-breeding season and different strengths of density dependence. Consistent with the findings 48 

in Drosophila, breeding habitat loss was accompanied by reduced reproductive output and a 49 

density-dependent increase in survival during the subsequent non-breeding period. Non-breeding 50 

habitat loss resulted in reduced non-breeding survival and a density-dependent increase in 51 

reproduction in the following breeding season. These season-specific demographic signals of 52 

decline were present under a wide range of habitat loss rates (2-25% per generation) and 53 

different density-dependent regimes (weak, moderate, and strong). We show that stronger 54 

density dependence can negatively influence time to extinction when non-breeding habitat is 55 

lost, whereas the strength of density dependence does not influence time to extinction with 56 

breeding habitat loss (although, in all cases, density dependence itself was an important 57 

modulator of population dynamics). Our results illustrate the need to incorporate seasonality in 58 

theoretical models to better understand when populations are being driven to decline. 59 

 

Keywords: bi-seasonal, breeding, carrying capacity, density dependence, extinction, non-60 

breeding, Ricker model, vital rates  61 
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Introduction 62 

Habitat loss and fragmentation due to human land-use, have been identified as the leading causes 63 

of decline in wild populations observed in recent decades (Pimm et al. 2014; Díaz et al. 2019; 64 

but see Fahrig 2003, 2019). Habitat deterioration is the primary risk to approximately 30 percent 65 

of threatened species and one of the major threats to 85 percent of all species identified on the 66 

IUCN’s Red List (World Wildlife Fund 2018; Intergovernmental Science-Policy Platform on 67 

Biodiversity and Ecosystem Services 2019). An understanding of not only what environmental 68 

factors are driving these populations to extinction, but also when and where these forces play out 69 

within the annual cycle, is imperative to global conservation efforts. Simple demographic models 70 

provide a theoretical underpinning to our understanding of the dynamics of natural systems, and 71 

represent an important tool in our arsenal for characterizing, managing, and conserving 72 

threatened populations (Beissinger and Westphal 1998; Gimona 1999; Norris 2004; García-Díaz 73 

et al. 2019). 74 

Climatic seasonality is a fundamental component of natural environments, driving the 75 

regular fluctuations in resource availability and quality to which most species and populations 76 

are subjected. And yet, early models of population growth, such as the logistic growth curve 77 

(Verhulst 1845; Pearl and Reed 1920) and the Ricker model (Ricker 1954) did not explicitly 78 

incorporate the potential for seasonal dependence, and the population dynamical implications of 79 

seasonality are generally underappreciated (White and Hastings 2020). Despite their simplicity, 80 

these models can still offer important insights into fundamental ecological processes that 81 

underpin the dynamics of a wide range of natural systems (Ricker 1963; Borlestean et al. 2015; 82 

Romero et al. 2017; Bolser et al. 2018). Although population models are still frequently framed 83 

around a stationary, or ‘aseasonal’, context (Ludwig 1996; Mueller and Joshi 2000; Lande et al. 84 

2003; Otso and Meerson 2010), explicit incorporation of the impacts of seasonality on 85 

population dynamics has proven fruitful (Skellam 1967; Fretwell 1972; Kot and Schaffer 1984; 86 

Sutherland 1996; Norris 2005; Liz 2017). 87 

Despite lacking explicit seasonality, the strength of simple population models like the 88 

logistic and Ricker models is that they capture the important role of density dependence in 89 

explaining fluctuations in abundance over time. Density-dependent mechanisms arise when the 90 

rate of population growth (or change) at any given time is, at least in part, contingent on the 91 

current population density (Hassell 1986). The strength of density dependence is expected to 92 
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modulate the effects of habitat loss and impact population responses to environmental change 93 

(Sutherland 1996; Agrawal et al. 2004; Norris 2005). Sequential density dependence, through 94 

which population abundance in one season influences population vital rates in the next (Norris 95 

2005; Ratikainen et al. 2007; Betini et al. 2013a), may affect the capacity for populations to 96 

respond to environmental change, and may also result in different system dynamics in those 97 

losing breeding or non-breeding habitat. While aseasonal models generally capture density 98 

dependence in population growth rate (r), seasonal models allow the decomposition of density-99 

dependent effects in the different periods (i.e., in a bi-seasonal model, we can now model two 100 

growth rates, rb in the breeding period and rnb in the non-breeding period). In a series of studies, 101 

Betini et al. (2013a, 2013b, 2014) demonstrated how density dependence acts to regulate 102 

seasonal population dynamics in an experimental population of Drosophila melanogaster with 103 

distinct breeding and non-breeding periods.  104 

In a recent experimental study, we investigated how seasonal changes in habitat 105 

availability influenced the dynamics of the same seasonal Drosophila populations, and found 106 

that populations losing breeding versus non-breeding habitat responded in the different ways 107 

(Burant et al. 2019). In the experiment, seasonality was induced by manipulating the quality food 108 

provided (Betini et al. 2013b) and chronic, season-specific habitat loss was imposed over 109 

multiple generations by systematically reducing the volume of food provide in one period while 110 

holding it constant in the other (Burant et al. 2021). The loss of breeding habitat resulted in a 111 

decline in per capita reproduction and, as a consequence of fewer individuals entering the 112 

subsequent non-breeding period, an increase in non-breeding survival via positive sequential 113 

density dependence. Conversely, loss of non-breeding habitat had the opposite effect: non-114 

breeding survival declined due to resource limitation, while per capita reproduction showed an 115 

increase in the subsequent breeding period via positive sequential density dependence (Burant et 116 

al. 2019). Moreover, we demonstrated that simple demographic and statistical signals derived 117 

from population counts and vital rates, including non-breeding survival, reproduction and other 118 

statistical indicators inherent in time series of population abundance, can be used to identify the 119 

season in which habitat loss occurred (Burant et al. 2019). However, the experiment only 120 

considered two different rates of breeding or non-breeding habitat loss (10% and 20% per 121 

generation) and was conducted under levels of breeding and non-breeding density dependence 122 

characteristic of a specific, laboratory-evolved strain of Drosophila. Thus, the extent to which 123 
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these empirical results are relevant for other populations under a broader range of strengths of 124 

density dependence and rates of habitat loss remains unclear.  125 

 In this study, we use a bi-seasonal Ricker model (Betini et al. 2013a) to explore how 126 

different rates of habitat loss in either the breeding or non-breeding period and the strength 127 

density dependence influence the production of simple, season-specific signals of population 128 

decline and time to extinction in silico. The original (aseasonal) Ricker model was developed in 129 

the context of fisheries harvesting (Ricker 1954) and has since been extended for application in a 130 

variety of contexts, modelling the population dynamics for a broad range of taxa, including 131 

fishes (e.g., Myers et al. 1999), crustaceans (e.g., Twombly et al. 2007), and insects (e.g., Dey 132 

and Joshi 2006; Estay et al. 2009). Here, we incorporate the effects of season-specific habitat 133 

loss on carrying capacity and growth in each period of the bi-seasonal model, and use 134 

simulations to explore how habitat loss operates under a range of initial parameter values, 135 

strengths of density dependence, and rates of seasonal habitat loss. We derive season-specific 136 

vital rates (survival and reproduction) to look at sequential density-dependence between periods 137 

of breeding and non-breeding (Betini et al. 2013a), rather than density dependence in population 138 

growth between generations.  139 

Given the discrete nature of our model, with breeding and non-breeding conditions 140 

modelled as two separate equations and resource pools (habitats), we expect that this model may 141 

be particularly relevant for migratory species (e.g., migratory birds) that occupy distinct breeding 142 

and non-breeding habitats. For example, our model captures the plausible scenario in which a 143 

population experiences habitat loss (or another environmental forcing) on the breeding grounds, 144 

while the non-breeding sites remain relatively stable (or vice versa). However, even in resident 145 

species that occupy the same habitat throughout the year, populations may experience 146 

differential changes in resource availability and quality during periods of breeding and non-147 

breeding, which may impact their overall dynamics in a similar way. Thus, the model we present 148 

and others that explicitly incorporate seasonality (White and Hastings 2020) have a broad scope 149 

of application.  150 
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Methods 151 

Bi-seasonal Ricker model with season-specific habitat loss 152 

The Ricker model (eq. 1) was first introduced by W.E. Ricker (1954) in the context of fisheries 153 

management, following his observation that the convex relationship between net reproduction 154 

and population density resulted in oscillations in population abundance. Since then, the Ricker 155 

model has become one of the classical theoretic models to describe density-dependent dynamics 156 

in populations with discrete time intervals (Fretwell 1972; Kot and Schaffer 1984; Turchin 2003; 157 

Geritz and Kisdi 2004; Wysham and Hastings 2008). The Ricker model can be expressed as: 158 

 
𝑁(𝑡+1) =  𝑁(𝑡)𝑒

𝑟(1−
𝑁(𝑡)

𝐾
)
 

(eq. 1) 

where N represents the number of individuals in the population at a given time t, r is the intrinsic 159 

growth rate (‘Malthusian parameter’; Fisher 1930), and K indicates a population’s carrying 160 

capacity (Pearl and Reed 1920). The simple Ricker model has been used previously to model the 161 

population dynamics of Drosophila (Mueller and Joshi 2000; Dey and Joshi 2006). This 162 

aseasonal model results in stable population cycles for a range of r and K, which can be either 163 

arbitrary or empirically defined, but generates chaotic dynamics when r is large (r > ~2.7; May 164 

and Oster 1976; May 1987). Griffen and Drake (2008) showed that reductions in habitat quality 165 

produced reductions in both r and K, as modelled for experimental populations of the water flea 166 

Daphnia magna.  167 

 To investigate the dynamics of D. melanogaster with distinct breeding and non-breeding 168 

periods, Betini et al. (2013a) extended the Ricker model to include season-specific parameters 169 

for population growth and carry capacity. For this ‘seasonal’ Ricker model, temporal changes in 170 

breeding (Nb) and non-breeding (Nnb) population abundance can be modelled using a set of two 171 

interacting equations (eq. 2.1, 2.2). For each generation, population size at the beginning of the 172 

non-breeding period (i.e., the number of offspring produced; maximum population size in a 173 

given generation) can be written as the difference equation: 174 

 
𝑁𝑛𝑏(𝑡+1) =  𝑁𝑏(𝑡)𝑒

𝑟𝑏(1−
𝑁𝑏(𝑡)

𝐾𝑏
)
 

(eq. 2.1) 

where rb and Kb are the maximum growth rate (reproduction) and carrying capacity for the 175 

breeding period, b, respectively. In this way, nonbreeding, nb, population size (Nnb) is a product 176 

of the number of breeders (Nb) and density-dependent interactions between them (Betini et al. 177 
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2013a, 2013b). Population size at the beginning of the breeding period (i.e., the number of 178 

potentially breeding adults that survived the previous non-breeding period) can be described as: 179 

 
𝑁𝑏(𝑡+1) =  𝑁𝑛𝑏(𝑡+1)𝑒

𝑟𝑛𝑏(1−
𝑁𝑛𝑏(𝑡+1)

𝐾𝑛𝑏
)
 

(eq. 2.2) 

where rnb and Knb are the maximum growth rate (mortality) and carrying capacity for the non-180 

breeding period, respectively. 181 

 In this study, we were interested in modelling the impacts of chronic, season-specific 182 

habitat loss on the predicted changes in breeding and non-breeding population size under a range 183 

of conditions. In a previous experiment (Burant et al. 2019), we systemically reduced the amount 184 

of food provided to replicate populations of Drosophila in either the breeding or non-breeding 185 

period over multiple generations, until the populations went extinct. In our experiment, and in 186 

the theoretical model presented here, season-specific habitat loss followed an exponential decay, 187 

with the proportion of food provisioned in the season of habitat loss in a particular generation 188 

H(t) prescribed as:  189 

 𝐻(𝑡) = (1 − 𝑣)𝑡 (eq. 3) 

𝑤here 𝑣 is the rate of habitat loss and t is the number of generations since habitat loss treatment 190 

commenced. 191 

In an attempt to replicate the experimental reductions in habitat, we represented habitat 192 

loss by altering season-specific r and K parameters. Given that both population growth rate and 193 

carrying capacity have been shown to be dependent on the quantity of food provisioned (Griffen 194 

and Drake 2008), we scaled both parameter values proportionally with the rate of habitat loss. 195 

For populations losing breeding habitat, our model assumed that both rb and Kb would decrease 196 

proportionally with the rate of habitat loss (eq. 4.1), such that the total number of offspring 197 

produced by the previous generation Nnb(t+1) would also decrease. Changes in population growth 198 

rates and carrying capacities with breeding habitat loss can be summarized as: 199 

 𝐾𝑏(𝑡) = 𝐾𝑏
∗𝐻𝑏(𝑡) 

𝑟𝑏(𝑡) = 𝑟𝑏
∗ − 𝑟𝑏

∗(1 − 𝐻𝑏(𝑡)) = 𝑟𝑏
∗𝐻𝑏(𝑡) 

𝐾𝑛𝑏(𝑡) = 𝐾𝑛𝑏
∗  

(eq. 4.1) 
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𝑟𝑛𝑏(𝑡) = 𝑟𝑛𝑏
∗  

where Kb
* and rb

* are the estimated carrying capacity and intrinsic growth rate during the 200 

breeding period under control (no habitat loss) conditions, respectively, Knb
* and rnb

* are the 201 

corresponding non-breeding values, and Hb(t) is the proportion of breeding habitat remaining. 202 

For populations losing non-breeding habitat, we expected the opposite effects on season-203 

specific growth rates and carrying capacities. We predicted that Knb would decrease 204 

proportionally to the rate of habitat loss and rnb would become more negative (increasing 205 

mortality) as the proportion of habitat remaining continued to decline (eq. 4.2). Changes in 206 

population growth rates and carrying capacities with non-breeding habitat loss can be 207 

summarized as: 208 

 𝐾𝑏(𝑡) = 𝐾𝑏
∗ 

𝑟𝑏(𝑡) = 𝑟𝑏
∗ 

𝐾𝑛𝑏(𝑡) = 𝐾𝑛𝑏
∗ 𝐻𝑛𝑏(𝑡) 

𝑟𝑛𝑏(𝑡) = 𝑟𝑛𝑏
∗ − |𝑟𝑛𝑏

∗ |(1 − 𝐻𝑛𝑏(𝑡)) 

(eq. 4.2) 

where Hnb(t) is the proportion of non-breeding habitat remaining. Scaling the season-specific 209 

growth rates and carrying capacities in this way had the effect of holding the strength of density 210 

dependence (see below) constant in the season of habitat loss. 211 

 

Model simulations 212 

To explore the dynamics of our bi-seasonal Ricker model with season-specific habitat loss, we 213 

first parameterized the model using estimates derived from a set of input-output experiments in 214 

seasonal populations of Drosophila (Betini et al. 2013a). In these trials, populations of breeding 215 

and non-breeding fruit flies were initiated at a range of densities, and their subsequent 216 

reproductive output (breeding) and survival (non-breeding) were measured. The experimental 217 

density dependence reference parameters from Betini et al. (2013a) were: rb = 2.24, αb = 9.86 x 218 

10-3, rnb = -0.0568, and αnb = 6.72 x 10-4, where α describes the strength of density dependence in 219 

an alternative form of the Ricker model and can be calculated as αi = ri / Ki (see Supplementary 220 

Information for results of model parameterization with empirical values; Fig. S3). 221 
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 To investigate how the strength of density dependence influenced the trajectories of 222 

populations and the production of seasonal signals of decline, we further explored three other 223 

parameterizations in which the strength of density dependence was manipulated by changing the 224 

value of r (in the same direction) in both seasons: (1) weak density dependence (rb = 1.3, rnb = -225 

0.033); moderate density dependence (rb = 2, rnb = -0.051); strong density dependence (rb = 2.65, 226 

rnb = -0.069). These values of rb are selected somewhat arbitrarily to sample the range of the non-227 

zero equilibrium, non-chaotic phase of the Ricker model (r < 1 results in populations shrinking 228 

to zero; chaotic dynamics set in at r ≈ 2.7). The corresponding rnb values are matched based on 229 

the ratio of the experimentally-derived parameters (e.g., rnb(moderate) = rnb(experimental) x 2 / 2.24). 230 

This manipulation of r is consistent with previous experimental work, which has shown that, 231 

intuitively, maximum growth rates may be useful as a predictor of the strength of density 232 

dependence in systems that conform to the monotonic definition of density dependence inherent 233 

in most simple population models (Agrawal et al. 2004). Because carrying capacity is largely a 234 

function of the volume of food provided (e.g., Griffen and Blake 2018; Burant et al. 2020), and 235 

not the strength of density dependence, the season-specific carrying capacities (Kb = 227, Knb = -236 

84.5) were the same for all three theoretical scenarios and the initial empirical parameterization. 237 

 To simulate some degree of variability in the baseline parameters, which should be 238 

expected for real world replicate populations, we treated these parameters as normal distributions 239 

N(μ, σ2) from which the initial values Kb
*, rb

*, Knb
*, and rnb

* could be sampled. For the season-240 

specific carrying capacities, the standard deviation of Ki was set as √|𝐾𝑖|. Since the square-root 241 

of a value < 1 is larger than the initial value, the standard deviation for the season-specific 242 

growth rates ri was set as ri /10. 243 

 We simulated a range of rates of season-specific habitat loss, with populations losing 244 

habitat at a rate of 2%, 5%, 10%, 20%, or 25% per generation in either the breeding or the non-245 

breeding period. We also included control simulations, in which habitat availability was constant 246 

in both seasons. As with our experiment, which included 10% and 20% rates of habitat loss 247 

(Burant et al. 2019), replicate simulations were initiated with a non-breeding population size of 248 

20 individuals. We simulated 20 generations of ‘pre-treatment’ population growth in which the 249 

proportion of habitat provisioned in the treatment period remained at 100%. Starting in 250 

generation 21, the simulated proportion of habitat provisioned in the treatment period 251 
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corresponded to the rate of loss following eq. 3. We ran each model simulation for 50 252 

generations (including the pre-treatment period), or until the population went extinct. 253 

 For each strength of density dependence scenario, we performed 1,000 model simulations 254 

for different rate of loss and season of loss combinations (e.g., 2% breeding, 2% non-breeding, 255 

5% breeding, etc.), with 10 rate-by-season treatment combinations plus controls. In order to 256 

avoid overfitting our statistical models (see Supplementary Information), and to introduce an 257 

additional degree of randomness in the initial parameter values that were used to specify each 258 

run, we randomly sampled 25 of the 1,000 simulations for each treatment for analysis. 259 

From each replicate, we derived time series of the following metrics: (1) breeding 260 

abundance (i.e., the number of potential breeders, the number of individuals at the end of the 261 

non-breeding period); (2) non-breeding abundance (i.e., the number of offspring produced, the 262 

number of individuals at the start of the non-breeding period); (3) per capita reproduction (i.e., 263 

the relative change in abundance between the beginning and end of the breeding period, non-264 

breeding abundance / breeding abundance); and (4) non-breeding survival (i.e., the relative 265 

change in abundance between the beginning and end of the non-breeding period, breeding 266 

abundance / non-breeding abundance). Time to extinction was calculated as the number of 267 

generations from the initiation of habitat loss (i.e., generation – 20) until abundance ≤ 2 268 

individuals in the breeding period. 269 

 

Relative strength of density dependence 270 

To explore the density-dependent nature of time to extinction that we identified in our model 271 

simulations of non-breeding habitat loss, we systemically varied the strength of density 272 

dependence in either the breeding and non-breeding period independently while holding density 273 

dependence constant (moderate) in the other season. As with all parameterizations, the relative 274 

strength of density dependence was always higher in the breeding period (αweak = 5.73 x 10-3, 275 

αmoderate = 8.81 x 10-3, αstrong = 1.17 x 10-2) than that in non-breeding period (αweak = 3.91 x 10-4, 276 

αmoderate = 6.00 x 10-4, αstrong = 8.11 x 10-4; see Model simulations). Extinction time was 277 

determined by performing a single iteration of the non-breeding habitat loss model with each 278 

combination of breeding and non-breeding strengths of density dependence. 279 
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The theoretical model was constructed in the R statistical environment (v. 4.0.2; R Core Team 280 

2020). The code and data used in these analyses have been made publicly available (Burant and 281 

Norris 2022). 282 

 

Results 283 

Bi-seasonal population dynamics with habitat loss 284 

Simulations of a bi-seasonal Ricker model with season-specific habitat loss (see Model 285 

simulations in Methods) produced two counts in each generation (breeding abundance and non-286 

breeding abundance), with distinct dynamics that varied with the season and rate of habitat loss 287 

(Fig. 1). In the initial pre-treatment generations, during which all replicate populations were 288 

allowed to grow from an initial non-breeding population size of 20 individuals, all treatment 289 

scenarios showed a rapid increase towards carrying capacity and stable seasonal oscillations in 290 

the generations preceding the introduction of treatment. For control replicates, in which habitat 291 

availability remained constant in both the breeding and non-breeding period, population 292 

abundances in both seasons were stable throughout the treatment period. Control breeding 293 

abundance was largely similar across the different strengths of density dependence (mean 294 

breeding abundance: weak DD = 206 ± 2.48 (mean ± SE); moderate DD = 200 ± 3.89; strong 295 

DD = 199 ± 2.51; Fig 1a, d, g; Fig. S1). In contrast, control non-breeding abundance increased 296 

with the strength of density dependence (mean non-breeding abundance: weak DD = 233 ± 3.20; 297 

moderate DD = 247 ± 5.54; strong DD = 276 ± 26.5; Fig. 1a, d, g; Fig. S2). Between-season 298 

variability in abundances increased with stronger density dependence (Fig. 1). 299 

With reductions in breeding habitat, there were similar patterns of decline in both 300 

breeding and non-breeding abundance, with declines in both seasons beginning within 1-2 301 

generations of the onset of treatment (Fig. 1b, e, h; Fig. S1; Fig. S2). In contrast, when non-302 

breeding habitat was lost, breeding and non-breeding population abundance appeared to diverge 303 

in simulations (Fig. 1c, f, i; Fig. S1; Fig. S2). Breeding population abundance declined steadily 304 

as non-breeding habitat was lost, whereas non-breeding population abundance remained 305 

relatively stable for several generations before declining rapidly. At lower rates of non-breeding 306 

habitat loss (2% and 5% per generation), non-breeding abundance actually increased slightly for 307 

several generations preceding the rapid decline (Fig. 1b, e, h; Fig. S2). The transition from high, 308 

stable non-breeding abundance to rapid decline occurs around generation 21, 16, 14, 12, and 11 309 
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for non-breeding habitat loss treatments of 2%, 5%, 10%, 20%, and 25% habitat loss per 310 

generation (Fig. S3). 311 

 

Response of vital rates to season-specific habitat loss 312 

As expected, breeding and non-breeding habitat loss generated distinct changes in population 313 

vital rates (Fig. 2; Fig. 3; Supplementary Information). For control replicates, per capita 314 

reproduction declined rapidly as populations grew towards carrying capacity in the pre-treatment 315 

period, and remained stable during the treatment generations (mean per capita reproduction = 316 

1.13 ± 0.004, 1.28 ± 0.04, and 2.07 ± 0.40 offspring/breeder with weak, moderate, and strong 317 

density dependence, respectively; Fig. 2a, d, g). When breeding habitat was lost, per capita 318 

reproduction dropped and remained below one (i.e., the replacement value) as the amount of 319 

breeding habitat available in each generation continued to decline. Per capita reproduction 320 

shifted from being relatively stable in the generations preceding population collapse to zero 321 

within a single generation (Fig. 2b, e, h). In contrast, non-breeding habitat loss generated a 322 

steady increase in per capita reproduction, with values exceeding those observed for control 323 

simulations, as one might expect given the assumed pattern of compensatory density dependence 324 

(Fig. 2c, f, i). As the rate of non-breeding habitat loss increased, the relative increase in per 325 

capita reproduction decreased, likely as a result of reduced time available for simulations to 326 

respond to shifting conditions. 327 

Non-breeding survival remained relatively high throughout the treatment period for control 328 

simulations (mean non-breeding survival = 88.4 ± 0.003%, 79.1 ± 0.006%, and 75.7 ± 0.02% for 329 

weak, moderate, and strong density dependence, respectively), and was as high as 100% in the 330 

initial generations of the pre-treatment period (Fig. 3a, d, g). When breeding habitat was lost, the 331 

proportion of individuals that survived the non-breeding period increased to one as the number of 332 

individuals entering the non-breeding period decreased (Fig. 3b, e, h). With non-breeding habitat 333 

loss, non-breeding survival decreased proportionally with the rate of habitat loss (Fig. 3c, f, i). 334 

Interestingly, all non-breeding habitat loss simulations reached a plateau around 20-25% non-335 

breeding survival in later generations (i.e., when the volume of non-breeding habitat provisioned 336 

was low), with non-breeding survival actually increasing in the generation preceding population 337 

collapse, before declining to zero as the populations went extinct. This result may provide some 338 
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evidence for an Allee effect on survival with non-breeding habitat loss, likely because relatively 339 

few offspring are produced by breeders at very low densities. 340 

 

Time to extinction  341 

Season-specific habitat loss resulted in rapid changes in bi-seasonal population dynamics, with 342 

breeding and non-breeding habitat loss generating different patterns of population decline and 343 

timing of population collapse (Fig. 1b, c, e, f, h, i). As expected, the pace at which populations 344 

declined towards extinction increased with the rate of habitat loss. However, there was a notable 345 

difference between simulations of breeding and non-breeding habitat loss in the effect of the 346 

strength of density dependence on the timing of population collapse (Fig. 4). When breeding 347 

habitat was lost, the timing of population collapse appeared to be almost entirely dependent on 348 

the rate of habitat loss, with relatively little impact of the strength of density dependence 349 

imposed on the population (Fig. 4a). With breeding habitat loss, all replicate populations went 350 

extinct within 19, 11, 7, 4, and 3 generations with the onset of habitat loss treatments of 2%, 5%, 351 

10%, 20%, and 25% loss per generation, respectively. In contrast, when non-breeding habitat 352 

was lost, the time to extinction was negatively related to the strength of density dependence (Fig. 353 

4b), such that populations subjected to weak density dependence collapsed later than those 354 

subjected to strong density dependence. Across all scenarios, populations losing non-breeding 355 

habitat went extinct earlier than those losing breeding habitat (Fig. 1; Fig. 4; Fig. S3). 356 

Because we varied the strength of density dependence simultaneously in both seasons, we 357 

were also interested in examining whether season-specific variation in density dependence could 358 

be driving the negative relationship between density dependence and time to extinction when 359 

non-breeding habitat was lost. To do this, for the non-breeding habitat loss scenarios, we varied 360 

the strength of density dependence in one period while holding the other at a moderate level, and 361 

then examined the time to extinction. When the strength of non-breeding density dependence 362 

was held at a moderate level and non-breeding habitat was lost, stronger breeding density 363 

dependence resulted in earlier population extinction (Fig. 5a), similar to the results reported 364 

above. In contrast, when breeding density dependence was held at a moderate level and non-365 

breeding habitat was lost, variation in the strength of non-breeding density dependence had no 366 

impact on the timing of population collapse (Fig. 5b). 367 
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Discussion 368 

We were interested in exploring whether season-specific signals of population decline observed 369 

in earlier experiments on seasonal populations of Drosophila (Burant et al. 2019) arise under a 370 

wider range of demographic conditions and rates of habitat loss. Several broad similarities in the 371 

overall patterns of decline from our experiment and theoretical model suggest that the latter does 372 

a reasonable job of approximating the former. First, while mean extinction times estimated from 373 

the model (see Bi-seasonal population dynamics with habitat loss in Results) were earlier than 374 

experimentally-induced collapses (average times to extinction with 10% and 20% habitat loss per 375 

generation were 14 and 7 generations for breeding treatments, and 14 and 8 generations for non-376 

breeding treatments; Burant et al. 2019), the relative order in extinction of populations losing 377 

breeding and non-breeding habitat was consistent with experimental observations. Likewise, in 378 

both the experiment and the model presented here, non-breeding habitat loss produced large 379 

fluctuations between breeding and non-breeding population abundance (as a result of density-380 

dependent reproduction), while breeding habitat loss resulted in consistent, directional decline 381 

(compare Fig. 1 herein with Figure 2 in Burant et al. (2019)). While seasonality has been 382 

explicitly incorporated in other theoretical approaches (reviewed in White and Hastings 2020), 383 

and the consequences of season-specific forcing for population dynamics have also been 384 

explored (e.g., Norris 2005), here we further show how season-specific vital rates can serve to 385 

indicate the season of decline. 386 

 Our theoretical results demonstrate the important role that the strength of density 387 

dependence plays in determining how populations decline with seasonal habitat loss. Based on 388 

our simulations, the timing of population collapse with habitat deterioration during the breeding 389 

period was almost entirely dependent on the rate at which habitat was lost, with no impact of 390 

changes in the strength of density dependence. In contrast, strong density dependence amplified 391 

the impacts of non-breeding habitat loss, such that increased density dependence resulted in 392 

steeper population declines and earlier extinctions. The difference in the influence of density 393 

dependence with season-specific habitat loss is consistent with our predictions, and is ultimately 394 

a reflection of differences in the capacity of populations to respond to habitat loss in either the 395 

breeding or non-breeding period. With non-breeding habitat loss, populations may experience a 396 

'seasonal compensation effect’ (Norris 2005) that results in increased reproduction in the 397 

subsequent breeding period. A similar compensatory effect should not necessarily be expected 398 
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with breeding habitat loss, since, by definition, populations cannot grow during the subsequent 399 

non-breeding period. Moreover, any seasonal compensation effect with breeding habitat loss is 400 

constrained by ceiling effects, since the proportion of individuals that survive the non-breeding 401 

period cannot exceed 100 percent. This conclusion was supported by an exploratory analysis in 402 

which we manipulated the strength of density dependence separately in each period, which 403 

showed that changing non-breeding density dependence did not affect time to extinction when 404 

breeding density dependence was moderate.  405 

 Inspection of the breeding and non-breeding population abundance time series revealed a 406 

number of important differences between our theoretical and experimental results (see 407 

Supplementary Information). First, while the relative (but not absolute) timing of collapse was 408 

consistent between the experiment and model (see above), the way in which these declines 409 

unfolded differed. Although experimental populations did not appear to respond immediately to 410 

breeding habitat loss, with population size remaining relatively stable for several generations 411 

before declining precipitously (largely due to stable breeding abundances resulting from the 412 

strong filter of the non-breeding period; Burant et al. 2019), our theoretical model generated 413 

steady declines in abundance in both seasons with the onset of breeding habitat loss. Non-414 

breeding habitat loss had similar effects on seasonal abundances, with delayed declines in non-415 

breeding population size relative to breeding (as a result of density-dependent reproduction; 416 

Burant et al. 2019). Despite the fact that the control conditions in the experimental seasonal 417 

Drosophila system were empirically derived (G.S. Betini and D.R.N., unpublished data), it is 418 

possible that initial breeding food availability in our experiments was in excess of what was 419 

required to maintain stable bi-seasonal dynamics. This could have resulted in a delayed 420 

population response to reductions in breeding habitat. Moreover, carrying capacity in either 421 

season is not solely a function of the volume of food provided, since there is only so much space 422 

the flies can occupy in a closed system, and so there is the potential for overcrowding (rather 423 

than absolute food availability) to limit food access and ultimately affect differences in survival 424 

and reproduction (Burant et al. 2020; Kilgour et al. 2020). The potential for overcrowding was 425 

not accounted for in our theoretical model, and so changes in carrying capacity were assumed to 426 

be simply a function of food availability (see Methods). As a consequence of these intricacies, 427 

relative to our experiment (Burant et al. 2019), the simple theoretical model generally 428 
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underestimated breeding and non-breeding population abundance with breeding habitat loss, and 429 

overestimated breeding abundance when non-breeding habitat was lost. 430 

 We noted that, for non-breeding habitat loss simulations, non-breeding survival appeared 431 

to temporarily plateau in later generations when little non-breeding habitat remains and, in some 432 

instances, briefly increased in the generation preceding extinction (Fig. 3c, f, i). While not 433 

specifically encoded in the model, this is reminiscent of an Allee effect (Allee 1927; Stephens et 434 

al. 1999) in which population growth is limited at low breeding densities. In essence, low non-435 

breeding habitat availability means only a few individuals survive to the next breeding period 436 

and, as a result, reproductive output and population growth are reduced due to low densities. In 437 

turn, only a few individuals enter the subsequent non-breeding period, where habitat availability 438 

continues to decline. Thus, non-breeding densities may be better matched to habitat availability 439 

than in previous generations when non-breeding survival declined rapidly due to the breeding 440 

season density-dependent, rebound-induced mismatch between the number of individuals 441 

entering the non-breeding period and the declining habitat availability. This plateau means 442 

populations persist longer than might otherwise be anticipated based on the steep decline in non-443 

breeding survival observed at earlier timepoints. Why this arises in our model is not necessarily 444 

intuitive, but is possibly a product of the interplay between the density-dependent rb (stable) and 445 

rnb (increasingly negative). Allee effects have been explicitly incorporated in other modifications 446 

of the Ricker model (Elaydi and Sacker 2009), including the periodic Ricker map (Sacker 2006). 447 

 There are several other potential explanations for discrepancies between our previous 448 

observational results and theoretical outcomes. Betini et al. (2013a) showed that sequential 449 

density dependence and carry-over effects between seasons can influence reproductive output 450 

and regulate population abundance. However, fluctuations in population density and food 451 

availability between seasons are also expected to influence other aspects of individual and 452 

population performance, which may help to buffer populations against deteriorating 453 

environmental conditions. For example, reproductive output is known to be influenced by 454 

individual body condition, such that individuals who enter the breeding period in poor condition 455 

produce fewer offspring (Betini et al. 2014), and non-breeding food availability carries over to 456 

indirectly influence reproductive performance (Burant et al. 2020). These phenotypic traits, and 457 

their changes in response to seasonal variation, effectively link environmental conditions in one 458 

season with individual performance in the next (O’Connor et al. 2014). Similarly, interactions 459 
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among individuals in a population can be density-mediated, with individual behavioural 460 

expression modulated by social context (Sokolowski et al. 1997; Kilgour et al. 2018; 461 

Leatherbury and Travis 2019). Importantly, the impacts of density-dependent changes on 462 

population growth and individual traits are not necessarily immediately observable (Ratikainen 463 

et al. 2007). These are but a few examples of the mechanisms through which individuals and 464 

populations can respond to changing environmental conditions (Colchero et al. 2018). Although 465 

the purpose of simple population models is not necessarily to reproduce all possible mechanisms 466 

of change, discrepancies between our theoretical and empirical results demonstrate the 467 

importance of carry-over effects and other non-abundance traits that are expected to shift as the 468 

environment deteriorates. Indeed, recent theoretical work has demonstrated the importance of 469 

considering the impacts of seasonal carry-over effects on individual performance and, ultimately, 470 

how these effects scale up to influence population vital rates (e.g., Liz and Ruiz-Herrera 2016). 471 

Failure to fully consider carry-over effects is likely to limit our understanding of the dynamics of 472 

declining populations, and so also limit efforts to conserve them (O’Connor and Cooke 2015). 473 

 The present model is not the first to consider how seasonality shapes the dynamics of 474 

animal populations. Fretwell (1972) expounded at length about the various ways regularly 475 

varying environments influences individual reproduction and survival and, ultimately, population 476 

persistence. Others have considered the more general case of resource variability across different 477 

temporal scales (e.g., Hastings 2014). In its original formulation, the bi-seasonal Ricker model 478 

from Betini et al. (2013a) was important for demonstrating how explicit incorporation of density-479 

mediated carry-over effects better captures long-term vital rate dynamics and population 480 

stability. The interplay between seasonality and stability was also explored by Kot and Schaffer 481 

(1984), who showed theoretically how moderate seasonality may stabilize populations in 482 

productive environments. Consistent with our findings, Kot and Schaffer (1984) also showed 483 

how increasing ‘imbalance’ between breeding and non-breeding seasons periods can have 484 

contrasting effects. Sutherland (1996) more explicitly considered the effects of season-specific 485 

habitat loss on the dynamics of migratory populations, and similarly found differential effects of 486 

breeding and non-breeding habitat loss. Although time to extinction was not directly evaluated, 487 

Sutherland (1996) showed that, compared to breeding habitat loss, the same amount of non-488 

breeding habitat loss had more than twice the effect in terms of percent population decline. This 489 

is consistent with our finding that populations losing non-breeding habitat go extinct earlier than 490 
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those losing breeding habitat. Our analysis complements these previous studies by showing how 491 

sequential density-dependent effects can modulate patterns of population decline and time to 492 

extinction with chronic, season-specific forcing. By simulating habitat deterioration in one 493 

season and holding it fixed in the other, we begin to explore how seasonal populations may be 494 

temporarily buffered against decline through density-dependent survival and reproduction. In 495 

addition, while we implement a seasonal formulation of the Ricker model, many other simple 496 

demographic models exist and predictions from these models may differ from those presented 497 

here. Previous comparison of the utility of different aseasonal models for predicting extinction in 498 

a community context has shown that the strong density dependence inherent in the Ricker model 499 

best matched results from simple microcosms (Ferguson and Ponciano 2013). Finally, although 500 

we randomly sampled the initial values of r and K for the iterations of each scenario, our model 501 

is strictly deterministic in that is does not incorporate a “noise” or error term, which may have 502 

implications for the interpretation of the results. Indeed, previous work has shown that 503 

incorporating demographic stochasticity can affect the reliability of extinction risk predictions 504 

drawn from simple demographic models (e.g., Drake 2005). 505 

 Along with understanding the demographic mechanisms underlying patterns of 506 

population decline, it is relevant to consider whether the predictability of collapse differs 507 

between populations losing breeding and non-breeding habitat. In our chronic habitat loss 508 

experiment, we showed that whether a set of indicators derived from time series of population 509 

abundance (e.g., coefficient of variation, lag-1 autocorrelation) and fitness-related traits (e.g., 510 

body size, activity) served as early warning indicators of population collapse was dependent on 511 

the season of habitat loss (Burant et al. 2021). Moreover, in a similar theoretical approach to the 512 

one presented here, Bury (2020) showed that the nature of early warning signal production 513 

differed between simulations of breeding and non-breeding habitat degradation. This theoretical 514 

work also suggests the potential for using early warning indicators to identify the season in 515 

which populations are being driving to decline, which we also previously demonstrated in our 516 

experimental system (Burant et al. 2019). These results suggest that simple demographic vital 517 

rates like survival and reproduction, as well as early warning indicators, may be useful for 518 

detecting and predicting season-specific drivers of population decline across a wide range of 519 

density-dependent systems. 520 
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In summary, the results from our theoretical model of the impacts of season-specific 521 

habitat loss on population dynamics through changes in growth and carrying capacity bolster our 522 

understanding of how populations decline in seasonal environments. By comparing our 523 

theoretical simulations to results from an earlier chronic habitat loss experiment, we are able to 524 

identify some of the ways in which simple population models can elegantly capture real-world 525 

phenomena. Along with experiments and observational studies, theoretical models represent an 526 

important tool, not only for understanding how the natural world works but particularly for 527 

efforts aimed at conserving threatened species in an era of rapid environmental change.528 
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Figure Captions 710 

Figure 1. Population dynamics generated from a bi-seasonal Ricker model with season-specific 711 

habitat loss. Each generation is comprised of two counts: non-breeding population abundance 712 

(i.e., the number of individuals at the start of the non-breeding period; peaks), and breeding 713 

population abundance (i.e., the number of potential breeders at the start of the breeding period; 714 

troughs). The bi-seasonal time series includes two time-steps per generation. Replicate 715 

populations were simulated under control (no habitat loss conditions) for 20 generations while 716 

they grew toward carrying capacity (shaded grey region). In subsequent generations, season-717 

specific habitat loss was simulated at 0% (control; a, d, g), 2%, 5%, 10%, 20%, or 25% per 718 

generation in either the breeding (b, e, h) or non-breeding period (c, f, i), under three different 719 

density dependence scenarios. (See Model simulations in Methods.) Sample size = 25 replicates 720 

per treatment. 721 

 

Figure 2. Response of per capita reproduction to season-specific habitat loss with varying 722 

strengths of density dependence. In each generation, per capita reproduction was calculated as 723 

the number of offspring divided by the number of breeders. All replicates were simulated under 724 

control (no habitat loss conditions) for 20 generations while they grew toward carrying capacity 725 

(shaded grey region). In subsequent generations, season-specific habitat loss was simulated at 726 

0% (control; a, d, g), 2%, 5%, 10%, 20%, or 25% per generation in either the breeding (b, e, h) 727 

or non-breeding period (c, f, i), under three different density dependence scenarios. (See Model 728 

simulations in Methods.) Sample size = 25 simulations per treatment. 729 

 

Figure 3. Response of non-breeding survival to season-specific habitat with varying strengths of 730 

density dependence.  In each generation, non-breeding survival was calculated as the number of 731 

individuals at the end of the non-breeding period divided by the number initial non-breeding 732 

abundance (i.e., the proportion of individuals who survived through the non-breeding period). 733 

All replicates were simulated under control (no habitat loss conditions) for 20 generations while 734 

they grew toward carrying capacity (shaded grey region). In subsequent generations, season-735 

specific habitat loss was simulated at 0% (control; a, d, g), 2%, 5%, 10%, 20%, or 25% per 736 

generation in either the breeding (b, e, h) or non-breeding period (c, f, i), under three different 737 
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density dependence scenarios. (See Model simulations in Methods.) Sample size = 25 738 

simulations per treatment. 739 

 

Figure 4. Rate of habitat loss, strength of density dependence, and the timing of population 740 

collapse with season-specific habitat loss. To explore how the strength of density dependence 741 

influences the timing of population collapse, we parameterized our bi-seasonal Ricker model 742 

under three different theoretical scenarios of density dependence and using the experimental 743 

parameters obtained from our seasonal populations of Drosophila (see Model simulations in 744 

Methods). The time to extinction was calculated as the number of generations of season-specific 745 

habitat loss at a particular rate before the populations collapsed, excluding the 20 generations of 746 

‘pre-treatment’ in which populations were simulated under control conditions.  747 

 

Figure 5. Effect of changing the strength of (a) non-breeding and (b) breeding density 748 

dependence for simulations of 10% non-breeding habitat loss. To explore the effect of density-749 

dependence on time to extinction with non-breeding habitat loss, we systemically varied the 750 

strength of density dependence in either the breeding or non-breeding period, while holding 751 

density dependence constant in the other period (e.g., by setting breeding density dependence as 752 

moderate and vary the strength of non-breeding density dependence; see Relative strength of 753 

density dependence in Methods). Single, deterministic model runs were conducted for each 754 

pairwise combination of strengths of breeding and non-breeding density dependence. Extinction 755 

time was determined by performing a single iteration of the non-breeding habitat loss model with 756 

each combination of breeding and non-breeding strengths of density dependence.  757 
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Figures 758 
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Figure 2. 761 
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Figure 3. 763 
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Figure 4. 765 
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