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Abstract 14 

1. Spatio-temporal dynamics of biodiversity are a key measure when monitoring restoration success. 15 

Balanced species turnover is aimed at because it increases overall biodiversity and improves ecosystem 16 

stability and multifunctionality. For predictive restoration, it is important to analyse spatial beta 17 

diversity and to identify its drivers like site characteristics but also uncontrolled factors like spatial 18 

effects, historical factors, year effects and non-directional temporal turnover. 19 

2. We studied dike grasslands 4–19 years after restoration at River Danube in SE Germany over five years 20 

(2017–2021, 41 plots in 12 sites). We calculated beta diversity indices to describe spatial variation and 21 

temporal turnover, including their additive components ‘replacement’ and ‘nestedness’, or ‘gains’ and 22 

‘losses’. 23 

3. The analysis of the spatial variation of the restored dike grasslands did not reveal homogenisation 24 

despite a significant temporal turnover, and was largely dominated by replacement-driven dissimilarity. 25 

The replacement drivers changed over time, although replacement was mainly affected by exposition 26 

and spatial factors. Historical factors were inconsistent over time, and no statistically clear drivers were 27 

found for nestedness. 28 

4. The dike grasslands exhibited on average 37 ± 11% (mean ± SD) year-to-year turnover in species 29 

composition, with some spatio-temporal variation. Gains and losses were balanced over time, although 30 

prevalences changed over time and were most pronounced on south-exposed slopes. 31 

5. The restored grasslands exhibited spatial variation by site characteristics but also uncontrolled spatial 32 

factors. Moreover, high non-directional temporal turnover caused by weather fluctuations, slightly 33 

varying management, and stochastic biotic dynamics influenced spatial variation. Thus, restoration 34 

targets should be defined as a desired variation of alternative states. Furthermore, the dominance of 35 

replacement should move the focus from searching the perfect fit for certain targets to a variation of 36 

the approaches to increase beta diversity.  37 
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1 Introduction 46 

The purpose of ecological restoration is to predictably restore ecosystems at the landcape scale 47 

(Brudvig, 2011). To this aim, species composition must be affected not only by manipulating local site 48 

conditions, but also by taking into account the landscape context and historical factors (Suding, 2011). 49 

However, most of the variability in restoration outcomes remains unexplained (Grman, Bassett, & Brudvig, 50 

2013). Unexplained variability in species composition includes unmeasured deterministic factors, though it 51 

is also caused by stochastic processes (Mori, Isbell, & Seidl, 2018). Stuble, Fick, and Young (2017) showed 52 

that the same restoration measure carried out in different years and sites resulted in contrasting species 53 

compositions. This elusive spatio-temporal variability makes it difficult to achieve predictability, but the 54 

ensuing high beta diversity can be beneficial to overall biodiversity by preventing biotic homogenisation 55 

(Socolar, Gilroy, Kunin, & Edwards, 2016). Moreover, a high spatial beta diversity is important for 56 

landscape-scale ecosystem function multifunctionality (EFM, sensu Manning et al., 2018), and it is an 57 

insurance for ecosystem stability (Hautier et al., 2018; Wang et al., 2021). Restoration strives for 58 

biodiversity conservation and ecosystem service multifunctionality (ESM, sensu Manning et al., 2018), and, 59 

as shown, high beta diversity can be useful for both. Therefore, Brudvig et al. (2017) conclude that the goal 60 

should be ‘the widest possible variety of [restoration] outcomes within the range of desired conditions’. 61 

A promising approach to analyse spatial variability of species composition is the partition of spatial 62 

beta diversity, also called ‘spatial variation’ (Anderson et al., 2011), into its additive components, i.e. 63 

‘replacement’ and ‘nestedness’. Replacement is the substitution of species from one site to another by the 64 

same number of new species, while nestedness describes that species of one community are a subset of a 65 

richer one (Baselga, 2010). If replacement dominates, conservation should protect the sites equally since all 66 

are important for biodiversity; if nestedness dominates, conservation should focus on the most diverse site 67 

(Socolar et al., 2016), or adaptive management should reduce this richness gradient among the restored sites. 68 

Understanding spatial variability among restoration outcomes requires identifying key drivers to 69 

assess which factors are worth manipulating and which are important but not modifiable. This requires 70 

experiments but also learning from real-world, less standardized restoration projects at the landscape scale 71 



(Brudvig et al., 2017; Kaulfuß, Rosbakh, & Reisch, 2022). In (semi)natural grasslands of fertile landscapes, 72 

replacement is mainly affected by local environmental factors such as soil characteristics and management, 73 

and by uncontrolled factors such as landscape configurations in nutrient-poor landscapes (Conradi, 74 

Temperton, & Kollmann, 2017). In addition to landscape and local factors, historical contingencies can 75 

influence species composition for a long period of time (Fukami, 2015). For restorations, this can be 76 

captured by measuring the effects of site age or weather during establishment (Grman et al., 2013), as they 77 

capture year effects with lasting consequences for species composition (Werner, Stuble, Groves, & Young, 78 

2020). In real-world projects, restoration measures add variability to the restoration outcomes because they 79 

are less standardized than experiments and slightly vary due to economical or practical reasons, e.g., 80 

condition of donor site, date of hay transfer etc. 81 

However, there is still a high amount of unexplained spatial variation (Conradi et al., 2017; Grman 82 

et al., 2013). This occurs due to non-directional ‘baseline temporal change’, which do not have to change 83 

species richness, but cause shifts or fluctuations in species composition (Blowes et al., 2019; Magurran, 84 

Dornelas, Moyes, & Henderson, 2019). Restoration monitoring should account for this temporal beta 85 

diversity (Hillebrand et al., 2018), also called ‘temporal turnover’ (Anderson et al., 2011), since it promotes 86 

biodiversity and ecosystem stability (Tredennick, Adler, & Adler, 2017; Wang et al., 2021). Climate change 87 

or nitrogen depositions can lead to directional trends, while weather fluctuations, irregular disturbance, 88 

dispersal and biotic stochasticity (e.g., demographic stochasticity, biotic interactions) result in non-89 

directional year-to-year fluctuations of species composition also called ‘year effects’ (Magurran et al., 2019; 90 

Werner et al., 2020). Disturbance includes varying management since practitioners cannot guarantee to cut 91 

or graze each year at the same phenotypic stage or miss a cut due to rainy weeks. Fluctuations can exert 92 

higher effects on temporal turnover than directional trends (Fischer, Chytrý, Těšitel, Danihelka, & Chytrý, 93 

2020), and the strength of temporal turnover can vary in space (Fischer et al., 2020). 94 

The aim of the study is to measure the importance of spatio-temporal variability on restoration 95 

outcomes in a real-world context where basically the same approach and management was conducted. As 96 

required (Magurran et al., 2019), our study does frequent monitoring with plots distributed at a landscape 97 



scale. We conducted surveys for 5 years in 41 plots distributed on dikes along the river Danube. We observed 98 

spatial variation over time and had replicates for year-to-year temporal turnover, both of which are rare in 99 

vegetation studies (Hodapp et al., 2018). Moreover, dike grasslands are a perfect case for ‘renewal ecology’ 100 

since they can reconcile multiple ecosystem services (Bowman et al., 2017; Teixeira, Bauer, Moosner, & 101 

Kollmann, 2023): dike grasslands are not intensively managed and can enrich the biodiversity of an 102 

intensively used agricultural land (Bátori et al., 2016), while providing dike stability. For this study, we 103 

asked the following questions: 104 

1. How strong is the spatial variation and temporal turnover in species composition? 105 

2. What is the ratio of replacement to nestedness and of gains to losses? 106 

3. How strongly do uncontrolled spatial factors influence species composition? 107 



2 Material and methods 108 

2.1 Study area 109 

The study was conducted on dikes along the River Danube over 63 river km from Straubing to 110 

Vilshofen in SE Germany (Fig. 1, Appendix A1; 302–318 m asl; WGS84 (lat/lon): 48.82903, 12.94671). 111 

The climate is temperate-suboceanic with a mean annual temperature of 8.4 °C and precipitation of 984 mm 112 

(Deutscher Wetterdienst [DWD], 2021). The dikes were constructed between 2002 and 2013 (plot age: 4–113 

19 years). Productive soils were used for waterside slopes and less productive soils on the landside, which 114 

promotes rapid vegetation development for erosion protection on the waterside (Kleber-Lerchbaumer, 115 

Berger, & Veit, 2017). The target vegetation types were calcareous grasslands and lowland hay meadows 116 

(Appendix A2). The water side was seeded with regional seed mixtures from certified producers (5–8 g m-117 

²), on the landside, threshing material (8–25 g m-2) was applied. Threshing material was gained from nearby 118 

species-rich meadows and soil for the coverage layer of the dikes was taken from the respective construction 119 

site. For the first five years, dikes were mown 2–3 times per year, and afterwards mown 1–2 times per year 120 

or grazed by sheep with a subsequent late cut. All in all, restoration and management reflected the current 121 

practice in the region. 122 

 123 

2.2 Species data 124 

Vegetation was surveyed in June or July 2017–2019 and 2021 in 41 plots (Braun-Blanquet, 125 

1928/1964) with a plot size of 25 m² (2.0 m × 12.5 m) placed halfway up the slopes of the dike. We assigned 126 

the plots to the European habitat types (Chytrý et al., 2020) and selected reference plots of semi-natural 127 

grasslands within Bavaria from sPlotOpen (Sabatini et al., 2021). We chose four lowland hay meadow plots 128 

(EUNIS code R22; Chytrý et al., 2020) and four calcareous grassland plots (R1A) that were surveyed 1978–129 

1991 (Appendix A2). We defined specialists as species of Molinio-Arrhenatheretea or Festuca-Brometea, 130 

but also of Trifolio-Geranietea, Sedo-Scleranthetea, or Nardetea strictae (Appendix A2).  131 

All following beta diversity indices were calculated with Sørensen dissimilarities. Spatial variation 132 

of species compositions was calculated for each year separately (βsor), and was divided into its two additive 133 



components replacement (βsim) and nestedness (βsne; Baselga, 2010). We chose Baselga’s (2010) approach 134 

because it is independent of species richness for the replacement component (Baselga & Leprieur, 2015). 135 

For each year, the overall spatial variation and its components were calculated as multiple-site dissimilarity 136 

(βSOR = βSIM + βSNE; Baselga, 2013).  137 

Temporal aspects were expressed as the temporal beta-diversity index (TBI) for which each plot 138 

was compared between consecutive years (Legendre, 2019; corresponding to species exchange ratio (SER), 139 

Hillebrand et al., 2018). This index adapted Baselga’s indices to the needs of a directional character of 140 

temporal studies (Legendre, 2019). The TBI (Dsor) compares one plot over time and can be decomposed into 141 

species gains (Dgain) and losses (Dloss). Additionally, the abundance-based TBI (Dbc) was calculated with 142 

Bray-Curtis dissimilarities. 143 

 144 

2.3 Local, historical, space and time variables 145 

We measured several soil characteristics at each plot (Appendix A4). Soil sampling was conducted 146 

in August and September 2017. The soil variables were scaled to unit variance and used for a principal 147 

component analysis (PCAsoil). PC1soil represented the variation from high sand to high silt proportions as 148 

well as from high C:N ratios to high N amounts and concentrations. PC2soil described the variation from 149 

high phosphorus amounts to high CaCO3 proportions, while PC3soil mainly showed the variation in soil 150 

depth (Table 1, Appendix A5). As spatial factors, we calculated the amount of semi-natural grassland 151 

biotopes (not dikes) within a radius of 500 m and the distance to the closest of that biotopes (Table 1; 152 

Bayerisches Landesamt für Umwelt [LfU], 2022).  153 

For the analysis of spatial variation, we tested the plot age and the legacy effects by weather 154 

conditions during the establishment phase as historical factors. We used the temperature and precipitation 155 

data of the year of establishment and of the next year (Appendix A6). From monthly values, we calculated 156 

the mean averages of the year of establishment and the following year (i.e. March–February), and the 157 

average of the seasons (e.g., spring, March–May) of the year of establishment and the following year; the 158 

20 variables were subjected to a PCAclimate (Table 1, Appendix A6). Furthermore, we quantified spatial 159 



structures at multiple scales with distance-based Moran’s eigenvector maps (dbMEM), which were based 160 

on the coordinates of the plots (Dray, Legendre, & Peres-Neto, 2006). First, the species data were Hellinger-161 

transformed to downweigh rare species. Second, the matrices of Euclidean (geographic) distances between 162 

the plots were truncated to include only the distances of close neighbours. Third, a principal coordinate 163 

analysis (PCoA) was computed, from which six eigenvectors with positive spatial correlations were 164 

selected. The first eigenvector per year (MEM1) was correlated with river kilometres; therefore, it was 165 

excluded from the models. We received a MEM2 with p < 0.05 for 2018 and 2021, which we used as an 166 

explanatory variable because it accounts for unmeasured spatial configurations. For the analysis of temporal 167 

turnover, we included as an explanatory variable the year of dike construction combined with the location 168 

resulting in twelve combinations. 169 

 170 

2.4 Data analysis 171 

We visualise beta diversity with a non-metric multidimensional scaling (NMDS) ordination. For the 172 

analysis of spatial variation, we used a distance-based redundancy analysis (db-RDA) with a forward 173 

selection of explanatory variables for each year and each spatial variation component (replacement and 174 

nestedness), separately. Forward selection was carried out with the double stopping criterion when the full 175 

model had statistically clear effects (Blanchet, Legendre, & Borcard, 2008). The selection was stopped if 176 

no further variable had a statistically clear effect, or if a variable brought the model over the value of the 177 

R2
adj of the global model. Afterwards, we conducted variation partitioning to identify the main sets of drivers 178 

of the spatial variation (Peres-Neto, Legendre, Dray, & Borcard, 2006), e.g., the environmental, spatial or 179 

historical set. To test if there were statistically clear effects on the species composition, we performed a 180 

partial db-RDA that controlled for the variation explained by all other variables or all other sets of variables. 181 

If p < 0.05, we called the effects ‘statistically clear’ sensu Dushoff, Kain, and Bolker (2019). 182 

To analyse the temporal turnover, the continuous variables were first scaled and centred and checked 183 

for collinearity. If the correlation exceeded a Pearson |r| > 0.7, we excluded one variable (Dormann et al., 184 

2013). After modelling, we calculated the variance inflation factor (VIF) and removed variables with a VIF 185 



> 10 from the model. If necessary, we transformed the response variables to meet the model assumptions. 186 

We calculated Bayesian linear mixed-effects models (BLMM) with the random effect ‘plot’ and used the 187 

restricted maximum-likelihood estimation (REML), the optimiser Nelder-Mead and, for the random effect, 188 

the Wishart prior. To identify the final model, we first reviewed the residual diagnostics of the candidate 189 

models and subsequently compared the remaining models using the Akaike information criterion adjusted 190 

for a small sample size (AICc) and chose the most parsimonious model. Finally, we calculated the marginal 191 

and conditional coefficients of determination (R²m, R²c) and the 95% confidence intervals of the response 192 

variables. 193 

We performed all analyses in R (R Core Team, 2022), with the functions ‘beta.div.comp’, ‘TBI’ 194 

and ‘forward.sel’ of the package ‘adespatial’ to calculate spatial and temporal beta diversity, and to perform 195 

forward selections (Dray et al., 2021). Habitat types were assigned to the plots with the scripts of Bruelheide, 196 

Tichý, Chytrý, and Jansen (2021). For NMDS, db-RDA and variation partitioning, ‘metaMDS’, ‘envfit’, 197 

‘dbrda’ and ‘varpart’ of ‘vegan’ were used (Oksanen et al., 2020); ‘blme’ (based on ‘lme4’) for BLMM 198 

(Bates, Mächler, Bolker, & Walker, 2015; Chung, Rabe-Hesketh, Dorie, Gelman, & Liu, 2013); ‘AICc’ and 199 

‘r.squaredGLMM’ of ‘MuMIn’ for the AICc estimates and the goodness of fit evaluation with pseudo-R² 200 

values (Barton, 2020); and ‘DHARMa’ for model evaluation (Hartig, 2021). 201 



3 Results 202 

3.1 Beta diversity and habitat types 203 

The NMDS showed that the dike grasslands were close to the historic references but hardly reacedh 204 

them (Fig. 2). However, 37–51% of the 41 plots were classified as the targeted habitat types of hay meadows 205 

(R22) or calcareous grasslands (R1A; Appendix A7). Continually, about half of the plots were classified as 206 

general grasslands (R, 41–51%), and 0–15% failed and were classified as ruderal, dry and anthropogenic 207 

vegetation (V38). The number of plots associated with R1A and V38 constantly increased, but the plots of 208 

R22 decreased during the study period. The observed vegetation showed a gradient of increasing specialist 209 

richness (R² = 0.40) with decreasing ruderal cover (R² = 0.10; Fig. 2). 210 

The overall spatial variation in species composition among the dike grasslands was constant over 211 

the years (βSOR = 0.32–0.34); it was always dominated by replacement (βSIM = 0.28–0.29) and never by 212 

nestedness (βSNE = 0.04–0.05; Fig. 3). The temporal turnover per plot was 37 ± 11% (mean ± SD), and the 213 

colonisations and local extinctions were balanced over time (−3 ± 16%; Fig. 4). That was reflected in the 214 

calculation with the subset of specialist species (Appendix A10). 215 

 216 

3.2 Drivers of beta diversity 217 

For the replacement component (βsim), the measured variables explained more of the replacement-218 

driven dissimilarity in 2017 and 2021 (0.15–0.21) than in the years 2018 and 2019 (0.02–0.08). The local 219 

site characteristics changed species composition over the 4 years (Fig. 3). Furthermore, the site 220 

characteristics always explained slightly more of the variation then the other sets of variables (1–11%). 221 

Spatial factors had an effect in 3 years and explained 1–10% and historical factors were only included in 2 222 

years (1–3%).  223 

Exposition was a driver of replacement-driven dissimilarity (βsim) in 3 years (F1,37 > 3.0, p < 3.4e−03; 224 

Fig. 3). The substrate depth (PC3soil) influenced the replacement component in all 4 years, but was 225 

statistically clear only in 2017 and 2021 (F1,27 > 2.2, p < 2.8e−02). Location was a statistical clear driver in 226 

2017 (F8,27 = 3.0, p = 1.0e−04) and in 2021 the distance to the river and to the closest biotope (F1,35 > 3.2, p 227 



< 8.0e−04). High rainfall during the establishment year (PC1climate) had a clear effect in 2017 (F1,27 = 3.4, p 228 

= 2.4e−03; 2019: F1,27 = 1.9, p = 5.5e−02), while no statistically clear driver was found for nestedness (βsne). 229 

Year-to-year temporal turnover was lower between 2018 and 2019 compared to 2017/2018 and 230 

2019/2021 (Fig. 4A; final model, R²m = 0.28 and R²c = 0.42). The differences between the 12 locations were 231 

larger than those between years, but the uncertainty within the locations was far higher than the differences 232 

between the locations (Fig. 4B). The ratio of species gained to lost species was inconsistent over the years. 233 

Between 2018 and 2019, the plots gained species, while between 2017/2018 and 2019/2021, the plots 234 

predominantly lost species. This pattern was clearest on the south-exposed plots (Fig. 4C; final model, R²m 235 

= 0.41 and R²c = 0.42). At no location, gains or losses seems to dominate over the three comparisons (Fig. 236 

4D). 237 



4 Discussion 238 

Many dike grassland plots on the river Danube reached the desired habitat types, but the number 239 

varied over time, and some plots developed to a ruderal habitat type. The spatial variation was mainly driven 240 

by replacement, and the important drivers were spatial factors and exposition. No homogenisation was 241 

observed over the years albeit a large year-to-year species turnover. The turnover was constantly high but 242 

varied in its intensity over time, though the ratio between gains and losses was balanced out.  243 

 244 

4.1 High temporal turnover and spatial variation in restoration outcomes 245 

For practitioners and restoration ecologists, it is important to know the strength of spatial variation 246 

by uncontrolled factors at landscape scale, to recognize that there is temporal turnover and to quantify this 247 

turnover. The total spatial variation (βSOR = 32–34%) in restored dike grasslands did not show a tendency 248 

of homogenisation in the years 2017–2021 (41 plots of 25 m², Fig. 3), but was lower than the spatial variation 249 

in semi-natural grasslands in Germany and Great Britain observed by Diekmann et al. (2019) (67–75%, 36–250 

82 plots of approximately 25 m²). This could be due to a lack of rare species that drive spatial variation 251 

based on presence–absence data (Mori et al., 2018), but also due to the use of species-rich and regional but 252 

standardised seed mixtures that can lead to biotic homogenisation through restoration (Holl, Luong, & 253 

Brancalion, 2022). 254 

We observed year-to-year turnover rates of 22–59% (5–95% quantiles; median 36%; Fig. 4) in the 255 

restored dike grasslands. This was a smaller variation but a similar median, compared with a global 256 

grassland experiment (12–86%; Hodapp et al., 2018), and other global grasslands measured over 1–8 years 257 

within a range of 10–70% (5–95% quantiles; median ca. 39%; Hillebrand et al., 2018). Furthermore, 258 

Diekmann et al. (2019) observed long-term changes in grasslands of 46–77%. These comparisons suggest 259 

that short-term turnover in grasslands was not necessarily less intense than mid-term turnover. Temporal 260 

turnover caused mainly non-directional fluctuations but also a slight directional change (Appendix A9), 261 

which indicates that the grasslands are changing or still developing after 4–19 years. For our surveyed 262 

grasslands, baseline change is more important than directional change which shifts the focus to non-263 



directional drivers of turnover like weather, demographic, or management fluctuations (Magurran et al., 264 

2019; Werner et al., 2020). For restoration, baseline change can be beneficial since it can enable coexistence 265 

(Chesson, 2000), but it requires a greater afford for restoration evaluation since monitoring needs more than 266 

one year to assess restoration outcomes. This baseline change but also the observer error, which is always 267 

included, challenge predictive restoration (Brudvig et al., 2017; Morrison, 2016). 268 

 269 

4.2 Dominance of replacement and balanced temporal turnover 270 

Restoration aims towards a balanced temporal turnover and a replacement-driven spatial variation 271 

to avoid homogenisation and to foster biodiversity at all sites (Socolar et al., 2016). Here, spatial variation 272 

was mainly replacement-driven (27–29% vs. 4–5%; Fig. 3), which is in line with other local and global 273 

studies (Conradi et al., 2017; Diekmann et al., 2019). The observed low nestedness component was similar 274 

to that of Conradi et al. (2017), but only to certain studies analyzed by Diekmann et al. (2019), who 275 

calculated values in the range of 5–19%. The low nestedness suggests that most absent plant species are 276 

substituted at another site, indicating that the conservation value based on species richness was generally 277 

similar for all sites. Gains and losses became dominant in different years, but over the entire study period 278 

and for every location, gains and losses were balanced (Fig. 4), similar to a global study with time series 279 

over 10 years (Dornelas et al., 2019). The same is applies to the subset of specialist species, which indicates 280 

that an undesired change from meadow species to ruderals is not the case (Appendix A10). 281 

 282 

4.3 Responses of communities to space, time, and local site characteristics 283 

To understand the mechanisms behind patterns of beta diversity, it is necessary to know its main 284 

drivers. For spatial variation in species composition, we only identified statistically clear drivers for 285 

replacement but not for nestedness similar to another study in calcareous grasslands (Conradi et al., 2017). 286 

For replacement, we discovered as main drivers local factors followed by spatial factors which is in 287 

accordance with other studies (Conradi et al., 2017; Grman et al., 2013; but see Bagaria, Rodà, & Pino, 288 

2019). However, the main drivers varied over time, indicating that the drivers of spatial variation can change 289 



in strength from year to year. The fact that historical factors were only relevant in 2017 and 2019 is not very 290 

reliable, as historical contingencies would logically have to persist or eventually disappear. Besides, the 291 

tested variables explained together less of the spatial variation during the two dry years 2018 and 2019 (Hari, 292 

Rakovec, Markonis, Hanel, & Kumar, 2020) which suggests a greater relative importance of temporal 293 

turnover during these years. Our results highlight the importance of temporal replication of spatial studies 294 

to avoid misleading evidence and to improve the assumptions of uncertainty for prediction in restoration 295 

ecology. 296 

Main local factors explaining spatial variation were exposition followed by substrate depth (PC3soil). 297 

This result suggests that different expositions and substrate depths corresponded to different species 298 

compositions, but did not cause a richness difference. This changes the discussion about the right substrate 299 

depth among practitioners (Kleber-Lerchbaumer et al., 2017) to a call for varying substrate depths on dike 300 

grasslands to foster biodiversity. We could not identify historical contingencies using the climate during the 301 

establishment phase, and we could not identify a succession effect via plot age (4–19 years) on the 302 

replacement component. That contrasts the results of other studies (e.g., Grman et al., 2013), but fits the low 303 

directional temporal turnover in our study. However, we observed a site effect in three out of four years, 304 

similar to other studies (Stuble et al., 2017). In 2017, location had an effect which integrates unmeasured 305 

factors, which may represent management regimes or landscape structures. The last one is improbable 306 

because (i) of the use of MEMs to account for landscape effects, and (ii) for instance Grman et al. (2013) 307 

found only minor landscape effects. Although management was intended to be generally similar for all sites, 308 

it could be the reason for this effect: the cutting and grazing could have varied in 2017 and for some 309 

locations, due to weather conditions, organisational or economic reasons. Especially in 2021, the distance 310 

to the river and the next semi-natural grassland biotope excluding the dikes itself had an influence on spatial 311 

variation. This suggests that different degrees of connectivity results in different species compositions in 312 

some years. 313 

The intensity of the temporal turnover varied over time. In particular, between the two dry and hot 314 

years (2018/2019; Hari et al., 2020, Appendix A3), the turnover rate was reduced, which could be due to 315 



reduced biotic interactions under severe drought (Ploughe et al., 2019). The locations had different turnover 316 

intensities similar to Fischer et al. (2020), although there was no evidence for a plot age effect, which is 317 

consistent with a global study by Blowes et al. (2019). Gains and losses alternated in dominance, which was 318 

particularly evident in the south exposition. Interestingly, from a normal year to a dry year and the other 319 

way around (17/18, 19/21), losses dominated and between two dry years (18/19), gains dominated, 320 

suggesting a drought effect (cf. Stuble et al., 2017). Droughts can cause local extinctions of rare species, 321 

leading to losses (Chelli et al., 2019). The dominance of gains between two dry years might be due to 322 

reduced competition (Ploughe et al., 2019). With increasing competition, these specialists might disappear 323 

again. 324 



5 Conclusion 325 

Biodiversity depends not only on local site characteristics or historical contingencies, but also on 326 

uncontrolled spatio-temporal dynamics (Tredennick et al., 2017), which does not only include 327 

environmental factors such as climate, but also slight, unpredictable variability in restoration and 328 

management due to practical and economic reasons. Therefore, spatial beta diversity on a landscape scale 329 

should be included in the evaluation of restoration outcomes and must be monitored more than once. We 330 

showed that spatial beta diversity was mainly replacement-driven, and year-to-year temporal turnover was 331 

balanced and exceeded directional development by far. These results highlight the need for defining target 332 

area for a range of tolerable oucomes instead of a certain reference point, e.g., in an ordination or a certain 333 

state of a certain biotope. This means that reference data should be spatially more diverse and repeatedly 334 

surveyed to capture variation and baseline turnover (Shackelford, Dudney, Stueber, Temperton, & Suding, 335 

2021). All in all, restorations should still focus on a high accuracy of restoration outcomes, but their 336 

precision (variability) should and could be intermediate to foster heterogeneity (Brudvig et al., 2017).  337 

To combat biotic homogenization, we would support an even higher spatial variation than 32–34% 338 

and to increase ecosystem function multifunctionality (EFM) and ecosystem stability during environmental 339 

change (Hautier et al., 2018; Wang et al., 2021). This could be achieved by varying factors instead of 340 

searching the perfect fit, e.g., spatio-temporal complex management (Vadász, Máté, Kun, & Vadász-341 

Besnyői, 2016) varying substrate depths or using seed mixtures based on a random sample of a target species 342 

pool for each location but stratified by traits (cf. Bauer, Krause, Heizinger, & Kollmann, 2022). In the future, 343 

the link of beta diversity with ecosystem service multifunctionality (sensu Manning et al., 2018) has to be 344 

further investigated. 345 
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 547 



Tables 548 

Table 1 549 

Explanatory variables used for the full models on the temporal turnover and spatial variation of plant species on dike grasslands of River Danube. The 550 

variables were grouped in three sets: local, spatial, and historical. PC1–PC3 are the first three axes of the principal component analyses (PCA) for soil 551 

factors (Appendix A4) and climate conditions during establishment (Appendix A5). TT = temporal turnover; SV = spatial variation; * excluded due to 552 

variance inflation factor (VIF) ≫ 10; ** excluded from the final models due to the correlation with ‘biotope distance’ and ‘river km’; *** only obtained 553 

for years 2018 and 2021. 554 

Variable set Variable [unit] Explanation Model 

Local site characteristics PC1soil Sand vs. nitrogen/silt Both 

 PC2soil CaCO3 vs P Both 

 PC3soil Negatively correlated with soil depth Both 

 Exposition South- vs. north-exposed slope Both 

 Water-/Landside Waterside vs landside slope Both 

Spatial variables–Landscape context Location x restoration year* 12 groups of plots at the same location and restored in the same year – 

 Location 9 groups of plots at the same location SV 

 River km [km] Distance from the estuary measured along the river course Both 

 Distance to river [m] Orthogonal distance to the riverbed of the Danube Both 

 Distance to closest biotope [m] Orthogonal distance to the edge of the closest mapped grassland biotope Both 

 Biotope area [m²]** Grassland habitat amount within 500 m radius – 

 MEM1** Distance-based Moran’s Eigenvector Maps variable 1 – 

 MEM2*** Distance-based Moran’s Eigenvector Maps variable 2 SV 

Historical factors Plot age [yr] Time since restoration SV 



Variable set Variable [unit] Explanation Model 

 PC1climate High precipitation during the establishment year followed by dry summer SV 

 PC2climate 
Warm autumn during the establishment year followed by high rainfall in 
autumn 

SV 

 PC3climate Warm and dry summer during establishment year SV 

555 



Figures 556 

Figure 1 557 

 558 

Study sites with dike grasslands on the river Danube in SE Germany. The 41 plots (red dots) were placed 559 

on dikes (grey lines) at 12 locations along the river (black line). The labels mark the locations and the 560 

restoration year of the site. 561 

  562 



Figure 2 563 

 564 

NMDS ordination based on Sørensen dissimilarity of the species compositions of 164 dike plot surveys 565 

(filled dots) and eight reference plots (open symbols). The 41 dike plots were surveyed 2017–2021 on the 566 

dikes of river Danube, and the reference plots from Bavaria were taken from sPlotOpen (Sabatini et al., 567 

2021). The colors indicate the habitat type of the plot (sensu Chytrý et al., 2020; R² = 0.19). The vectors 568 

indicate the gradients specialist richness vs. ruderal cover (R² = 0.40; R² = 0.10) and graminoid cover (R² = 569 

0.07). The circles show the standard error (SE) of the vegetation classes. 2D stress: 0.25. 570 



Figure 3 571 

 572 

Spatial variation in species composition among dike grasslands of the river Danube. The overall spatial variation (βSOR) and its components, 573 

replacement (βSIM) and nestedness (βSNE) are shown. For the replacement-driven dissimilarity, the results of the variation partitioning are shown, and 574 

the pure and combined contributions (ratios 0–1) of each variable set: local environmental, spatial, and historical factors (Table 1). The variables 575 

presented were obtained by forward selection and sorted from high to low (partial) R² values. The P values were calculated for entire set of variables 576 

and single variables by partial distance-based redundancy analysis (db-RDA). *** p < 0.001; ** p < 0.01; * p < 0.05; n.s. = not statistically clear; 577 

Land/Water = Landside/Waterside; PCsoil = eigenvectors of a Principal Component Analysis (PCA) of soil variables; PCclimate = eigenvectors of a PCA 578 



of climate variables during the establishment of the dike grasslands; Distance to biotope = distance to the closest mapped grassland biotope which is 579 

not a dike. 580 

 581 



Figure 4 582 

 583 

Year-to-year turnover analyzed by calculating the temporal beta-diversity index (TBI), including 41 plots 584 

over 4 years with presence–absence data based on Sørensen dissimilarity (Dsor) (A, B). Furthermore, the 585 

two components of TBI are compared, that is, gains (Csor) and losses (Bsor) (C, D). Turnover was analyzed 586 

over time (A, C), and at certain locations which are subdivided by restoration year (B, D). For values of 587 

covariables, see Appendix A8. The black dots show the estimates accompanied by their 95% confidence 588 

interval (CI95) obtained from a Bayesian linear mixed-effects model (BLMM). The grey dots are the raw 589 



data, and the grey horizontal lines show the overall mean and standard deviation (A, B) or mark the 590 

balance between gains and losses (C, D). The black dots are filled if their CI95 do not cross the overall 591 

mean of the raw data or the 0 line; the locations are sorted by construction year. R²m = 0.28 and R²c = 0.42 592 

(A); R²m = 0.41 and R²c = 0.42 (C). The boxplots show the median and the box mark the 1st and 3rd 593 

quartiles. 594 


