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Abstract  11 

All animals must acquire food to grow, but there is a vast diversity in how different species 12 

and even different individuals approach and achieve this task. Individuals within a species 13 

appear to fall along a bold-shy continuum, whereby some fish acquire food aggressively and 14 

with seemingly high risk, while others appear more submissive and opportunistic. Greater food 15 

consumption generally results in faster growth, but only if the energy acquired through food is 16 

more than enough to compensate for heightened metabolism associated with a more active 17 

lifestyle. Fast-growing phenotypes also tend to have elevated baseline metabolism – at least 18 

when food is plentiful – which may be linked with gut morphology and digestive efficiency. 19 

The net energy gained from a meal (as calculated from the specific dynamic action (SDA) 20 

coefficient) is optimised with larger meal sizes, but the digestion of large meals can erode the 21 

aerobic metabolic scope available for other critical activities such as predator avoidance, 22 

perhaps at an interindividual level. Thus, complex interactions between an individual’s genes 23 

and environment are likely to regulate the growth phenotype. This review compiles available 24 

knowledge to shed light on the question: Why do some fish grow faster than others? We discuss 25 

the elaborate interrelationships between behaviour, physiology and the gut microbiome with a 26 

goal to better understand what drives intraspecific differences in growth performance.  27 

 28 

Key words:  behaviour, digestion, growth, gut microbiome, intraspecific, interindividual, 29 

metabolism, phenotype, performance  30 

 31 

 32 

1. Introduction  33 

 34 

Growth is arguably the most important determinant for the survival of most organisms, perhaps 35 

especially aquatic ectotherms like fishes where growth is particularly plastic and early-life 36 

mortality can be extreme (Peters & Peters, 1986; Clark et al., 2016; Goatley & Bellwood, 37 

2016). In a fish’s early life stages, survival depends on the ability of an individual to avoid 38 

predation and compete for resources like space and food. Indeed, many species are known to 39 



cannibalise conspecific individuals as they outgrow them (Duk et al., 2017). Thus, an 40 

individual is much more likely to succeed and become established if it grows big and does so 41 

quickly (Stige et al., 2019). Despite this, wide discrepancies in growth and feed intake among 42 

closely related individuals are common in fish populations (Carter et al., 1992; Pfister & 43 

Stevens, 2003; Vincenzi et al., 2014). Even when genetic diversity is minimised (e.g., siblings) 44 

and individuals are reared in the same environment with surplus food, some fish grow faster 45 

and bigger (Table 1).  46 

 47 

In addition to the importance of growth phenotypes in shaping ecological communities, the 48 

applied importance is widespread. For example, fisheries sectors often harvest based on fish 49 

size (Darimont et al., 2009; Sutter et al., 2012; Uusi-Heikkilä et al., 2015). In aquaculture, fast-50 

growing phenotypes are able to achieve target sizes sooner to reduce production costs and 51 

resource use (Asche, 2008; Kumar & Engle, 2016). In fish stocking programs, whether for 52 

conservation or recreational angling purposes, the release of fast-growing juvenile fish may 53 

minimise predation mortality to enhance survival and reduce the time taken to achieve target 54 

adult sizes for spawning or capture (Hutchison et al., 2012; Barrow et al., 2021). 55 

 56 

Living in the current era of climate change, there is also much interest in understanding which 57 

genotypes and phenotypes may help to future-proof animal populations and associated 58 

industries (Somero, 2010; Seebacher, White & Franklin, 2015; Morgan et al., 2022). It is not 59 

known whether the fast-growing phenotypes in today’s climate will be the fast-growing 60 

phenotypes of future climates, or whether interindividual rankings will reorder as 61 

environmental conditions change.   62 

 63 

Filling these gaps requires an understanding of the drivers of phenotypic growth variation in 64 

fish, yet to our knowledge, there has been no previous attempt to compile the mechanisms 65 

underlying interindividual differences in fish growth. No doubt, the development of a 66 

beneficial growth phenotype will depend on complex interactions between a range of 67 

determining factors. This review presents a summary of current knowledge on interindividual 68 

growth differences within fish populations. We draw on examples from lab- and field-based 69 

studies to identify potential drivers of this phenotypic diversity, and provide future directions 70 

to help guide research in this field.  71 

 72 

2. Parental influences  73 



The growth phenotype of an individual will be influenced by its own environment and 74 

potentially the environment experienced by its parents (Monaghan, 2008). For instance, 75 

environmental factors that affect maternal fitness will influence maternal investment into 76 

individual offspring and the emergence and diversity of early life phenotypes (Burton & 77 

Metcalfe, 2014; Van Leeuwen et al., 2016; Feiner et al., 2016; Cortese et al., 2022). Parental 78 

temperature (Colson et al., 2019; Chang, Lee & Munch, 2021), oxygen  (Ho & Burggren, 79 

2012), stress (Eriksen et al., 2006, 2007, 2011), social ranking or interactions with conspecifics 80 

(Burton et al., 2013) can all influence egg size and/or composition to modulate offspring 81 

growth, survival and even behaviour. Variation in egg size both between females and within 82 

the same clutch has been reported in salmonids (Beacham & Murray, 1987, 1993; Einum, 2003; 83 

Self et al., 2018). It is generally assumed that larger eggs give rise to an individual with a 84 

competitive size advantage (Einum & Fleming, 1999; Thorn & Morbey, 2018). In brown trout 85 

(Salmo trutta), individuals hatched from larger eggs had growth and survival advantages over 86 

individuals hatched from smaller eggs (Einum & Fleming, 1999). However, other studies on 87 

the same species have found higher rates of survival in individuals hatching from small eggs 88 

as opposed to large eggs (Régnier et al., 2013). Likewise, in steelhead trout  (Oncorhynchus 89 

mykiss), smaller eggs hatched sooner and had higher growth rates than fish from larger eggs 90 

(Self et al., 2018). Both within- and between-clutch variation in offspring phenotypes, like egg 91 

size and larval growth, are known to increase in more variable or unpredictable environments 92 

(Crean & Marshall, 2009). This adaptive phenotypic response to environmental heterogeneity 93 

is an example of ‘bet hedging’ and allows mothers to adjust the phenotype of sibling offspring 94 

to increase variability and improve fitness and survival of at least some of the clutch (Mousseau 95 

& Fox, 1998; Crean & Marshall, 2009). In some salmonid species or populations, egg size 96 

remains consistent within a clutch, suggesting sibling survival or growth could be related to 97 

the distribution of phenotypes within an egg mass before spawning (Burton et al., 2013).  98 

 99 

The maternal endocrine system is closely associated with its progeny and will at least partly 100 

drive phenotypic differences between siblings (Eriksen et al., 2007; Sopinka et al., 2017). 101 

Maternal hormones are accumulated and absorbed into the nutritive yolk sac of developing 102 

embryos during oogenesis (Hwang et al., 1992; Mylonas, Sullivan & Hinshaw, 1994; Schreck, 103 

Contreras-Sanchez & Fitzpatrick, 2001; Eriksen et al., 2007, 2011; Sopinka et al., 2017). In 104 

fact, the developmental, reproductive and metabolic hormones present in the yolk sac of 105 

developing embryos occur in similar quantities to that of maternal blood plasma (Hwang et al., 106 

1992; Mylonas et al., 1994; Schreck et al., 2001). An example of this relationship is seen in a 107 



consistency of hormone patterns between stressed mothers and their offspring (Eriksen et al., 108 

2011). Given that growth suppression in teleost fish is a consequence of most forms of 109 

environmental stress (Pickering, 1990, 1993), maternal stressor exposure activates the 110 

transmission of the stress response, binding circulating cortisol in target tissues and developing 111 

follicles in the female’s ovaries (Sopinka et al., 2017). Some studies suggest that paternal 112 

effects will also influence the endocrine state of offspring (McGhee & Bell, 2014; Hellmann, 113 

Carlson & Bell, 2021). Paternal predation exposure of threespined sticklebacks (Gasterosteus 114 

aculeatus) reduced activity and elevated cortisol concentrations in offspring (Hellmann et al., 115 

2021). Parental experiences of stress can therefore expose the developing embryos to elevated 116 

concentrations of glucocorticoids, which may impact subsequent growth at an individual level.  117 

 118 

Experimentally manipulating the maternal endocrine state of female Atlantic salmon (Salmo 119 

salar) with cortisol led to offspring that grew less efficiently, had reduced survival and higher 120 

incidences of malformation compared with half-sib offspring from mothers with no cortisol 121 

treatment (Eriksen et al., 2006, 2007, 2011). In some species, like the Atlantic halibut 122 

(Hippoglossus hippoglossus), differences in egg cortisol have no influence on offspring 123 

phenotypes like larval size  (Skaalsvik et al., 2015). As well, differential impacts of egg cortisol 124 

exist between wild fish populations and populations reared in laboratory environments 125 

(Gingerich & Suski, 2011). Variation in total egg cortisol concentration also exists between 126 

individuals from the same clutch (i.e., between full sibs) (Sopinka et al., 2017). Previous 127 

research suggests that intra-female variation in egg cortisol of brown trout will depend on the 128 

position of eggs within the ovary (anterior, middle, and posterior) (Suter, 2002). Interestingly, 129 

other studies have reported that location in the egg mass affects social dominance, behavioural 130 

phenotypes and egg size in resulting juveniles of the same species (Burton et al., 2013). Taken 131 

together, independent of egg size differences, there may be a role of egg positioning within the 132 

clutch in determining the growth rates of early life stages. 133 

 134 

3. Stress and the social environment  135 

Stress hormones like catecholamines and cortisol function to mobilise energy reserves that help 136 

fish to escape, avoid or overcome an immediate threat (Bonga, 1997). Fish experiencing stress 137 

will divert resources like oxygen and energy away from investment activities (e.g., growth and 138 

reproduction) and toward activities like tissue repair (Bonga, 1997). As a result, the 139 

performance capacity of fish during stress can be compromised (Madison et al., 2015). 140 

Maintenance of plasma cortisol at 116 ng/ml via implant micro-pumps in rainbow trout led to 141 



a 60% reduction in feed intake and up to 80% reduction in mass gain (Madison et al., 2015). 142 

However, growth responses to stressors can vary. For example, in threespined stickleback 143 

(Gasterosteus aculeatus), early exposure to a predation risk increased juvenile somatic growth, 144 

but caused a decrease in size at adulthood (Bell et al., 2011). In fish and other vertebrates, the 145 

stress response is initiated and controlled by the activation of the hypothalamic-pituitary-146 

interrenal/adrenal (HPI or HPA) axis (Bonga, 1997; Bernier & Peter, 2001; Gilmour, Dibattista 147 

& Thomas, 2005). The HPI or HPA axis describes the communication that is present between 148 

the hypothalamus and the pituitary gland in the fish brain and the head kidney (Bonga, 1997; 149 

Bernier & Peter, 2001).  When exposed to a stressor, the hypothalamus releases corticotropin-150 

releasing factor/hormone (CRF or CRH), which stimulates the release of adrenocorticotropic 151 

hormone (ACTH) from the pituitary (Bernier & Peter, 2001). ACTH binds to receptors on the 152 

interrenal cells in the head kidney, initiating a biochemical cascade that results in the synthesis 153 

of cortisol (Bernier & Peter, 2001). Anthropogenic stressors have also been shown to disrupt 154 

the thyroid and alter levels of thyroid hormones (TH) in fishes (Deal & Volkoff, 2020; Besson 155 

et al., 2020). Thyroid hormones are critical to early fish development, behaviour (Besson et 156 

al., 2020) and the regulation of somatic growth and appetite (e.g., through the hypothalamic-157 

pituitary-somatotropic (HPS) axis) (Deal & Volkoff, 2020). Wild and captive fish can face a 158 

multitude of stressors that all have the potential to induce chronic stress (i.e., sustained, 159 

elevated plasma glucocorticoids), and inhibit growth through impacts on the metabolic, 160 

digestive and behavioural phenotype (Bonga, 1997; Mommsen, Vijayan & Moon, 1999; 161 

Barton, 2002; Deal & Volkoff, 2020).  162 

 163 

Stressful social interactions (or complete lack of social stimuli) between conspecifics can lead 164 

to a stress response that controls behaviours like aggression, appetite, foraging and locomotion 165 

(Gilmour et al., 2005). These behaviours are often associated with descriptive terms for 166 

individuals like ‘bold’, ‘shy’, ‘dominant’ or ‘subordinate’ (Gilmour et al., 2005; Metcalfe, Van 167 

Leeuwen & Killen, 2016). These ‘behavioural phenotypes’ may shift through time and change 168 

with the social environment and with resources like food availability, shelter and habitat 169 

(Wieser, Krumschnabel & Ojwang-Okwor, 1992; Hofmann, Benson & Fernald, 1999; Höjesjö, 170 

Johnsson & Bohlin, 2004; Reid, Armstrong & Metcalfe, 2012). As a result, in some species, 171 

subordinate fish show suppression in appetite, feed intake, aggression, locomotion and growth 172 

(Gilmour et al., 2005), while dominant individuals have opposing behaviours that allow them 173 

to monopolise resources and gain a competitive growth advantage (Abbott & Dill, 1989; 174 

Metcalfe, Wright & Thorpe, 1992). In subordinate European eels (Anguilla anguilla), social 175 



dominance acted as a significant stressor causing reduced feed intake, growth, extensive 176 

intestinal lesions and a reduced stomach size (Peters, 1982). When dominant and subordinate 177 

salmonids were confined in pairs, an antagonistic interaction caused a rapid increase in plasma 178 

cortisol in both fish (Øverli, Harris & Winberg, 1999a), yet the blood cortisol concentration of 179 

the dominant individual returned to resting levels much quicker (within 3 h; Øverli et al., 180 

1999a) than the subordinate individual (up to 7 days; Øverli et al., 1999a; Sloman et al., 2001). 181 

Thus, in salmonids, social subordination is viewed as a chronic stressor, which causes a chronic 182 

activation of the HPI axis, regulating subordinate traits like appetite to affect grow rates (Øverli 183 

et al., 1999b, 1999a; Gilmour et al., 2005).  184 

 185 

Differences in group size (Carter et al., 1992) or environment (Höjesjö et al., 2004), as well as 186 

species differences in social structure (Hofmann et al., 1999) will all contribute to differences 187 

in the relationships between growth, dominance and stress. For example, while subordinate 188 

salmonids often have higher plasma cortisol levels (Laidley & Leatherland, 1988; Pottinger & 189 

Pickering, 1992; Øverli et al., 1999a; Sloman et al., 2000, 2001; Elofsson et al., 2000; Pottinger 190 

& Carrick, 2001; Höglund, Balm & Winberg, 2002), in small groups behavioural responses to 191 

cortisol vary.  Some studies report elevated cortisol levels in subordinate fish (Ejike & Schreck, 192 

1980; Winberg & Lepage, 1998; Höglund, Balm & Winberg, 2000), while others do not 193 

(Pottinger & Pickering, 1992; Øverli et al., 1999b; Sloman et al., 2000, 2001).  194 

 195 

In the African cichlid fish, Haplochromis burtoni, only territorial males (i.e., dominant 196 

individuals) are reproductively active (Hofmann et al., 1999). The territorial males will work 197 

to maintain territories and court females, while non-territorial males (i.e., subordinate 198 

individuals) are sexually regressed and school with females (Fernald & Hirata, 1977). Because 199 

of  reduced energy expenditure, non-territorial males and animals ascending in social rank have 200 

higher rates of somatic growth (Hofmann et al., 1999). Social status is highly flexible in H. 201 

burtoni and as a result the growth rates of individuals change frequently within a population 202 

(Hofmann et al., 1999). Reversible phenotypic plasticity is a crucial life-history trait that is 203 

thought to enable this species to shift resources from reproduction to growth and vice versa 204 

(Hofmann et al., 1999; Trainor & Hofmann, 2007; Dijkstra et al., 2017). The shifts in social 205 

dominance and growth of H. burtoni are thought to be regulated by multiple endocrine 206 

pathways and involve gonadotropin-releasing hormone (GnRH), somatostatin and the 207 

melanocortin system (Hofmann et al., 1999; Trainor & Hofmann, 2007; Dijkstra et al., 2017). 208 

In other cichlid species (Lamprologus callipterus), males within a population can adopt 209 



different reproductive strategies that lead to multiple growth patterns and the presence of both 210 

small ‘dwarfed’ and large ‘nested’ males of the same age within the same population (Wirtz-211 

Ocaňa et al., 2013). The endocrine profiles of these species, and those that show clear sex-212 

specific size dimorphism (Pietsch, 1976; Isakov, 2022) could provide useful insight into the 213 

drivers of interindividual growth differences (Malison et al., 1985, 1988).  214 

 215 

In social species where social dominance determines appetite and access to food and resources, 216 

behavioural phenotypes and stress will play an important role in the development of multiple 217 

growth phenotypes within a population. However, in schooling, non-social or non-aggressive 218 

species, where social dominance is not considered to be a significant factor, interindividual 219 

differences in growth can still exist (Cui & Liu, 1990; Carter et al., 1992). Similarly, in lab-220 

based studies, where social interactions are removed (e.g., through isolation in individual 221 

tanks), obvious growth differences persist (Norin, Malte & Clark, 2016). In the above cases, 222 

grow rates are unlikely to be regulated by social stress, and therefore metabolic and digestive 223 

phenotypes may play a role.  224 

 225 

4. The metabolic phenotype  226 

The metabolic phenotype shapes an animal’s energy budget and will dictate the energy spent 227 

by an animal at rest, during digestion and during routine or maximum activity (Clark, 228 

Sandblom & Jutfelt, 2013). Large individual variations in the standard metabolic rate (SMR), 229 

routine metabolic rate (RMR, metabolic rate at regular activity levels), maximum metabolic 230 

rate (MMR), specific dynamic action (SDA, energy cost of digestion) and aerobic scope (aka 231 

‘scope for activity’) are common in fish populations (Metcalfe et al., 2016). Between 232 

individuals of the same species there can be a 2-3-fold variation in SMR and MMR (Rice, 233 

1990). Such differences in energy allocation and use between individuals will influence the 234 

capacity to convert food energy into tissues for subsequent growth.  235 

 236 

Under ad-libitum feeding conditions we expect faster growers to have a higher SMR than their 237 

slow-growing conspecifics (Norin & Malte, 2012; Norin & Clark, 2017) (Fig. 1). Previous 238 

research on barramundi (Lates calcarifer) has shown that SMR is positively correlated with 239 

specific growth rate (SGR) (Norin et al., 2016). Norin et al (2016) found that individuals with 240 

a high SMR ate more food and grew quicker than conspecifics with a low SMR. That is, high 241 

SMR individuals consumed a surplus of food to more than compensate for their higher baseline 242 

metabolic requirements (Norin et al., 2016). In social species, high SMR individuals tend to 243 



display a dominant behavioural phenotype that drives behaviours allowing them to monopolise 244 

resources, consume more food and grow bigger (Reid et al., 2012; Hoogenboom et al., 2013; 245 

Metcalfe et al., 2016). This competitive growth advantage among high SMR fishes is thought 246 

to be modulated by environmental conditions like food supply (Burton et al., 2011), feeding 247 

conditions (Killen, Marras & McKenzie, 2011; Metcalfe et al., 2016) and habitat complexity 248 

(Robertsen et al., 2014). When food is restricted, the relative growth rate of high SMR 249 

individuals may be less than their low SMR conspecifics (O’Connor, Taylor & Metcalfe, 2000; 250 

Norin & Malte, 2011). While there is evidence of a link between high SMR individuals and 251 

growth when food is abundant, this relationship does not persist across all species or life stages. 252 

In larval Atlantic herring (Clupea harengus; 7 days post-hatch), interindividual differences in 253 

SMR were not associated with growth (Moyano et al., 2017). There is some evidence that 254 

observed links between metabolism and growth may be related to interindividual variation in 255 

the efficiency with which substrates are converted into ATP at the mitochondria (e.g., via 256 

‘proton leak’; Salin et al., 2019). Additionally, the metabolic traits of individuals respond 257 

differently to environmental challenges (Norin et al., 2016), suggesting that the relative ranking 258 

of slow- and fast-growing individuals may change across days, seasons, and with climate 259 

change. 260 

 261 

In the context of the metabolic phenotype, we might expect that individuals with large relative 262 

organ masses would exhibit proportionally greater metabolic rate with potential implications 263 

for growth (Ferrell, 1988; Piersma & Lindström, 1997). However, in brown trout (Salmo 264 

trutta), no relationship between SMR, MMR and the residual size (mass) of metabolically 265 

active internal organs (stomach, intestine, liver, heart, spleen) was found (Norin & Malte, 266 

2012). Instead, this study found that the SMR, MMR and aerobic scope were significantly 267 

correlated with liver activity of the aerobic mitochondrial enzyme, cytochrome c-oxidase. The 268 

study concluded that intraspecific variation in the metabolic rate of fish can be found at a lower 269 

organisational level than organ size alone (Norin & Malte, 2012). Thus, while it appears that 270 

there is no clear link between relative organ size, metabolism and growth, more research is 271 

required to understand the relationships between these parameters. 272 

 273 

Variation in the energy cost of digestion, SDA, is also thought to be correlated with SMR 274 

(Secor, 2009). The SDA accounts for the energy expended on every physiological, mechanical 275 

and biochemical process that facilitates the breakdown of food, and the absorption, transport, 276 

and assimilation of its nutrients (Secor, 2017). Fish with a higher SMR can exhibit a higher 277 



SDA peak (i.e., peak in oxygen consumption is higher during digestion), but shorter SDA 278 

duration (i.e., digestion finishes sooner), meaning high SMR individuals can have faster 279 

digestion rates and potentially faster growth (Metcalfe et al., 2016). Juvenile Atlantic salmon 280 

(Salmo salar) with a high SMR had a greater (more energetically expensive) SDA, but a shorter 281 

SDA duration than those with a low SMR phenotype (Millidine, Armstrong & Metcalfe, 2009). 282 

Thus, despite having a greater baseline energy expenditure, salmon with a high SMR have a 283 

shorter SDA duration and can therefore feed more frequently to facilitate faster growth 284 

(Millidine et al., 2009). 285 

 286 

Similarly, the SDA is also associated with and governed by the available aerobic scope and 287 

postprandial residual aerobic scope (PRAS) of an individual (Jutfelt et al., 2021) (Fig. 1). The 288 

aerobic scope describes the scope for activity and is calculated as the difference between MMR 289 

and SMR (Clark et al., 2013). PRAS describes the scope for activity on top of digestion and is 290 

calculated as the difference between the peak of the SDA and MMR (Jutfelt et al., 2021). In 291 

less athletic species that prioritise feeding over movement, the scope for activity can be defined 292 

as the difference between the active metabolic rate (AMR) and SMR (Steell et al., 2019). The 293 

SDA can take up a significant proportion of the aerobic scope during digestion in fish (e.g., up 294 

to 77% in barramundi (Lates calcarifer); Norin & Clark, 2017). Moreover, in the lionfish 295 

(Pterois spp.), the maximum metabolic rate during digestion (SDA peak) can exceed the 296 

metabolic rate reached following exhaustive exercise (Steell et al., 2019). In some species, 297 

environmental conditions like elevated temperatures can temporally compress the SDA, further 298 

constraining aerobic scope and PRAS and driving a reduction in feed intake (Jordan & 299 

Steffensen, 2007; Oliver et al., 2017; Wade et al., 2019; Jutfelt et al., 2021). Since the SDA 300 

increases with meal size to occupy more of the available aerobic scope (Fu, Xie & Cao, 2005; 301 

Jordan & Steffensen, 2007; Secor, 2009), modulating feed intake during warming is 302 

hypothesised to ‘protect’ PRAS and maximise the energy available for activities outside of 303 

digestion, like swimming and avoiding predation (Jutfelt et al., 2021). This hypothesis would 304 

suggest that in benign environments, individuals with a greater MMR (and therefore greater 305 

PRAS) may be able to maximise energy gains and growth by consuming more food relative to 306 

low MMR/PRAS individuals (Fig. 1). Conversely, recent work in sham-fed Chinook salmon 307 

(Oncorhynchus tshawytscha) showed that elevated temperature had no effect on PRAS during 308 

the digestion of a 2%  meal ration  (Lo et al., 2022). Contrary to the hypothesis presented by 309 

Jutfelt et al (2021), some species may not mediate food intake based on the occupation of the 310 



SDA in their scope for activity and in turn feed intake and growth may not be limited by 311 

phenotypic differences in AMR, SMR or MMR for those species.  312 

 313 

The SDA coefficient (% of meal energy used in the SDA) typically ranges 5-20% in fish 314 

(Beamish, 1974; Fu et al., 2005; Secor, 2009), but can reach up to 50% in some fish species 315 

(Secor, 2017). It is generally assumed that a larger SDA coefficient for a given meal size is 316 

indicative of inefficient digestion and less absorbed energy available for growth. Therefore, if 317 

environmental and nutritional requirements remain constant, individuals with a smaller SDA 318 

coefficient should grow more efficiently than individuals with a larger SDA coefficient 319 

(Jobling, 1994; Secor, 2009). Recently tested in a study on juvenile barramundi (Lates 320 

calcarifer), Goodrich et al., (2021) showed that reducing the SDA coefficient through dietary 321 

acidification can lead to acute improvements in fish growth efficiency, but these improvements 322 

declined over time.  323 

 324 

In contrast, Carter and Brafield (1992) reported a positive relationship between the SDA and 325 

the specific growth rate of grass carp (Ctenopharyngodon idella). These findings contradict the 326 

original theory presented by Jobling (1994) and Secor (2009) and suggest that the SDA 327 

coefficient may also be indicative of digestive capacity and not just energy expenditure. For 328 

example, a larger SDA coefficient may indicate greater capacity for energetically expensive 329 

processes like protein synthesis. Protein synthesis uses four ATPs to bind one amino acid to 330 

the next, and for this reason is known to be a primary contributor to the SDA (Lusk, 1922; 331 

Jobling, 1985; Brown & Cameron, 1991a, 1991b). The total energetic cost to synthesise 1 gram 332 

of protein has been estimated to equal ~50 mmol of ATP equivalents (Reeds, Fuller & 333 

Nicholson, 1985). Infusion of an amino acid mixture directly into the blood stream of fasted 334 

channel catfish (Ictalurus punctatus) was able to elicit an SDA response and significantly 335 

increase oxygen consumption above resting levels (Brown & Cameron, 1991a). In cod (Gadus 336 

morhua), protein synthesis is thought to contribute between 20 to 40% of the SDA (Lyndon, 337 

Houlihan & Hall, 1992; Smith & Houlihan, 1995). Therefore, while a larger SDA may indicate 338 

greater energetic costs, it may also indicate greater capacity to assimilate nutrients from food 339 

for subsequent growth. In these instances, individuals with a beneficial SDA phenotype (e.g., 340 

high SDA coefficient) may have a competitive growth advantage over conspecifics with a 341 

reduced SDA phenotype (e.g., low SDA coefficient), at least when food is abundant (Fig. 1).    342 

 343 

5. The digestive phenotype  344 



Phenotypic flexibility is well documented in the digestive systems of reptiles (Secor, Stein & 345 

Diamond, 1994; Secor & Diamond, 2000), birds (McWilliams & Karasov, 2001), mammals 346 

(Naya et al., 2007), and fishes (Armstrong & Bond, 2013; Blier et al., 2007; Htun-Han, 1978; 347 

Jobling et al., 1998; Piersma & Gils, 2011; Piersma & Lindström, 1997). Digestive tract 348 

adjustments, like changing organ size or length (Bergot, Blanc & Escaffre, 1981) and rates of 349 

protein synthesis, retention and degradation (Carter & Houlihan, 2001), are often associated 350 

with the amount of nutrients and energy that fish consume and assimilate. A multitude of 351 

studies have shown that the response of the digestive tract will vary with the intensity of the 352 

energetic demand imposed on the animal (Naya et al., 2007), the frequency of feeding in nature 353 

(Secor & Diamond, 2000; Secor, 2005a, 2005b), the time to and type of first feed consumed 354 

by fish larvae (Kolkovski, 2001; Ching et al., 2016), the environmental conditions experienced 355 

by different populations of the same species (Kristan & Hammond, 2003; Bacigalupe et al., 356 

2004; Tracy & Diamond, 2005), and the level of environmental variability under which 357 

different species have evolved (Naya, Bozinovic & Karasov, 2008). When fed ad libitum and 358 

reared in the same environmental conditions, phenotypic changes that result in an increase in 359 

the functional capacity of the digestive system are likely to lead to better performance and 360 

interindividual differences in fish growth.  361 

 362 

Proteins from ingested food are central to animal growth and tissue maintenance. Proteins are 363 

incorporated into new tissue for growth through processes like protein cycling (Smith & 364 

Houlihan, 1995; Carter & Houlihan, 2001). Growth rates in fish will be controlled by the 365 

balance between rates of protein synthesis, retention and degradation (Houlihan et al., 1988; 366 

Houlihan, Hall & Gray, 1989; Carter et al., 1993a). In grass carp (Ctenopharyngodon idella), 367 

faster growing individuals had a lower RNA to protein ratio (capacity for protein synthesis), 368 

variable rates of protein synthesis, yet higher retention of synthesized protein, higher RNA 369 

activity and lower rates of protein degradation (Carter et al., 1993a). In Atlantic salmon (Salmo 370 

salar), individual variation in growth efficiency was related to differences in protein retention 371 

efficiency but no difference in the capacity for protein synthesis (Carter et al., 1993b). 372 

Similarly, more efficient, faster growing rainbow trout (Oncorhynchus mykiss) had reduced 373 

rates of protein degradation in comparison to their slower growing conspecifics (McCarthy, 374 

Houlihan & Carter, 1994).  375 

 376 

In the wild, some fish species adaptively regulate digestive capacity to match ambient levels 377 

of demand (Kent, Prosser & Graham, 1992; Jobling et al., 1998; Armstrong & Bond, 2013; 378 



Furey et al., 2016). In their natural streams, Dolly Varden trout (Salvelinus malma) take 379 

advantage of annual resource pulses that occur as a result of the spawning migration of Pacific 380 

salmon. During a small 5-week period where Pacific salmon spawn, Dolly Varden maximise 381 

energy gain by significantly increasing gut size to gorge on the eggs of Pacific salmon 382 

(Armstrong & Bond, 2013). Similarly, binge-feeding (hyperphagia) in bull trout (Salvelinus 383 

confluentus) during a prey pulse of out-migrating juvenile sockeye salmon (Oncorhynchus 384 

nerka) was facilitated by an increase in gut volume (Furey et al., 2016). Outside of resource 385 

pulses, fishes adopt a significantly smaller, and less energetically expensive gut (Armstrong & 386 

Bond, 2013). Alternating periods of feast and famine could generate trade-offs between 387 

phenotypes that maximize energy gain during resource abundance, and those that conserve 388 

energy during resource scarcity (Gans, 1979; Diamond, 2002; Piersma & Gils, 2011; 389 

Armstrong & Schindler, 2011; Armstrong & Bond, 2013). When reared in the same 390 

environment and fed in a food surplus, we would therefore expect that individuals with a larger 391 

and more expensive gut would maximise the energy gained from ingested food.  The greater 392 

energetic cost of a large gut, provide some explanation for why some individuals have 393 

proportionally higher SDA and higher growth rates.  394 

 395 

Despite the above possibilities, few studies have assessed the relationship between 396 

interindividual differences in gut size/anatomy, and variation in fish growth or appetite. Some 397 

evidence suggests that full siblings with a greater number of pyloric caeca in the digestive tract 398 

grow larger and are bigger than individuals of the same age  (Bergot et al., 1981). The pyloric 399 

caeca are an important digestive organ responsible for the uptake of nutrients from food in 400 

some fish species (Buddington & Diamond, 1986). Possessing a larger number of caeca would 401 

be advantageous in a benign environment where all individuals have unlimited access to 402 

resources. Indeed, research on the cichlid fish (Simochromis pleurospilus) found that plasticity 403 

in digestive efficiency and growth was facilitated by possessing heavier digestive organs, yet 404 

dependent on early-life food availability (Kotrschal, Szidat & Taborsky, 2014). S. pleurospilus 405 

that were kept at a constant higher ration grew considerably faster than conspecifics offered 406 

lower food rations. However, S. pleurospilus fed a lower food ration were able to buffer the 407 

negative growth impacts by developing significantly heavier digestive organs, which made 408 

them more efficient at digesting food as adults. This suggests that digestive efficiency is 409 

influenced by food availability, growth and feed intake during a narrow ‘plasticity window’ 410 

that occurs in a fish’s juvenile stages (Kotrschal et al., 2014). Individuals reared in the same 411 

food-limited environment may therefore adjust their gut for either immediate or delayed growth 412 



benefits (e.g., reducing organ size to maintain energy efficiency in a low-food juvenile 413 

environment, or increasing organ size to maximise energy gain in a future high-food adult 414 

environment) leading to differential juvenile and adult growth phenotypes.   415 

 416 

Similarly, other early developmental characteristics like the time to first feed can influence the 417 

functional capacity of the digestive system in fish larvae to affect early grow rates and survival. 418 

In larval tiger grouper (Epinephelus fuscoguttatus), delaying first feeding to 6 h after mouth 419 

opening resulted in an almost 50 % reduction in the height of the gut epithelium, causing delays 420 

in fish development and reduced growth (Ching et al., 2016). The type of food a larval fish 421 

first eats can also play a significant role in the capacity of their gastrointestinal tract. Most 422 

larval fish lack fully functioning digestive systems for the first weeks after hatching 423 

(Dabrowski, 1984). It has been proposed that larvae utilise the digestive enzymes present in 424 

their prey to facilitate the process of digestion until the larval alimentary system is fully 425 

developed (Dabrowski, 1984; Lauff & Hofer, 1984; Kolkovski et al., 1993; Kolkovski, 2001). 426 

Support for this theory is mixed, with some studies reporting as much as 40 – 80% of larval 427 

enzymatic activity is ‘donated’ by live food organisms (Dabrowski & Glogowski, 1977a, 428 

1977b), and others suggesting live food contribution to direct digestive enzymes is negligible 429 

(Zambonino-Infante et al., 1996; Cahu & Zambonino-Infante, 1997). However, live feeds also 430 

contain gut neuropeptides and other nutritional growth factors that are known to enhance 431 

digestive capacity (Kolkovski, 2001). This may at least partly explain the improved grow rates 432 

observed in marine fish larvae reared on live foods as opposed to formulated micro diets 433 

(Kolkovski, 2001, 2013; Giebichenstein et al., 2022). Variation in early developmental 434 

characteristics like the time to and type of first feed consumed by individual fish larvae could 435 

therefore contribute to differences in digestive efficiency, early growth phenotypes and 436 

interindividual fish growth within a population.  437 

 438 

6. The gut microbiome  439 

The community of microbes that colonise the gut of living animals (the gut microbiome) play 440 

an important functional role in almost every aspect of an animal’s physiology (Tarnecki et al., 441 

2017). Previous research has found that the gut microbiome can affect host metabolism, 442 

nutrient absorption, behaviour, satiety, reproduction, development, the immune response and 443 

growth (Avella et al., 2012; Carnevali, Avella & Gioacchini, 2013; Mayer, Tillisch & Gupta, 444 

2015; Ghanbari, Kneifel & Domig, 2015; Wang et al., 2018; Johnson & Foster, 2018; Perry et 445 

al., 2020). In wild fish, microorganisms from food and the surrounding water adhere to and 446 



colonise the gut (Ghanbari et al., 2015). The function of the gut microbiota and the 447 

physiological response of the host will depend on the composition of the microbes present in 448 

the intestines of the individual (Tarnecki et al., 2017; Talwar et al., 2018). Factors like age, 449 

species, diet, social status, developmental stage, geographical location, sex and environmental 450 

conditions like temperature, salinity and pH can all influence the type, diversity and abundance 451 

of gut microbes in fishes (Ringø et al., 1997, 2016; Nayak, 2010; Bevins & Salzman, 2011; Li 452 

et al., 2012, 2014; Ni et al., 2014; Borrelli et al., 2016).   453 

 454 

Differences in growth have been associated with differences in the resident gut microbiota of 455 

carp (Cyprinus carpio) (Yanbo & Zirong, 2006; Li et al., 2013), Nile tilapia (Oreochromis 456 

niloticus) (Elsabagh et al., 2018; Deng et al., 2021), rohu (Labeo rohitaI) (Ghosh, Sen & Ray, 457 

2003; Ramachandran & Ray, 2007), European sea bass (Dicentrarchus labrax) (Carnevali et 458 

al., 2006), zebrafish (Danio rerio) (Falcinelli et al., 2015), Japanese flounder (Paralichthys 459 

olivaceus) (Ye et al., 2011), rainbow trout (Oncorhynchus mykiss) (Ramos et al., 2013; 460 

Khodadadi et al., 2018) and Malaysian mahseer (Tor tambroides) (Asaduzzaman et al., 2018). 461 

Some resident gut microbes are known to produce exogenous digestive enzymes and essential 462 

growth metabolites that aid fish digestion and nutrient assimilation to influence growth (Ray, 463 

Ghosh & Ringø, 2012; Semova et al., 2012; Clements et al., 2014). In fact, the absence of gut 464 

microbes, as in studies with germ-free zebrafish (Danio rerio), can inhibit the uptake of 465 

important nutrients like protein at the intestine (Bates et al., 2006). The type, quantity, diversity 466 

and functional role of an individual’s resident gut microbes could therefore contribute to the 467 

expression of plastic developmental phenotypes like growth. The possibility to improve growth 468 

outcomes with beneficial bacteria has led to a boom in research that aims to assess the 469 

application of probiotics to animal production systems, including aquaculture (Wang, Li & Lin, 470 

2008; Perry et al., 2020). 471 

 472 

Targeted manipulation of the fish microbiome is reported to alter gut morphology (Elsabagh et 473 

al., 2018), improve digestion and lipid metabolism (Falcinelli et al., 2015), influence satiety 474 

and appetite (Falcinelli et al., 2016; Gioacchini et al., 2018), improve fish memory and even 475 

influence shoaling behaviours in zebrafish (Borrelli et al., 2016; Zang et al., 2019). Zebrafish 476 

fed the probiotic Lactobacillus rhamnosus for 8 days expressed a significant downregulation 477 

of appetite-stimulating (orexigenic) genes and a simultaneous upregulation of appetite-478 

suppressing (anorexigenic) genes (Falcinelli et al., 2016). These changes in gene expression 479 

were associated with differences in appetite and body glucose level between probiotic-fed fish 480 



and controls (Falcinelli et al., 2016). Similarly, Malaysian mahseer (Tor tambroides), fed 481 

Alcaligenes sp. and Bacillus sp., were able to enhance growth by upregulating the growth-482 

related genes, growth hormone (GH) and hepatic insulin-like growth factor IGF-1 483 

(Asaduzzaman et al., 2018). These results indicate that gut microbiota can regulate metabolic 484 

pathways that modulate the physiological state of hunger and satiety to influence feed intake 485 

and/or growth and also provide evidence of a gut-brain interaction previously only described 486 

in higher vertebrates (Mayer et al., 2015; Butt & Volkoff, 2019).  487 

 488 

The gut microbiota–brain axis describes the bi-directional communication that occurs between 489 

the gastrointestinal tract and the brain to influence host physiology and homeostasis (Mayer et 490 

al., 2015; Butt & Volkoff, 2019). It is thought that gut microbiota release metabolites that act 491 

either directly on the brain or indirectly through the enteroendocrine cells of the gastrointestinal 492 

tract (Butt & Volkoff, 2019). Here, metabolites function to alter neuropeptide release to 493 

modulate the feeding behaviours and energy homeostasis of the host (Butt & Volkoff, 2019). 494 

For example, germ-free zebrafish treated with the bacterium Lactobacillus plantarum are able 495 

to attenuate stress-related behaviours (Davis et al., 2016), and decrease the stress response by 496 

lowering the expression of corticotrophin-releasing hormone (CRH) (Forsatkar et al., 2017). 497 

As discussed above, the stress response is a key factor that affects the feeding responses of 498 

fishes (Bonga, 1997). Therefore, interindividual differences in the gut microbiome of fish may 499 

interact with the stress response and other phenotypic traits to alter feeding, appetite and 500 

ultimately growth. Understanding which environments, microbes and/or diets promote a 501 

beneficial microbiome will be important to future studies assessing interindividual differences 502 

in fish growth.  503 

 504 

7. Conclusions and future directions  505 

 506 

The phenotype that promotes or drives better growth in some fish will be a consequence of 507 

complex interactions between a large number of genetic and non-genetic factors. The 508 

development of a beneficial growth phenotype depends on the interplay of the organism’s own 509 

genetic make-up, the environmental experience of its parents and the environmental/social 510 

experiences during its own development (Fig. 2). External influences on phenotypic 511 

development are likely mediated in part by endocrine systems and resultant physiological 512 

processes. Based on the current gaps in knowledge, we suggest a number of research questions 513 

which will drive understanding of interindividual differences in fish growth: 514 



1. How do parental influences impact offspring growth phenotypes? 515 

2. What are the relative contributions of genetic vs. non-genetic influences on 516 

interindividual growth differences?  517 

3. What are the relationships between organ size, digestive efficiency and growth?  518 

4. What are the interindividual relationships between SMR, MMR, aerobic scope, PRAS, 519 

SDA, feed intake and growth?   520 

5. How do interindividual differences in the SDA coefficient translate to differences in 521 

growth? 522 

6. Are interindividual differences in predictive traits for growth maintained through time? 523 

7. How does the gut microbiome interact with metabolism, behaviour and growth of 524 

individuals? 525 

8. How are interindividual growth differences modulated by environmental parameters, 526 

and can we select genotypes/phenotypes with optimal performance in future 527 

environments? 528 

9. Can gene knock-out experiments help to answer the above questions, and which target 529 

genes might prove most fruitful (e.g., digestive processes, protein synthesis)? 530 

 531 

While the influence of genetic traits has played a role in the selection of fast-growing fish in 532 

aquaculture, there has been relatively little research attention given to other, non-genetic factors 533 

that play a role in determining interindividual growth phenotypes. We hope that this paper 534 

sparks further interest in this topic and paves the way for new insights into the question of why 535 

some fish grow faster than others.  536 

 537 
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 1303 
Figure 1: Conceptual diagram showing some of the traits of fish that may characterise a high-1304 

growth phenotype (blue) compared with a slow-growth phenotype (orange). Time could be 1305 

equivalent to ~5 days. Symbols + and – indicate higher and lower levels, respectively. High-1306 

growth individuals may have a higher standard metabolic rate (SMR), maximum metabolic 1307 

rate (MMR) and aerobic scope. They may exhibit elevated boldness/aggression/activity and 1308 

thus have higher metabolic requirements. When encountering prey in a competitive 1309 

environment, high-growth individuals may consume lots of food quickly (resulting in a high 1310 

specific dynamic action [SDA]), while slow-growth individuals may be submissive/hesitant 1311 

and ultimately consume less food (lower SDA). When both high- and low-growth phenotypes 1312 

consume the same sized ration, high-growth individuals may exhibit a greater SDA coefficient 1313 

(SDA %) due to greater protein synthesis and anabolism. Despite the greater SDA coefficient, 1314 

high-growth individuals may maintain a higher postprandial residual aerobic scope (PRAS) 1315 

because of their elevated MMR.     1316 
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 1322 

Figure 2: Schematic showing interactions between drivers of interindividual differences in fish 1323 

growth. Individual variation in factors like stress, maternal investment/endocrine state, social 1324 

interactions, and early development characteristics like time to hatch and/or first feed will all 1325 

act on the fish brain and endocrine system (e.g., release of growth hormone (GH) or cortisol) 1326 

to drive the development of phenotypes with differential energy use (the metabolic phenotype; 1327 

e.g., specific dynamic action (SDA), standard metabolic rate (SMR)), energy uptake (the 1328 

digestive phenotype; e.g., organ size and efficiency) and behaviour (the behavioural phenotype; 1329 

bold, shy, dominant, subordinate). The presence of multiple metabolic, digestive and/or 1330 

behavioural phenotypes will drive the development of interindividual fish growth within a 1331 

closely related population.  1332 
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 1334 

 1335 



Table 1: Summary of studies that have either directly or indirectly assessed drivers of interindividual differences in fish growth. Where available, 1336 

positive (+), negative (-) and non-significant (n.s.) relationships between the driver, growth trait measured and/or interindividual fish growth are 1337 

shown. Fish relatedness was left blank when information on parents was unavailable.   1338 

 1339 

 1340 

 1341 

Species Relatedness Growth trait 

measured 

Driver Relationship 

to growth 

Relationship to 

interindividual 

variation 

Reference 

Barramundi (Lates 

calcarifer) 

 
SGR  SMR + NA (Norin et al., 2016) 

Atlantic salmon 

(Salmo salar) 

 
fork length at 

2, 7 and 13 

weeks 

dominance + otolith size + NA (Metcalfe et al., 

1992) 

Steel head trout 

(Oncorhynchus 

mykiss) 

 
wet and dry 

mass increase 

dominance + social rank + + (Abbott & Dill, 

1989) 

Atlantic salmon 

(Salmo salar) 

 
SGR aggression + rSMR n.s. n.s. (Cutts, Metcalfe & 

Taylor, 1998) 

Rainbow trout 

(Oncorhynchus 

mykiss) 

Full siblings SGR and FCR ovine growth hormone 

treatment (NIDDK-oGH-

15) 

+ NA (Johnsson & 

Björnsson, 1994) 

Brown trout (Salmo 

trutta) 

Full siblings SGR AS + SMR + food level +/- dependent 

on food level 

+/- dependent on 

food level 

(Auer et al., 2015) 

Grass carp 

(Ctenopharyngodon 

idella) 

 
SGR SDA + NA (Carter & Brafield, 

1992) 



Atlantic salmon 

(Salmo salar) 

 
wet mass (over 

time) + feed 

intake 

growth hormone 

transgene + boldness 

+ + (Abrahams & 

Sutterlin, 1999) 

Masu salmon 

(Oncorhynchus 

masou) 

Some full 

siblings 

mass at day 0 

and day 30 

RMR + dominance + NA (Yamamoto, Ueda & 

Higashi, 1998) 

European eel 

(Anguilla anguilla) 

Some full 

siblings 

SGR rSMR + NA (Boldsen, Norin & 

Malte, 2013) 

Brown trout (Salmo 

trutta) 

Full siblings 

and half 

siblings 

SGR rSMR - (variable 

through time) 

NA (Norin & Malte, 

2011) 

Brown trout (Salmo 

trutta) 

Full siblings 

and half 

siblings 

mass over time SMR n.s. NA (Álvarez & Nicieza, 

2005) 

African cichlid 

(Haplochromis 

burtoni) 

Full siblings 

and half 

siblings 

change in 

standard length 

over 7 days 

social rank - NA (Hofmann et al., 

1999) 

Atlantic salmon 

(Salmo salar) 

 
change in fork 

length at 1730 

dd and 2842 

dd 

maternal cortisol + (offspring) NA (Eriksen et al., 2007) 

Atlantic salmon 

(Salmo salar) 

 
change in fork 

length at 510 

dd and first 

feeding 810 dd 

maternal cortisol - (offspring) NA (Eriksen et al., 2006) 

Rainbow trout 

(Oncorhynchus 

mykiss) 

 
growth rate 

(g/day) 

maternal stress n.s. + (but not 

analysed) 

(Contreras-Sánchez 

et al., 1998) 

Arctic charr 

(Salvelinus alpinus) 

Some full 

siblings 

SGR dominance + aggression 

+ swimming speed 

+/- dependent 

on swimming 

speed and 

rank 

NA (Christiansen & 

Jobling, 1990) 



Common carp 

(Cyprinus carpio) 

Full siblings SGR growth hormone 

transgene 

+ NA (Li et al., 2007) 

Southern catfish 

(Silurus 

meridionalis) 

 
SGR SDA n.s. NA (Fu et al., 2008) 

Atlantic cod 

(Gadus morhua) 

 
daily change in 

mass over 84 

days + 

condition 

factor 

HSI + mitochondrial 

enzyme CS activity in 

intestine 

NA + (Couture, Dutil & 

Guderley, 1998) 

Brown trout (Salmo 

trutta) 

Full siblings change in 

absolute size 

dominance/rank + 

metabolism + shelter use 

+ food availability 

+/- dependent 

on food 

availability, 

rank and 

habitat use 

NA (Hoogenboom et al., 

2013) 

Atlantic salmon 

(Salmo salar) 

Some full 

siblings 

SGR RMR + habitat + food 

distribution/predictability 

+/- dependent 

on habitat 

complexity 

and rank 

NA (Reid et al., 2012) 

Brown trout (Salmo 

trutta) 

 
SGR habitat complexity + dominant; - 

subordinate 

+ (Höjesjö et al., 2004) 

Rainbow trout 

(Oncorhynchus 

mykiss) 

 
SGR and FCR stocking density + flow 

speed + sustained 

aerobic scope 

+/- dependent 

on stocking 

density and 

flow 

NA (McKenzie et al., 

2012) 

Brook charr 

(Salvelinus 

fontinalis) 

 
SGR and FCR stocking density + 

dominance + stress 

- NA (Vijayan & 

Leatherland, 1988) 

Atlantic salmon 

(Salmo salar) 

 
SGR metabolism + aggression n.s. NA (SeppÄnen et al., 

2009) 



Rainbow trout 

(Oncorhynchus 

mykiss) 

 
SGR restricted feeding + 

dominance/social 

hierarchies 

+/- dependent 

on food 

availability 

and rank 

+ (Jobling & Koskela, 

1996) 

Common carp 

(Cyprinus carpio) 

 
mass increase 

over 6 weeks 

transgene + gut 

microbiota 

+ NA (Li et al., 2013) 

Rainbow trout 

(Salmo gairdneri) 

 
individual 

mass gain and 

feed intake 

number of pyloric caeca + NA (Bergot et al., 1981) 

Cichlid 

(Simochromis 

pleurospilus) 

 
SGR (% day) 

and digestive 

efficiency 

juvenile food availability 

+ digestive organ mass 

+ NA (Kotrschal et al., 

2014) 

Grass carp 

(Ctenopharyngodon 

idella) 

 
SGR (% day) higher protein retention 

+ lower protein 

degradation 

+ NA (Carter et al., 1993a) 

Chanchita 

(Cichlasoma 

dimerus) 

 
condition 

factor, SGR 

(% day) and 

body mass 

after two 

months 

sex size dimorphism +/- dependent 

on sex 

NA (Delgadin et al., 

2014) 

Haddock 

(Melanogrammus 

aeglefinus) 

 
SGR (% day) rate of energy loss + + (but not 

analysed) 

(Lankin et al., 2008) 

Atlantic cod 

(Gadus morhua) 

 
growth in mm 

per day and 

mg per day 

rate of energy loss + + (Peck, Buckley & 

Bengtson, 2004) 

Atlantic cod 

(Gadus morhua) 

 
dry mass, body 

mass, and 

standard length 

over ten weeks 

maternal mass and 

condition 

+ NA (Clemmesen et al., 

2003) 



Atlantic cod 

(Gadus morhua) 

Some full 

and half 

siblings 

SGR egg size + NA (Marteinsdottir & 

Steinarsson, 1998) 

Nile tilapia 

(Oreochromis 

niloticus) 

 
feed intake, 

FCR, fish mass 

stocking density - NA (Azaza et al., 2013) 

Hybrid sunfish 

(green sunfish 

(Lepomis 

cyanellus) X 

bluegill (Lepomis 

macrochirus)) 

Some full 

siblings 

SGR, feed 

intake 

initial size + NA (Wang et al., 1998) 

Arctic charr 

(Salvelinus alpinus) 

Some full 

siblings 

SGR isolation + + (Jobling & Reinsnes, 

1986) 

Atlantic salmon 

(Salmo salar) 

 
fork length and 

mass over time 

NA NA NA (Thorpe, 1977) 

Atlantic salmon 

(Salmo salar) 

Full siblings length and 

mass 

upper and lower modal 

groups + appetite 

+ + (but not 

analysed) 

(Metcalfe, 

Huntingford & 

Thorpe, 1988) 

Greenback flounder 

(Rhombosolea 

tapirina) 

Full siblings SGR dominance + 

appetite/feed intake 

+ + (Carter et al., 1996) 

Atlantic salmon 

(Salmo salar) 

 
SGR Diploidy + NA (Carter et al., 1994) 

Arctic charr 

(Salvelinus alpinus) 

Full siblings mass and 

length 

Maternal effects and 

genetic contribution of 

hybrid crosses 

+ NA (March, 1991) 

Atlantic salmon 

(Salmo salar) X 

Brown Trout 

(Salmo trutta) 

hybrids 

Some full 

siblings 

growth rate Hybrid + +  

(Galbreath & 

Thorgaard, 1994) 



Shanny (Lipophrys 

pholis) 

 
condition 

factor, change 

in mass over 5 

weeks and 5 - 

10 weeks 

sight + smell of 

conspecific 

- NA (Wirtz, 1974) 

Cichlid (Tilapia 

zillii) 

Full siblings mass increase 

over time 

dominance + appetite + 

food acquisition 

+ NA  

(Koebele, 1985) 

Pygmy sunfish 

(Elassoma 

evergladei) 

 
body mass 

over time (up 

to 175 days) 

stocking density 

/competition 

- + ovary size and 

egg number 

(Rubenstein, 1981) 

Arctic charr 

(Salvelinus alpinus) 

 
SGR, feed 

intake 

competition NA - (Jobling & Baardvik, 

1994) 

Arctic charr 

(Salvelinus alpinus) 

 
SGR variation in size of 

individuals within a 

group 

+ NA (Baardvik & Jobling, 

1990) 

Brown trout (Salmo 

trutta) 

 
SGR and FCR high mitochondrial 

efficiency of ATP in the 

liver 

+ NA (Salin et al., 2019) 

Rainbow trout 

(Oncorhynchus 

mykiss) 

 
SGR meal size + Ucrit + 

endurance 

+ meal size 

and 

endurance; - 

Ucrit 

NA (Gregory & Wood, 

1998) 

Rainbow trout 

(Oncorhynchus 

mykiss) 

 
growth rate (% 

day) 

protein synthesis + NA (Houlihan, 

McMillan & 

Laurent, 1986) 

Rainbow trout 

(Oncorhynchus 

mykiss) 

 
protein growth 

(% per day) 

protein synthesis + NA (McCarthy et al., 

1994) 

Pike (Esox lucius) 
 

SGR individual radial distance 

moved 

+ NA (Nyqvist et al., 

2018) 

Turbot (Scopo 

maximus) 

 
SGR and feed 

intake 

dominance + rank + NA (Irwin, O’Halloran 

& FitzGerald, 2002) 



Turbot (Scopo 

maximus) 

 
SGR and feed 

intake 

stocking densities and 

hierarchies 

NA + (Irwin, O’Halloran 

& FitzGerald, 1999) 

Greenback flounder 

(Rhombosolea 

tapirina) 

 
SGR stocking densities and 

hierarchies 

NA + (Carter et al., 1996) 

Dover sole (Solea 

solea) 

Some full 

and half 

siblings 

SGR stocking density NA + (Schram et al., 2006) 

Atlantic salmon 

(Salmo salar) 

Full siblings SGR (standard 

length mm) 

time to hatch + alevin 

length at 116 dpf 

+ hatch date; - 

alevin length 

+ (Gilbey et al., 2009) 

Bluehead wrasse 

(Thalassoma 

bifasciatum) 

 
otolith growth larval duration + size at 

age 

+ NA (Searcy & 

Sponaugle, 2000) 

Brown trout (Salmo 

trutta) 

Some full 

and half 

siblings 

body mass maternal dominance/rank 

+ egg position within 

mass 

+ + (Burton et al., 2013) 

Dorada (Brycon 

moorei) 

Full siblings growth (mm 

per day) 

isolation + 

boldness/aggression 

+ boldness; 

+/- isolation 

- isolation (Baras & Lucas, 

2010) 

European sea bass 

(Dicentrarchus 

labrax) 

 
SGR feed intake + dominance 

hierarchy 

+ + (Campeas et al., 

2009) 

Atlantic salmon 

(Salmo salar) 

Full siblings time to triple 

in mass 

GH transgene + NA (Tibbetts et al., 

2013) 

Orange fin 

anemonefish 

(Amphiprion 

chrysopterus) 

Full siblings SGR Parental flow 

environment 

+ NA (Cortese et al., 2022) 

Clown fish 

(Amphiprion 

percula) 

 
growth in mm dominance 

hierarchies/social rank 

+/- +/- (Buston, 2003) 
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Specific growth rate (SGR), routine metabolic rate (RMR), feed conversion ratio (FCR), specific dynamic action (SDA), residual standard 1343 

metabolic rate (rSMR), standard metabolic rate (SMR), days post-fertilisation (dpf), degree days (dd), hepatosomatic index (HSI), growth hormone 1344 

(GH), aerobic scope (AS), NA (not applicable).  1345 
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Yellow perch 

(Perca flavescens)  

Some full 

and half 

siblings 

SGR estrogen  

(Estradiol-17β (E2)) 

 

+ (mediated 

by initial size 

or 

maturational  

status) 

NA (Malison et al., 

1985) 

Yellow perch 

(Perca flavescens)  

Some full 

and half 

siblings 

SGR estrogen  

(Estradiol-17β (E2)) 

 

+ (mediated 

by initial size 

or 

maturational  

status) 

+ (e.g., sex related 

dimorphic growth) 

(Malison et al., 

1988) 

Threespined 

stickleback 

(Gasterosteus 

aculeatus) 

 

Full and 

half-siblings 

SGR exposure to predator + as juvenile 

- as adults 

(magnitude  

of 

relationship 

mediated by 

sex) 

NA (Bell et al., 2011) 


