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Abstract  32 

Global environmental change is happening at unprecedented rates. Coral reefs are among the 33 

ecosystems most threatened by global change and for wild populations to persist, they must 34 

adapt. However, little is known about corals’ complex ecological and evolutionary dynamics 35 

making prediction about potential adaptation to future conditions precarious. Here, we review 36 

the process of adaptation through the lens of quantitative genetics and make suggestions 37 

about how incorporating genomic tools can help to both understand and predict adaptive 38 

potential in corals. In many cases, small changes in experimental design may provide large 39 

increases in the power, precision, and accuracy of information produced for predicting corals’ 40 

adaptation to environmental changes. We also outline where quantitative genetic principles 41 

may be incorporated into current research programs that aim to bolster coral tolerance to 42 

future warming conditions. 43 

 44 

Introduction 45 

Anthropogenic change is driving ecological change, yet little is known about the complex 46 

ecological and evolutionary dynamics operating in wild populations making predictions 47 

highly uncertain (Nosil et al., 2020; Urban et al., 2016). Such knowledge gaps are laid bare in 48 

marine systems, where the logistics of working underwater and the difficulties of rearing 49 

organisms and conducting manipulative experiments mean that key population parameters 50 

including fecundity, growth, connectivity are often unavailable. Critically, coral reefs which 51 

already live close to their thermal limits (Berkelmans & Willis, 1999), are among the 52 

ecosystems most likely to be impacted by large-scale climate warming (Hoegh-Guldberg et 53 

al., 2007; Hughes et al., 2017; Walther et al., 2002). Greater knowledge regarding the 54 

ecological and evolutionary processes that underpin adaptation is urgently required if humans 55 

are to assume responsibility for mitigating or facilitating responses that promote coral reef 56 

resilience.  57 

Current population models to predict long term changes to total coral cover typically fall into 58 

two categories. Ecology-focused models capture complex coral population dynamics and 59 

species interactions but typically treat species as fixed biological traits (e.g., Bozec et al., 60 

2022). In contrast, evolution-focused models use demographic and population parameters to 61 

estimate genetic-based adaptation potential at the species level (Bay et al., 2017; Logan et al., 62 
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2014; Matz et al., 2018; Matz et al., 2020; McManus et al., 2021). Some evolutionary models 63 

include simple species interactions such as competition between two coral species with 64 

different life histories (McManus et al., 2021; Walsworth et al., 2019) or focus on the 65 

interaction between the coral cnidarian hosts and their photosynthetic endosymbionts 66 

(Baskett et al., 2009; Day et al., 2008; Logan et al., 2021). Regardless of specific 67 

assumptions, general conclusions are obscured by the discrepancy between ecological models 68 

that generally assume traits do not change over time, and evolutionary models that 69 

consistently find that evolutionary adaptation is a critical component for long-term coral 70 

persistence (reviewed by Xuereb et al., 2021).  71 

While adaptation appears vital for coral population persistence under a changing climate, the 72 

number and effect of genes (the genetic architecture) determining tolerance traits remains 73 

unknown for the vast majority of reef building coral species and therefore there is great 74 

uncertainty regarding the scope and speed of possible adaptive change (reviewed by Howells 75 

et al., 2022). Some studies show that temperature related traits likely have a genetic basis 76 

(reviewed in Bairos-Novak et al., 2021), although these estimates might not accurately reflect 77 

adaptive potential under natural conditions (Humanes et al., 2022). Many studies have 78 

detailed gene expression responses to acute heat stress (Barshis et al., 2013; Parkinson et al., 79 

2018; Rose et al., 2018; Traylor-Knowles et al., 2017), but whether expression differences 80 

among individuals within species have a genetic basis is largely unresolved (Dixon et al., 81 

2015; Kenkel & Matz, 2016). In a detailed examination of how genomic background affects 82 

short-term heat tolerance, Fuller et al. (2020) established that the genomic basis for acute heat 83 

tolerance in Acropora millepora is affected by many loci of the cnidarian host as well as their 84 

photosynthetic endosymbionts. While acknowledging that symbionts play an important role 85 

in thermal tolerance of the coral holobiont, we focus here on the genetics of the cnidarian 86 

host, as methods evaluating relatedness between individuals are more tractable at this level. 87 

Here, we aim to identify key genetic parameters that determine adaptive capacity in corals 88 

and highlight data gaps that hinder our ability to make robust predictions for coral futures.  89 

Such information is critical as empirical data on the genetic architecture of thermal tolerance 90 

traits remains unknown for the vast majority of reef building coral species. As many of the 91 

traits observed or predicted to confer adaptation are likely determined by the combined 92 

contribution of many genes with small effect (alternatively termed quantitative, complex or 93 

polygenic traits, see Falconer & Mackay, 1996; Hill, 2010; Lynch & Walsh, 1998), we 94 

review the process of adaptive evolution with a focus on quantitative genetics. Finally, we 95 
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make some suggestions about where future experimental efforts should be directed, which 96 

genetic parameters to estimate, and how they may be estimated.  97 

Selection, heritability, and genetic variance in single traits 98 

Adaptive evolution begins when individuals in a population differ in fitness relative to one 99 

another as a function of their trait values (Fig. 1). For complex traits, single trait phenotypes 100 

can be expressed in the form: 101 

P = G + E + G x E 102 

Where the phenotypic value (P) is the result of the individual’s genes (G), its environment 103 

(E), and the way those genes interact with and respond to environmental conditions (G x E). 104 

This treatment of the phenotype as the sum of underlying genetic and environmental effects 105 

defines the framework of quantitative genetics (Falconer & Mackay, 1996). When considered 106 

at the population level, the relative contributions of genetic and environmental effects within 107 

each individual have a defining role in determining how the population mean trait value 108 

evolves. If the variation across phenotypes in a population is determined by genetic variation, 109 

then selecting a subset of individuals based on their phenotype also selects a subset of the 110 

genetic variation controlling that phenotype, thereby increasing the frequency of selected 111 

alleles in the population. In contrast, if trait values are mainly due to differences in the 112 

environments experienced by individuals, selection may change the mean trait value of the 113 

population temporarily (i.e., phenotypic plasticity), but not changes to the allele frequencies. 114 

An example of this might include greater tolerance to heat stress where pre-warming events 115 

prepare an animal physiologically for the bleaching stress that follows (Ainsworth et al., 116 

2016). 117 

Phenotypic plasticity may provide an avenue for individuals to track shifts in variable or 118 

changing environments, even if responses do not persist over evolutionary time. Plastic 119 

phenotypes can be adaptive when phenotypic change occurs in the direction favoured by 120 

natural selection, but the fitness benefits of plasticity can be fleeting due to the inherent 121 

flexibility of plastic phenotypes and the lack of changes in the underlying genetics of the trait 122 

(Ghalambor et al., 2007). Similarly, epigenetic mechanisms may allow temporary increase in 123 

heat tolerance, although evidence for a transgenerational persistence of epigenetic effects in 124 

corals is currently lacking (Torda et al., 2017). Temporary and rapid phenotypic shifts can 125 

maintain population size in the short term, as plastic responses allow individuals with 126 
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maladapted genotypes to persist, however, these responses are unlikely to allow population 127 

persistence over the longer term and may slow adaptive responses to selective pressure 128 

(Gilbert & Miles, 2019). There is also growing evidence that plastic responses of a trait under 129 

selection may indicate the existence and possible alignment of heritable genetic variation in 130 

that trait (Noble et al., 2019). Despite the potential benefits of plasticity, evidence suggests 131 

plasticity may have limited potential to extend thermal tolerance for species living at the 132 

upper end of their temperature limits (Kingsolver & Buckley, 2018; van Heerwaarden et al., 133 

2016). So, for many corals which are already living close to their upper thermal threshold, 134 

plasticity may facilitate short term persistence, but may not be sufficient to bridge to new 135 

thermal optima.  136 

Adaptation to new fitness optima requires genetic changes in the direction of selection, as 137 

only processes which change allele frequencies in a population can fuel evolutionary 138 

adaptation. Thus, it is the genetic component of phenotypes that is the focus for studies of 139 

adaptive capacity (Hendry et al., 2018). Heritability is the common way of defining the 140 

genetic component of phenotypes and is a population specific metric that defines the 141 

proportion of phenotypic trait variance (VP) that can be attributed to genetic variation 142 

(Visscher et al., 2008). This genetic variation can be characterised in two ways: either total 143 

genetic variation (VG: broad sense heritability, H2 = VG/ VP) which defines all genetic effects 144 

on the trait of interest, or only the additive genetic variation (VA: narrow sense heritability, h2 145 

= VA/ VP). Both estimates are widely used but differ in terms of the conclusions which can be 146 

drawn from their estimation. 147 

Additive genetic variance describes a subset of total genetic variance, excluding other, non-148 

additive, sources of genetic variance such as dominance (VD) or epistasis (VI). Dominance 149 

refers to the interactions between alternative alleles at a single locus, while epistasis describes 150 

interactions between loci that effect the phenotype. As these interactions are dependent on the 151 

specific combination of alleles present in the individual, and as this set is reshuffled when 152 

those alleles are passed from generation to generation, non-additive sources of variation (VD, 153 

VI) are not directly inherited. The relative magnitude of non-additive genetic variance in wild 154 

populations remains unclear (Class & Brommer, 2020), however, broad-sense heritability 155 

may overestimate the potential for long-term adaptive responses.  156 

Whereas evolutionary predictions based on additive genetic variance (VA) will be more 157 

precise than prediction based on total genetic variance (VG), methods for estimating VA are 158 
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also more involved. An increased range of relatedness between individuals is required to 159 

tease apart the relative contributions of additive, dominance, and epistatic effects on 160 

phenotypic traits, which is difficult to achieve outside of laboratory conditions (Wilson et al., 161 

2010). For example, experiments might include large numbers of related siblings to reliably 162 

estimate VG, but statistical power to isolate dominance from additive genetic effects comes 163 

not from the number of offspring produced, but from the number of crosses between different 164 

parental combinations (e.g., half siblings sharing one parent but not the other, see Falconer & 165 

Mackay, 1996; Lynch & Walsh, 1998; Walsh & Lynch, 2018; Wilson et al., 2010). 166 

Some coral studies have attempted to produce multiple crosses per parent (e.g., Quigley et al., 167 

2017), however, future experiments should include more crosses between more parents for 168 

reliable estimation of these partitioned variances (critically, VA) alongside trait means. 169 

Moreover, to isolate genetic and environmental influences on phenotypes, replicate clutches 170 

of offspring from each family must be maintained separately to avoid confounding 171 

relatedness and common experimental environment. Without clutches being replicated in 172 

different experimental units (e.g., aquaria), differences in trait values among clutches driven 173 

by common environment effects (VE) may be erroneously ascribed to VG. These constraints 174 

are particularly relevant to experimental designs for reef-building corals, where obtaining 175 

many independent samples requires extensive infrastructure (such as saltwater aquaria 176 

systems with multiple tanks for replication) and generating crosses in large numbers can be 177 

logistically challenging.   178 

Genetic variance (VG or VA) is a population specific parameter, so estimates from field 179 

sampled individuals provide estimates for the sample, not the wild population. The goal 180 

therefore is to sample enough genotypes from the field to ensure the sample accurately 181 

reflects the natural genetic diversity of the population. If the sample size is small, it is 182 

unlikely to capture the breadth of genetic and phenotypic variance in the wild population and 183 

evolutionary predictions will therefore be unreliable. Increasing sample sizes using 184 

fragmentation or clonal replication does not avoid this problem as fragments do not increase 185 

the sample size of genotypes and can result in pseudo replication if fragments are treated as 186 

unique individuals in statistical analyses. Furthermore, clones share an identical genome, 187 

which can bias estimates of heritability upward because non-additive genetic variance cannot 188 

be partitioned from additive genetic variance. In short, estimating metrics such as heritability 189 

to describe genetic variation is key to predicting the adaptive capacity of coral populations, 190 

but the accuracy of these predictions may be compromised if experimental designs fail to 191 
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adequately partition variance into genetic and non-genetic components. Box 1 details how 192 

experimental design can be modified to increase power, accuracy, and precision. 193 

A few studies have estimated heritability and genetic variation of coral traits (reviewed 194 

recently in Bairos-Novak et al., 2021).  Broad sense heritability of traits associated with 195 

temperature effects on growth and survival are reported in the moderate to high range (H2 = 196 

0.2 - 0.6), suggesting that there is substantial capacity to evolve. These estimates, however, 197 

are drawn from a limited number of studies mostly conducted under laboratory conditions 198 

(Bairos-Novak et al. 2021), which may yield higher H2 estimates than when measured under 199 

natural conditions due to dampened environmental variance under controlled laboratory 200 

conditions (Lynch & Walsh, 1998; Weigensberg & Roff, 1996). Empirical estimates of 201 

narrow sense heritability (h2) are relatively uncommon, and with estimates substantially 202 

lower as compared to those for broad sense heritability (H2) (Figure 1 in Bairos-Novak et al., 203 

2021), implying that there are large non-additive contributions to total genetic variance for 204 

these traits. There is also large variation between estimates for the same trait from different 205 

studies. Differences across studies could arise from non-standardized measurements or 206 

experimental assays including different life stages. Alternatively, responses could be sensitive 207 

to source population, as expected with genetic differentiation among populations, or if natural 208 

variation was not well captured by sampling efforts. While heritability has been estimated for 209 

growth, survival, and select physiological attributes (Figure S1), Bairos-Novak et al (2021) 210 

identified no studies that explicitly test the heritability of key thermal tolerance traits such as 211 

thermal optimum (Topt), critical thermal limits (CTmax–min), or thermal resistance in terms of 212 

survivorship. Further studies are therefore needed to provide this basic knowledge about the 213 

degree to which thermal tolerance will be passed to future generations. To provide beneficial 214 

insight, manipulative experiments must focus on more realistic experimental conditions, be 215 

more precise in characterising additive genetic variation in adaptive traits, and use offspring 216 

from a larger number of field collected parents rather than clonal replication of genets.  217 

To obtain more precise estimates of the key genetic parameters necessary for predicting 218 

adaptive responses in the wild, new approaches to studying coral genetics will be required. 219 

Following terrestrial researchers working in wild populations, the goal should be to estimate 220 

narrow-sense genetic variances and covariances under field conditions using an individual 221 

based ‘animal model’ (Charmantier et al., 2014; Gienapp et al., 2017; Wilson et al., 2010). 222 

Rather than relying on strict breeding designs to generate offspring of varying relatedness, the 223 

animal model uses a relatedness matrix constructed of coefficients of relatedness among 224 
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individuals to inform estimates of quantitative genetic parameters. These coefficients of 225 

relatedness can be inferred from theoretical expectations based on known pedigrees (i.e., 226 

r = 0.5 for the relatedness between parents and offspring or between full-siblings or 0.25 for 227 

half siblings), from multilocus genotypes or a combination of both methods. Employing a 228 

genomic approach to estimate a genomic relationship matrix in quantitative genetic studies 229 

has several benefits: first, it takes advantage of the diversity of relationships in wild 230 

populations to partition additive from non-additive genetic effects. Second, ‘experiments’ can 231 

be conducted in natural settings, with treatment effects and population parameters reflecting 232 

realistic conditions (Gienapp, 2020). Additionally, the ability to directly link genotypes to 233 

phenotypes means that offspring phenotype can be predicted by genotyping parents (known 234 

as genomic prediction). Genomic prediction has been used widely in agriculture and medical 235 

genetics (Wray et al., 2019) and enables the study of evolutionary genetics in wild 236 

populations (Ashraf et al., 2020; McGaugh et al., 2021). To date, only one study has used 237 

genomic prediction in corals, where around 62% of the variation in bleaching tolerance in 238 

Acropora millepora could be predicted based on a model combining environmental variables, 239 

symbiont identity, and genomic sequence data as predictors (Fuller et al., 2020). The promise 240 

of genomic prediction is significant. We may be able to predict stress responses such as 241 

bleaching from genomic sampling without the need to measure individual phenotypes, 242 

streamlining the process of selecting optimal genotypes for breeding and restoration 243 

practices. In addition, genomic prediction can be used to select the target reefs for 244 

conservation or restoration priority based on the spatial distribution of tolerance associated 245 

alleles. 246 

 247 

Beyond single traits - expanding adaptive genetics to consider multivariate phenotypes 248 

and trade-offs between traits 249 

In wild populations, the relationship between individual traits and fitness is typically unclear 250 

(Barghi et al., 2020). The relationship could be causal where a variation in trait value causes 251 

variation in fitness, or the relationship could be correlated where association between one 252 

trait and fitness is due to effects of a second unmeasured trait on fitness. While it is tempting 253 

to think of heat tolerance as a trait in and of itself, in actuality thermal tolerance is likely a 254 

complex multidimensional phenotype comprised of multiple individual traits (Angilletta Jr, 255 

2009; Lande & Arnold, 1983; Schluter, 1996; Svensson et al., 2021; Walsh & Blows, 2009). 256 
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Thus, when considering adaptation, it is useful to move beyond single trait heritability and 257 

consider the multivariate genetic architecture, which ultimately determines how the whole 258 

phenotype may respond to selective pressures.  259 

Multivariate genetic variation is best captured by the genetic variance-covariance matrix G 260 

(Lynch & Walsh, 1998), a matrix describing both the quantity of genetic variance underlying 261 

individual traits and the degree to which that variation is shared among traits: namely the 262 

genetic co-variance (shown in Fig. 2). A co-variance of zero indicates that evolution of those 263 

traits can proceed independently (Fig. 2b), whereas a non-zero value indicates that selection 264 

on trait one is predicted to also change trait two (Fig. 2a & 2c). Genetic correlations can 265 

therefore limit or facilitate evolution depending on how genetic variation across multiple 266 

traits is associated with overall fitness. Methods utilising genomic relatedness matrices and 267 

supporting genomic prediction are expandable to incorporate multiple traits, so they can be 268 

used to calculate additive genetic variance for individual traits as well as genetic co-variances 269 

between traits (Kruuk, 2004).  270 

Adaptive evolution is more rapid and predictable when selection aligns with the major axes 271 

of genetic variation (Fig. 2c), so called ‘evolution along genetic lines of least resistance’ 272 

(Schluter, 1996). In contrast, adaptation can be prevented altogether when genetic 273 

covariances limit the phenotype space available for selection to act (Arnold et al., 2001) (Fig. 274 

2a). It follows then, that while individual traits may harbour genetic variance, the presence of 275 

genetic correlation means that some trait combinations have little to no genetic variance, 276 

ultimately resulting in no response to selection and no adaptation (Walsh & Blows, 2009).  277 

Despite being a fundamental factor determining how populations may respond to selection, 278 

estimates of genetic covariances in wild populations remain relatively uncommon. For 279 

terrestrial organisms, several long-term multigenerational monitoring projects have been 280 

conducted in birds and mammals (summarised in Bonnet et al., 2022), which have produced 281 

estimates of G, and find some instances where trait covariances are putatively limiting 282 

evolution (Teplitsky et al., 2014). For corals, very little is known about patterns of genetic 283 

covariance or genetic trade-offs. One of the few examples where genetic correlation has been 284 

investigated  suggests few trade-offs exist between fitness related traits such as growth rates, 285 

coral colour, and survival in corals under environmental stress (Wright et al., 2019), however, 286 

more investigations are required before we can be certain that adaptation will proceed 287 

without constraint.  288 
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 289 

Integrating quantitative and population genetics to study adaptation 290 

Quantitative genetics largely focuses on single populations in isolation; in nature, populations 291 

will be connected by migration (gene flow) that may vary in magnitude and direction. 292 

Similarly, population sizes will differ over space and time and therefore the influence of 293 

genetic drift will also vary across a species’ range. Both migration and genetic drift will thus 294 

influence the quantitative genetic variation locally available for selection to act upon and the 295 

study of these dynamics is largely the remit of population genetics. For example, empirical 296 

estimates of migration and population size are readily obtained from DNA sequences or 297 

multilocus genotypes, so multiple research questions can be answered with genomic data. 298 

Theory that seeks to expand quantitative genetic inferences across linked populations has 299 

largely focused on idealised arrays of populations with equal and symmetric migration 300 

subjected to a linear environmental gradient exerting selection (a configuration reminiscent of 301 

a north to south oriented fringing reef). Even such simplified representations of multiple 302 

populations show that interactions between the steepness of the environmental gradient, 303 

migration rates, and the intrinsic rate of population growth can result in a wide variety of 304 

outcomes (Holt & Gomulkiewicz, 1997; Kirkpatrick & Barton, 1997; Pease et al., 1989). 305 

Such simplified scenarios suggest that local adaptation is possible under some parameter 306 

combinations, especially for centre of range populations, while in peripheral populations 307 

allele frequencies are affected by immigration from central populations such that their 308 

phenotypes are not able to fully match the optimum set by the local environment (i.e., 309 

peripheral populations are maladapted). Fig. 3a provides a conceptual illustration of these 310 

dynamics, where range edge populations arrayed across a thermal gradient are slightly 311 

maladapted. Under rapid climate change (Fig. 2B; following Davis & Shaw, 2001), the 312 

species-wide dynamics will be altered and lagging edge populations will be greatly 313 

maladapted as their new optima lie outside any historical phenotypic value for the species. In 314 

contrast, leading edge populations may receive immigrants carrying genetic variation that can 315 

shift local phenotypes to the new local optimum (genetic rescue). In addition to 316 

environmentally mediated changes in fitness optima, populations can also move away from 317 

phenotypic optima through genetic drift, whether due to constant small population size (for 318 

example, a small reef patch) or bottlenecks resulting from extreme disturbances (cyclones or 319 

Crown-of-Thorn outbreaks, in the case of corals). 320 
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In reality, estimates of migration rates, population sizes, intrinsic rates of population increase, 321 

and genetic architectures are available for few wild species, much less corals that produce 322 

microscopic dispersive planktonic larvae. However, just as genomic resources can lead to 323 

greater understanding about how VA is linked to the phenotype (using the animal model, for 324 

example), these same genetic data can also be used to infer population sizes and migration 325 

rates, providing greater clarity on the demographic parameters which determine possible 326 

outcomes for corals in a warming future. Indeed, coral-focused evolutionary models that 327 

attempt to incorporate parameters relevant to coral biology support the broad brush concepts 328 

summarised by Fig. 2, concluding that poleward flowing ocean currents can disperse warm 329 

adapted larvae into more temperate populations, in effect rescuing them from the increase in 330 

temperatures predicted under climate change (Matz et al., 2018; Matz et al., 2020; McManus 331 

et al., 2021).  332 

New insights regarding the possible range shifts resulting from climate change have provoked 333 

considerable discussion on how management interventions might mitigate coral 334 

maladaptation (Anthony et al., 2020; National Academies of Sciences, 2019). Because 335 

natural migration may not redistribute adaptive genetic variation fast enough to track climate 336 

change, human-assisted migration could accelerate adaptation rates in wild populations and 337 

enable genetic rescue (Aitken & Whitlock, 2013; Coles & Riegl, 2013; van Oppen et al., 338 

2017; Weeks et al., 2011). Long-distance assisted migration might capture genetic variation 339 

relevant to large-scale stressors such as warming temperature. For polygenic traits such as 340 

thermal tolerance, geographically separated populations have often arrived at different 341 

combinations of alleles underlying similar phenotypes (Bolnick et al., 2018; Yeaman, 2022). 342 

This difference in genetic solutions to similar environmental challenges may mean that 343 

assisted migration could accelerate adaptation by leveraging the fact that populations can be 344 

at the same latitude, experiencing broadly similar environments, but contain very different 345 

genetic solutions to equivalent stresses. Thus, long distance assisted migration could 346 

introduce locally novel variants and might greatly expand the scope for phenotypic change.   347 

Conversely, evidence for considerable local adaptation (presumably across multiple traits: 348 

Baums, 2008) and considerable genetic variation for thermal tolerance within a reef 349 

(Humanes et al., 2022), suggests that transplantation over short distances might provide 350 

benefits through increased genetic variation available to selection. Importantly, robust 351 

estimates of adaptive potential of wild populations may reveal cases where natural standing 352 

variation is sufficient to support adaptive changes without assisted migration. 353 
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Ultimately, integrating genomics with quantitative and population genetics provides better 354 

understanding of the effects of: 1) the genetic architecture of adaptive traits and potential 355 

constraint arising from genetic correlations; 2) the demographic and historical patterns that 356 

have shaped genetic variation within and between coral populations; and 3) possible 357 

evolutionary trajectories under anthropogenic selective pressures. As coral reef conservation 358 

moves to more active management activities to facilitate adaptation, incorporating knowledge 359 

about population size and migration with information about the genetics of adaptive traits can 360 

provide the opportunity for more effective targeted interventions. 361 

 362 

Implications and recommendations 363 

Understanding and predicting adaptation in corals requires deeper knowledge of the genetic 364 

basis of adaptive traits and better characterisation of the phenotypes conferring fitness in the 365 

wild. Here we briefly outline some key principles for this integration:  366 

1) Incorporate quantitative genetics into ongoing experimental design.  367 

Refinement of planned experiments in corals has the potential to shed light on the genetic 368 

architecture of adaptive traits. Quantitative genetic designs can be woven into ongoing 369 

experiments, producing data on the genetic basis of potentially adaptive traits. Many of the 370 

classic statistical methods, such as regression, originate from quantitative genetics (Fisher, 371 

1919), so in many cases, quantitative genetic principles can be built into existing 372 

experimental frameworks designed around those analyses. The key requirement is that 373 

populations are comprised of individuals with some known degree of relatedness. Large 374 

numbers of crosses may be impractical under logistical constraints as mentioned above, 375 

however this can be achieved through inference of relatedness from genotypes (Gervais et al., 376 

2019).  377 

Experimental power then comes from the choice of replication level: within family (or 378 

clonal) replication will be less useful than between family replication for population level 379 

inference. Box 1 provides some indications of how experimental designs can be tweaked (see 380 

also Gienapp et al., 2017; Wilson et al., 2010), and general quantitative genetic references 381 

(such as Falconer & Mackay, 1996; Lynch & Walsh, 1998) can provide deeper insights on 382 

relevant experimental designs. Incorporating these principles during experimental planning 383 

and before field sampling will greatly improve the potential insights gained from 384 
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manipulative experiments and may facilitate the use of wild populations as a surrogate for 385 

experimental treatments (Ashraf et al., 2020; Bay & Guerrero, 2020; Kruuk, 2004). Thus, 386 

integrating both population and quantitative genetic principles should enhance the power, 387 

precision, and accuracy of existing studies, all while strengthening opportunity for 388 

interdisciplinary collaboration.  389 

2) Understand the trade-offs and genetic constraints of the multivariate phenotype 390 

A large body of quantitative genetic theory generally concludes that “trait-by-trait 391 

explanations of the natural world are doomed to fail” (Walsh & Blows, 2009). Thus, we 392 

suggest that moving beyond the current focus on estimating single trait heritability to 393 

quantifying additive genetic variance for combinations of traits will yield more useful 394 

insights. While individual traits may harbour genetic variance, it is ultimately the patterns of 395 

variance shared among traits that determines if and how organisms can adapt to 396 

environmental change. 397 

Using genomic data to infer relatedness allows characterisation of quantitative genetic 398 

architecture of adaptation under natural conditions via the ‘animal’ model (Wolak & Reid, 399 

2017). Critically, the multivariate animal model can provide understanding of genetic trade-400 

offs that may occur as thermal traits evolve, which is key to realistic predictions about coral 401 

adaptive capacity in the future (Hoffmann et al., 2021). While gaining insight into genetic 402 

trade-offs or constraints may take some time, serious consideration must be given to whether 403 

selection on heat tolerance affects other fitness attributes such as growth or reproduction. 404 

Furthermore, studies are needed to understand how potential trade-offs might have diverged 405 

among populations experiencing different selective pressures, various sources of immigrants, 406 

and various population sizes. 407 

3) Use quantitative and population genetics to incorporate evolutionary thinking into 408 

restoration and resilience building. 409 

The rapid decline of coral reef ecosystems has motivated discussion regarding possible active 410 

human interventions to maintain and restore function in coral reef ecosystems (Baums et al., 411 

2019; National Academies of Sciences, 2019; van Oppen et al., 2017). Additionally, there is 412 

growing sentiment that reef management should plan for future ecological conditions rather 413 

than reconstruct pre-disturbed states (Higgs et al., 2018; van Oppen et al., 2017). One way to 414 

improve the accuracy of managing for future conditions is to incorporate principles from 415 
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evolutionary genetics into management planning. For instance, if natural adaptation cannot 416 

keep pace with the speed of environmental change, genomic data can help select appropriate 417 

interventions that aim to maintain or supplement adaptation. Recent methodological 418 

developments demonstrate that genomic prediction is feasible outside model systems 419 

(including corals: Fuller et al., 2020) and across multivariate phenotypes(Reddiex & 420 

Chenoweth, 2021). Application of genomic prediction in agriculture has shown that 421 

combining good quality phenotyping with genomic data can provide insight into the genetic 422 

architecture underlying a wide range of complex traits and allow more efficient selection of 423 

high fitness individuals (Meuwissen et al., 2001).  424 

Shifting from estimation of metrics such as heritability in single traits toward characterisation 425 

of additive genetic variance across a multivariate phenotype is key to predicting how wild 426 

populations will fare under future climate scenarios. Significant recent investment in coral 427 

reef research has yielded high quality phenotype and genetic resources that have removed 428 

some of the previous barriers to the characterisation of natural adaptive capacity. Small shifts 429 

in the way we study corals, including incorporating quantitative genetic analyses, can reduce 430 

uncertainty in predictions and enhance targeted and effective conservation interventions. 431 

 432 

 433 

>>>>START BOX 1 434 

Box 1: Notes on sample sizes 435 

Too many factors influence quantitative genetic experiments for there to be one single 436 

recommendation for what constitutes an adequate sample size. The critical determinant is the 437 

“noise” in trait measures, where high measurement error, high micro-environmental 438 

sensitivity, and lower ‘true’ heritability, all contribute to experimental noise. Thus, if noise is 439 

low, fewer samples may give a good estimation of genotypic value. In contrast, traits with 440 

low heritability (high noise) such as life history and physiology traits will require more 441 

replication.  442 

 443 

Klein (1974) provides some instructive calculations of power for breeding designs: for 444 

moderate heritability (0.4), an experiment with 100 families and 2-4 offspring per family has 445 

a > 98% probability of detecting broad-sense heritability (H2) if it exists (using mid-parent-446 
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offspring regression or full sibling designs), but this design only has a 66% probability of 447 

detecting narrow-sense h2 (using the intraclass correlation of half-sibs). An experiment would 448 

need 200 families with 4 offspring per family to get to > 90% probability of detecting 449 

moderate narrow sense h2 and over twice that sample size if heritability is 0.2 (Klein, 1974). 450 

Different experimental designs resulting in the same number of families would also differ in 451 

their ability to detect additive genetic effects; for instance, a design including 50 sires each 452 

mated to two dams would have greater power but lower accuracy than a design including 25 453 

sires each mated to 4 dams. Similar overall numbers are suggested for pedigree structured 454 

populations: Quinn et al. (2006) recommend minimum of 100 observations per year for 3 455 

years to detect h2 as low as 0.2 (with different distributions of those 300 data points, e.g., 30 456 

observations over 10 years, having lower power to detect genetic effects than 100 457 

observations over 3 years). Bonnet et al. (2022) re-analysed data from 19 published bird and 458 

mammal studies, finding generally low levels of h2 in fitness related traits. This approach 459 

illustrates the value of increased pedigree depth (number of years/generations, Bonnet et al., 460 

2022, Table S2) and completeness (number of observations, Bonnet et al., 2022Table S1) 461 

available from large, long-term, data sets allows detection of low additive genetic variance in 462 

fitness traits. 463 

 464 

Genomic relationship matrix approaches can be more difficult to generalise due to population 465 

dynamics in wild populations (discussed in Integrating quantitative and population genetics 466 

to study adaptation), although Müller et al. (2015) provide some indication of sample size 467 

through simulation. For a population of 200 unrelated individuals, using 2,500 markers (10 468 

chromosomes, 18 Morgans total) the reliability (calculated as the squared correlation 469 

coefficient between genetic estimated breeding values and the simulated true genetic values, 470 

𝜌2) of 𝜌2 = 0.36 for h2 = 0.25, increasing to 𝜌2 = 0.78 for high h2 = 0.75. Larger sample sizes 471 

would be required for populations where inbreeding is common, such as for broadcast 472 

spawning marine invertebrates, as the number of genetic lineages would likely be fewer than 473 

the number of individuals. 474 

 475 

While these sample sizes are unrealistic for most experimental budgets and timelines, they 476 

highlight the fact that all current quantitative genetic studies are likely underpowered and are 477 

incapable of correctly rejecting the null hypothesis that the trait is not heritable. In Table 1, 478 

we provide some suggestions on how researchers can pragmatically allocate experimental 479 

efforts within the logistical constraints of their system to maximise power, precision, and 480 
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accuracy in estimating additive genetic effects. In all cases, increasing the number of families 481 

(rather than offspring per family), replicated measurement of the same individual over time, 482 

increasing the pedigree depth or number of generations, and avoiding clonal replication will 483 

likely be the best approach for increasing the power to detect additive genetic variation 484 

associated with thermal tolerance traits. 485 

>>>>END BOX 1 486 
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Table 1. Key determinants of power, precision and accuracy in different quantiative genetics experimental design. Quantitative genetic 492 
experiments require substantial sample sizes. If effective sample sizes are beyond the logistical constraints of their experimental system, 493 
practitioners should prioritise experimental effort towards maximising the key principles of power, accuracy, and precision. For each of the three 494 
main experimental designs, the data required to increase power, accuracy, and precision are identified along with key references. 495 
 496 
 497 
Method Power Accuracy Precision Key References 
Structured breeding 

(includes nested, 
full-sibling, and half-
sibling design) 

Number of sires The number of dams (the number of times a sire effect 
can be measured) 

Number of 
offspring per 
cross 

(Klein, 1974; Klein et 
al., 1973; Lynch & 
Walsh, 1998, pp 543) 

Unstructured 
breeding (Pedigree 
‘animal’ models) 

Number of 
individuals in the 
base population 

The number of genetic lineages from the base 
population represented in the pedigree. If only parent 
and offspring are measurable, then the number of 
generations should be maximised, but if complex 
relationships (relatives breeding across years) can be 
measured, then maximising the cohorts (or years) can 
increase the links in the pedigree. 

Phenotypes 
per lineage 

(Hanocq et al., 1996) 
(Clément et al., 2001; 
Quinn et al., 2006) 
(Bonnet et al., 2022; 
Morrissey et al., 2007) 

Genomic relatedness 
matrix (GRM 
‘animal’ models) 

Number of 
unrelated 
individuals and 
number of SNP a 
markers 

Accuracy and precision depend on variant prioritisation. An 
intermediate optimum defines the number of SNPs required to balance 
the minimum sufficient numbers to characterise genetic variation, but 
low enough to maximise genetic similarity between individuals  
 

(Lee et al., 2017; 
Mancin et al., 2022; 
Müller et al., 2015) 
 

 498 
a SNP = single nucleotide polymorphism499 



Individual phenotype
P = G + E (+ G x E) 

 

Genetic effects (G) Environmental effects (E)

Selection

Phenotypic variance in a 
population 

VP = VG + VE (+ VG x E)

Single generation response to 
selection:

Phenotypic change = h2S

Individuals differ in 
phenotype, leading to 
variation in a population

Individuals with low fitness 
phenotypes are removed by 
natural selection

Figure 1. Heritability and the partitioning of phenotypic variance. Trait values in individuals 
are due to a combination of genetic and environmental effects. Individual phenotypes differ, 
leading to variation in a popualtion. The environment also exerts selection against some pheno-
types in the population.  Heritability is the ratio of genetic variance (VG) to the phenotypic variance 
(VP). The rate of adaptation is dependent on heritabilty (narrow sense: h2) and the strength of 
selection.  
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Figure 2: Simulations illustrate how genetic correlations among traits affect adaptation rates and 
outcomes.  The selective response is predicted by the multivariate breeder’s equation (∆z = GB) that 
describes the genetic variance and covariance between traits. In the two-trait examples shown here, 
genetic variance within traits (V1, V2), and selection upon each trait (S1, S2) are held constant in each 
example, but the covariance between traits (colour coded off-diagonal elements) differs, where: A) CV =  
-0.8 (red) represents a strong negative correlation; B) CV = 0 (blue) represents uncorrelated traits; C) CV 
= 0.8 (yellow) is strongly positive. G matrices can also be visualised by an ellipse showing the distribution 
of individual breeding values (points) where the alignment of shared genetic variation with the direction of 
selection (shown by the arrow) defines the amount of genetic variation available for evolution. Adaptive 
walks (from simulations) show the process of phenotype evolution as selection acts upon both traits. 
When genetic correlation (covariance) is strong and not aligned with the direction needed for adaptation 
(red), the adaptive walk is slow, with populations moving over a wide range of values of both traits. When 
traits are genetically uncorrelated (blue) and each is heritable, evolution can proceed free from genetic 
constraint, relatively directly approaching the new optimum. When genetic variance is positively correlated 
(yellow), adaptation is fastest and follows a more direct path as alignment of genetic variance with the 
direction of selection facilitates simultaneous adaptation of each trait. The degree of correlation therefore 
determines whether traits evolve independently, in turn defining the rate of adaptation and the range of 
possible phenotypes available within a population. (Simulations were performed in SLiM version 3.7.1 
where each dot on the adaptive walk is trait value every 1000 generations.)
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Figure 3: Conceptual models for source-sink dynamics and effects of migration under stable 
and rapidly warming climate scenarios. Populations of varying sizes are arrayed across a thermal 
landscape under stable (historical) conditions and rapid wholescale warming. Colour represents 
temperature, where the colour of environment (bar) determines the optimal trait value (triangles) and 
populations (circles) are colored by mean trait value. Perfectly adapted populations are found when 
the colour of the circle matches both the environment and optimal trait colours. Maladaptation is 
implied when colours do not match. Arrows indicate directional gene flow and are coloured by the 
source population's mean phenotype and arrow width indicates strength of gene flow. Self-recruit-
ment to populations occurs but is not shown). A) For the stable climate scenario: this concept 
diagram follows an abundant centre model of a species range, where the central population is large, 
well adapted to ambient conditions, and exports many propagules. Populations towards left and right 
range margins are weakly maladapted due to higher migration from, rather than to, the central popu-
lation. B) Under the rapidly warming climate scenario, optimal phenotypes for all populations need to 
match warmer temperatures. Equatorial populations (right of centre) are on the lagging edge of the 
species range and are now maladapted due to migration load of cooler temperature alleles arriving 
from the centre source population. In contrast, populations on the poleward leading edge of the 
species range are "rescued" by warm alleles arriving from upstream populations.
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Figure S1: summary of published heritabilty estimates. Lab based experiments are far 
more common than field experiments. There is large variation among heritabilty estimates for 
the same trait from different experiments (e.g. estimates of h2 = 0 and h2 = 1 available for 
growth in lab conditions). Narrow sense estimates are always lower than the broad sense 
estimate for the same trait, suggesting substantial non-additive genetic variance is being 
included in broad sense estimates, and any prediction of adaptive capacity from these esti-
mates is likely to be an overestimate. Similarly, the use of clones is common, also adding to 
potential overestimation of h2 and therefore adaptive capacity. 
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