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Abstract  32 

Global environmental change is happening at unprecedented rates. Coral reefs are among the 33 

ecosystems most threatened by global change. For wild populations to persist, they must 34 

adapt. Knowledge shortfalls about corals’ complex ecological and evolutionary dynamics, 35 

however, stymie predictions about potential adaptation to future conditions. Here, we review 36 

adaptation through the lens of quantitative genetics. We argue that coral adaptation studies 37 

can benefit greatly from “wild” quantitative genetic methods, where traits are studied in wild 38 

populations undergoing natural selection, genomic relationship matrices can replace breeding 39 

experiments, and analyses can be extended to examine genetic constraints among traits. 40 

Individuals with advantageous genotypes for anticipated future conditions can be identified. 41 

Finally, genomic genotyping supports simultaneous consideration of how genetic diversity is 42 

arrayed across geographic and environmental distances, providing greater context for 43 

predictions of phenotypic evolution at a metapopulation scale. 44 

Introduction 45 

Anthropogenic change is pervasive, yet little is known about the complex ecological and 46 

evolutionary dynamics operating in wild populations, making biological predictions highly 47 

uncertain (Nosil et al., 2020; Urban et al., 2016). Such knowledge gaps are laid bare in 48 

marine systems, where the logistics of working underwater and the difficulties of rearing 49 

organisms and conducting manipulative experiments mean that key population parameters 50 

including survival, fecundity, and growth are often unavailable. Critically, coral reefs which 51 

already live close to their thermal limits (Berkelmans & Willis, 1999), are among the 52 

ecosystems most likely to be impacted by large-scale climate warming and have suffered 53 

extensive mortality due to heat-induced bleaching, where the cnidarian host expels their algal 54 

endosymbionts (Hoegh-Guldberg et al., 2007; Hughes et al., 2017; Walther et al., 2002). 55 

Greater knowledge regarding the ecological and evolutionary processes that underpin 56 

adaptation is urgently required if humans are to assume responsibility for mitigating or 57 

facilitating responses that promote coral reef resilience.  58 

Current population models which predict long term changes to coral reefs fall into two 59 

categories. Ecology-focused models capture complex community dynamics and species 60 

interactions but treat species traits as fixed (e.g., Bozec et al., 2022). In contrast, evolution-61 

focused models use demographic and population parameters to estimate genetic responses at 62 
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the population level but typically ignore species interactions (Bay et al., 2017; Kleypas et al., 63 

2016; Logan et al., 2014; Matz et al., 2018; Matz et al., 2020; McManus et al., 2021). A 64 

limited number of studies have incorporated simple competition between two coral life 65 

histories (McManus et al., 2021; Walsworth et al., 2019) or focus on the interactions between 66 

the coral cnidarian hosts and their photosynthetic endosymbionts (Baskett et al., 2009; Day et 67 

al., 2008; Logan et al., 2021). Regardless of model details, evolutionary models consistently 68 

find that evolutionary adaptation, especially to elevated temperatures, is critical for long-term 69 

coral persistence. 70 

While adaptation appears necessary for coral persistence in a changing climate, the number 71 

and effect of genes (the genetic architecture) determining thermal tolerance traits remains 72 

undiscovered for most coral species, and thus the potential for adaptive change is unknown. 73 

Some studies show that temperature related traits likely have a genetic basis (reviewed in 74 

Bairos-Novak et al., 2021; Howells et al., 2022), although these estimates might not 75 

accurately reflect adaptive potential under natural conditions (Humanes et al., 2022). Many 76 

studies have identified gene expression responses to acute heat stress (e.g., Barshis et al., 77 

2013; Parkinson et al., 2018; Rose et al., 2018; Traylor-Knowles et al., 2017), but whether 78 

expression differences among individuals within species have a genetic basis is largely 79 

unresolved (Dixon et al., 2015; Kenkel & Matz, 2016; but see Dixon et al., 2018; Rose et al., 80 

2018). Fuller et al. (2020) established that the bleaching tolerance in Acropora millepora is 81 

affected by many cnidarian host loci and by photosynthetic endosymbiont identity. While we 82 

acknowledge that symbionts play an important role in thermal tolerance of the coral 83 

holobiont, we focus this review on cnidarian host genetics, as methods evaluating relatedness 84 

between cnidarian individuals are more tractable. 85 

Here, we aim to identify key genetic parameters that determine adaptive capacity in corals 86 

and highlight data gaps that hinder our ability to make robust predictions for coral futures. 87 

There are many complementary approaches to study functionally important genetic variation 88 

(Vasemägi & Primmer, 2005) such as DNA sequence variation including genotype-89 

environment association analyses (Lasky et al., 2023), reciprocal transplantation (Kawecki & 90 

Ebert, 2004), and evolve-and-resequence experiments (Turner et al., 2011). The emerging 91 

consensus that adaptation depends on the combined contribution of many genes with small 92 

effects (i.e., that fitness traits are polygenic or complex, see Falconer & Mackay, 1996; Hill, 93 

2010; Lynch & Walsh, 1998) is supported by studies that: examine associations of alleles 94 
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between adult corals from contrasting environments (Bay & Palumbi, 2014; Howells et al., 95 

2021; Rippe et al., 2021; Rose et al., 2018; van Oppen et al., 2018); monitor gene expression 96 

changes with reciprocal transplantation (Kenkel & Matz, 2016); or show allelic shifts induced 97 

by experimental manipulation of coral larvae (Dixon et al., 2015; Kirk et al., 2018). Because 98 

adaptive traits appear primarily polygenic, we focus primarily on quantitative genetic 99 

inference in this review. Quantitative genetic methods provide tools designed to study 100 

polygenic phenotypes and to decouple genetic from environmental contributions to 101 

phenotypic traits thereby providing insights into future adaptation. Throughout, we note 102 

where future experimental research should be directed, which genetic parameters to estimate, 103 

and how they might be estimated.  104 

Selection, heritability, and genetic variance in single traits 105 

Adaptive evolution begins when individuals in a population differ in fitness as a function of 106 

their trait values (Fig. 1). For complex traits, single trait phenotypes can be expressed as: 107 

P = G + E + G x E , 108 

where the phenotypic value (P) results from the individual’s genes (G), its environment (E), 109 

and how genes interact with and respond to environmental conditions (G x E). This treatment 110 

of the phenotype as the sum of underlying genetic and environmental effects defines the 111 

framework of quantitative genetics (Falconer & Mackay, 1996). At the population level, the 112 

relative contribution of genes to differences among individuals determines whether the 113 

population mean trait value evolves. If a populations’ phenotypic variation is predominantly 114 

due to G or G x E, then selecting individuals by their phenotypes also selects a subset of the 115 

genetic variation controlling that phenotype, thereby increasing the frequency of selected 116 

alleles in the population.  117 

The distribution of trait values in the population can also adjust in direct response to changes 118 

in environment, without any alteration of allele frequencies, namely phenotypic plasticity. 119 

Phenotypic plasticity may allow individual fitness to track shifts in changing environments, 120 

thereby maintaining population size. Plastic phenotypes can be adaptive when phenotypic 121 

change occurs in the direction favoured by natural selection - an example of this might 122 

include greater tolerance to heat stress where pre-warming events prepare the coral holobiont 123 

physiologically for the bleaching stress that follows (Ainsworth et al., 2016). However, the 124 

fitness benefits from plasticity can be fleeting due to the inherent flexibility of plastic 125 
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phenotypes and the absence of genetic changes influencing the trait (Ghalambor et al., 2007). 126 

Epigenetic mechanisms likely underpin plastic responses to the environment, but evidence for 127 

transgenerational persistence of epigenetic effects in corals is currently lacking (Torda et al., 128 

2017). Intriguingly, growing evidence shows that plastic responses of a trait may align with 129 

the heritable genetic variation of the trait (Noble et al., 2019), suggesting that plasticity and 130 

adaptation may synergistically improve fitness. As a further complication, plasticity itself is a 131 

trait that can evolve where there is G x E; for example, inshore and offshore populations of 132 

Porites astreoides differ in plastic changes to gene expression, suggesting locally adapted 133 

plasticity in at least some coral species (Kenkel & Matz, 2016). 134 

Despite the potential benefits of plasticity, evidence suggests that it may have limited 135 

potential to enhance thermal tolerance for species that live at their upper limit temperature 136 

range  (Kingsolver & Buckley, 2018; van Heerwaarden et al., 2016). Therefore, plasticity 137 

may facilitate short term persistence for many corals which are already living close to their 138 

upper thermal threshold but might not be sufficient to bridge to new thermal optima. 139 

Furthermore, if plastic responses allow individuals with maladapted genotypes to persist, this 140 

may slow adaptive responses to selective pressure (Gilbert & Miles, 2019). 141 

Adaptation to new fitness optima occurs via evolutionary processes that change allele 142 

frequencies, increasing the frequency of high fitness alleles. Thus, it is the genetic component 143 

of phenotypes that is the focus for studies of adaptive capacity (Hendry et al., 2018). 144 

Heritability is a population specific metric that defines the proportion of phenotypic trait 145 

variance (VP) that can be attributed to genetic variation (Visscher et al., 2008). This genetic 146 

variation can be characterised in two ways: either total genetic variation (VG: broad sense 147 

heritability, H2 = VG/ VP) which defines all genetic effects on the trait of interest, or only the 148 

additive genetic variation (VA: narrow sense heritability, h2 = VA/ VP). Both estimates are 149 

widely used but differ in the conclusions that can be drawn from their estimation. 150 

Additive genetic variance describes a subset of total genetic variance, excluding other, non-151 

additive, sources of genetic variance such as dominance (VD) or epistasis (VI). Dominance 152 

refers to the interactions between alternative alleles at a single locus, while epistasis describes 153 

interactions between loci that affect the phenotype. Because these interactions are dependent 154 

on the specific combination of alleles present in the individual and these alleles are reshuffled 155 

when passed from generation to generation, non-additive sources of variation (VD, VI) are not 156 

inherited. Thus, broad-sense heritability may overestimate the potential for long-term 157 
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adaptive responses, although available evidence from wild populations suggests that VA is a 158 

greater contributor to VG than non-additive genetic variance (Class & Brommer, 2020). A 159 

common source of confusion arises from the fact that the relative magnitude of non-additive 160 

genetic variances does not relate to the prevalence of non-additive gene action: loci with 161 

dominant (and recessive) alleles can be common, even if VD is small relative to VA (Huang & 162 

Mackay, 2016). 163 

VG can be estimated by partitioning phenotypic variation among a set of full-sibling families 164 

or clones, provided replicate offspring from each family (or clone) are maintained separately 165 

to avoid confounding relatedness and common experimental environment (where VE could 166 

erroneously be ascribed to VG). Whereas evolutionary predictions based on additive genetic 167 

variance (VA) will be more precise than prediction based on total genetic variance (VG), 168 

methods for estimating VA are also more involved. A greater range of relationships between 169 

individuals is required to isolate the relative contributions of additive, dominance, and 170 

epistatic variance.  For example, to separate dominance from additive genetic effects requires 171 

crosses between different parental combinations (e.g., half siblings sharing one parent but not 172 

the other, see Falconer & Mackay, 1996; Lynch & Walsh, 1998; Walsh & Lynch, 2018; 173 

Wilson et al., 2010). These constraints are particularly relevant to experimental designs for 174 

corals, where obtaining large numbers of independent crosses and multiple independent 175 

samples per cross requires extensive infrastructure (i.e., aquaria systems with multiple tanks 176 

for replication), which can be logistically challenging.   177 

Another challenge to estimating genetic variance (VG or VA) reflects these metrics’ 178 

dependence on allele frequencies. Therefore, the sample of individuals (genotypes) taken 179 

from the field for experimental breeding must accurately encompass the natural genetic 180 

diversity of the population. Small samples are unlikely to capture the breadth of genetic and 181 

phenotypic variation. Increasing sample sizes using fragmentation or clonal replication does 182 

not avoid this problem as fragments do not increase the number of genotypes sampled from 183 

the population and can result in pseudo replication if fragments are treated as unique 184 

individuals in statistical analyses. Box 1 details how experimental designs can be modified to 185 

increase power, accuracy, and precision in estimating genetic variance, which is essential for 186 

improved predictions of coral adaptive capacity. 187 

A few studies have estimated heritability and genetic variation of coral traits (reviewed 188 

recently in Bairos-Novak et al., 2021; Howells et al., 2022) including survival, growth and 189 
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bleaching response. But, Bairos-Novak et al (2021) identified no studies that explicitly 190 

quantified the heritability of key thermal tolerance traits such as thermal optimum (Topt), 191 

critical thermal limits (CTmax, CTmin), or the shape of the thermal tolerance reaction norm. 192 

Reported broad sense heritability of traits associated with temperature effects on growth and 193 

survival (H2 = 0.2 - 0.6) suggest substantial capacity for thermal adaptation in these traits. 194 

These estimates, however, are drawn from limited studies, the majority of which were 195 

conducted under laboratory conditions (Bairos-Novak et al. 2021), potentially yielding higher 196 

H2 estimates than when measured under natural conditions due to dampened environmental 197 

variance under controlled laboratory conditions (Lynch & Walsh, 1998; Weigensberg & 198 

Roff, 1996). Empirical estimates of narrow sense heritability (h2) are relatively uncommon 199 

and often lower than those for broad sense heritability (H2) (Figure 1 in Bairos-Novak et al., 200 

2021; Howells et al., 2022), implying large non-additive contributions to total genetic 201 

variance for these traits. There is also large variation between same trait estimates from 202 

different studies that could arise from: i) small sample sizes; ii) differences in genetic 203 

architectures across experimental source populations; iii) non-standardized measurements or 204 

experimental assays; iv) differences in life-stages where many estimates of heritability are 205 

based on larvae or juveniles. Further studies, especially longitudinal studies that assess 206 

performance across the life-cycle (Aguirre et al., 2014), are needed to provide basic 207 

knowledge about the degree to which thermal tolerance in early life-cycle stage is correlated 208 

with thermal tolerance in subsequent life-cycle stages (Dziedzic et al., 2019), and to 209 

determine at which life-cycle stages selection on thermal tolerance strongest. In summary, to 210 

provide beneficial insights, manipulative experiments must be more precise in characterising 211 

additive genetic variation, use offspring from a larger number of field collected parents rather 212 

than clonal replication of genets, and simulate marine heat wave stress conditions realistically 213 

and consistently (where standardised phenotypic assays for evaluating coral thermal tolerance 214 

would increase confidence in making comparisons across populations and species: see 215 

Grottoli et al., 2021).  216 

New approaches could increase precision of key genetic parameters necessary for predicting 217 

coral adaptive responses in nature. Following terrestrial research on wild populations, 218 

narrow-sense genetic variances and covariances can be estimated under field conditions using 219 

an individual based ‘animal model’ (Charmantier et al., 2014; Gienapp et al., 2017; Johnston 220 

et al., 2022; Wilson et al., 2010). Rather than relying on strict breeding designs to generate 221 

offspring of varying relatedness, the animal model uses all the relationship information 222 
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available for a group of field sampled individuals. A matrix describing these relationships can 223 

be obtained from observed breeding events or genetic inferences of parentage and sibship to 224 

form a pedigree. Alternatively, multilocus genomic data can be used to directly estimate 225 

relatedness, bypassing the need to construct a pedigree (Charmantier et al., 2014; Gienapp et 226 

al., 2017; Johnston et al., 2022).  Employing this genomic relationship matrix has several 227 

benefits: first, it capitalises upon diverse relationships in wild populations to partition 228 

additive from non-additive genetic effects  (Yang et al., 2011). Second, ‘experiments’ can be 229 

conducted in natural settings, with treatment effects and population parameters reflecting 230 

realistic conditions (Gienapp, 2020). Third, it eliminates the need for long-term, 231 

multigeneration, studies, by determining shared alleles without tracing the path of co-232 

inheritance (i.e., pedigree). Coral studies have employed genomic relationship approaches 233 

under laboratory conditions, estimating substantial heritability of adult bleaching responses in 234 

the Caribbean coral, Orbicella faveolata (Dziedzic et al., 2019) and larval survival under high 235 

temperature for Platygyra daedalea from the Arabian/Persian Gulf and Indian Ocean (Kirk et 236 

al., 2018).  237 

It is also possible to directly link genotypes to phenotypes, such that genotypes can explicitly 238 

predict the phenotype, and ultimately the fitness of individuals. One such approach is 239 

genome-wide association study (GWAS or GWA), which identifies individual loci that 240 

significantly contribute to phenotypic trait variation. However, GWAS is biased to find large 241 

effect loci and often cannot detect small effect loci that typify polygenic traits (Gienapp, 242 

2020) such as thermal tolerance and lifetime fitness (Boyle et al., 2017). Greater insights into 243 

adaptive potential and causes of phenotypic variation may be gained by simultaneously 244 

considering many markers that individually may not significantly predict a trait value but 245 

cumulatively can - a family of approaches known as genomic prediction. Genomic prediction 246 

has been used widely in agriculture and medical genetics (Wray et al., 2019) and enables the 247 

study of evolutionary genetics in wild populations (Ashraf et al., 2020; Gienapp et al., 2019; 248 

McGaugh et al., 2021). Power may be further improved by incorporating additional genetic 249 

information in the model (McGaugh et al., 2021). To date, only one study has used genomic 250 

prediction in wild corals, albeit employing a modified procedure using GWA derived locus 251 

effect sizes to generate polygenic scores. These scores significantly improved prediction of 252 

bleaching response in Acropora millepora (Fuller et al., 2020), although environment and 253 

symbiont identity were also found to be important contributors to the phenotypic response. 254 
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The sample size used by Fuller et al. (213 genomes with 44 sequenced at high coverage) 255 

could realistically be improved upon in future coral studies to yield greater power.  256 

Genomic prediction has immense potential benefit for coral conservation. Stress responses 257 

such as coral bleaching may be predictable from genomic sampling without the need to 258 

measure individual phenotypes, streamlining the process of selecting optimal genotypes for 259 

breeding and restoration practices. In addition, genomic prediction can be used to select 260 

target reefs for conservation or restoration based on the spatial distribution of colonies with or 261 

without heat tolerance associated alleles. 262 

 263 

Beyond single traits - expanding adaptive genetics to consider multivariate phenotypes 264 

and trade-offs between traits 265 

In wild populations, the relationship between individual traits and fitness is typically unclear 266 

(Barghi et al., 2020). For instance, thermal tolerance is undoubtedly a complex 267 

multidimensional phenotype, comprised of multiple individual traits (Angilletta Jr, 2009), 268 

and thermal traits will not be the only determinants of fitness. Thus, when considering 269 

adaptation, it is useful to move beyond single trait heritability and consider the multivariate 270 

genetic architecture, which ultimately determines how the whole phenotype may respond to 271 

selective pressures (Lande & Arnold, 1983; Svensson et al., 2021; Walsh & Blows, 2009). 272 

Methods utilising genomic relationship matrices and supporting genomic prediction are 273 

expandable to incorporate multiple traits, so they can calculate additive genetic variance for 274 

individual traits as well as genetic co-variances between traits. Multivariate approaches, as 275 

well as being essential to account for the complex functional basis of fitness, may also 276 

improve genomic prediction accuracy, and power to detect causal loci (Pitchers et al., 2019). 277 

Multivariate genetic variation is best captured by the genetic variance-covariance matrix G 278 

(Lande, 1980; Lynch & Walsh, 1998), a matrix describing both the quantity of genetic 279 

variance underlying individual traits and the degree to which that variation is shared among 280 

traits: namely the genetic co-variance (shown in Fig. 2). A co-variance of zero indicates that 281 

evolution of those traits can proceed independently (Fig. 2b), whereas a non-zero value 282 

indicates that selection on trait one is predicted to also change trait two (Fig. 2a & 2c). 283 

Adaptive evolution is more rapid and predictable when selection aligns with the major axes 284 

of genetic variation (Fig. 2c), so called ‘evolution along genetic lines of least resistance’ 285 
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(Schluter, 1996). In contrast, adaptation can be prevented altogether when genetic 286 

covariances limit the phenotype space available for selection to act (Lande & Arnold, 1983) 287 

(Fig. 2a). Thus, while individual traits may harbour genetic variance, the presence of genetic 288 

correlation means that some trait combinations have little to no genetic variance, ultimately 289 

resulting in no response to selection and no adaptation (Walsh & Blows, 2009).  290 

Despite being a fundamental factor determining how populations may respond to selection, 291 

estimates of genetic covariances in wild populations remain relatively uncommon. For 292 

terrestrial organisms, several long-term multigenerational monitoring projects have been 293 

conducted in birds and mammals (summarised in Bonnet et al., 2022), which have produced 294 

estimates of G, and find some instances where trait covariances are putatively limiting 295 

evolution (Teplitsky et al., 2014). Recent studies have shown how to use genomic prediction 296 

to partition the adaptive potential of traits from other, non-adaptive, contributions to genetic 297 

covariance (Reddiex & Chenoweth, 2021). For corals, one of the few available studies 298 

suggests few trade-offs exist between fitness related traits such as growth rates, colour 299 

change, and survival in corals under environmental stress (Wright et al., 2019), however, 300 

more investigations are required before we can be understand how genetic correlations might 301 

typically influence adaptive trajectories.  302 

Provided that experiments are carefully designed and confounding factors are appropriately 303 

managed, the linear mixed model framework used to examine genetic correlations among 304 

traits in a single environment can be applied to estimate genetic correlations between the 305 

same trait in different life-cycle stages, sexes or environments (Falconer & Mackay, 1996). In 306 

all these contexts, genetic correlations that oppose the direction of multivariate selection will 307 

result in genetic constraints. This flexibility allows coral biologists to use a single currency, 308 

additive genetic variation in the direction of selection, when trying to predict the trajectories 309 

of populations. For example, a negative genetic correlation between Tmax measured in 310 

ambient pH and Tmax in low pH implies that genetic variants that might facilitate a response 311 

to warming temperatures in ambient pH will oppose adaptation to warming temperatures in 312 

low pH environments. This framework offers great power to predict the response of coral 313 

populations to environmental change under realistic conditions where life-stage, sex, and 314 

environmental context can contribute to genetic corelations and constraints. 315 
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Integrating quantitative and population genetics to study adaptation 316 

Quantitative genetics largely focuses on single populations in isolation; however, in nature, 317 

populations will be connected by migration (gene flow) that may vary in magnitude and 318 

direction. Similarly, population sizes, and therefore the potential influence of genetic drift, 319 

will differ over space and time. Both migration and genetic drift will thus influence the 320 

quantitative genetic variation locally available to selection, and the study of these dynamics is 321 

largely the remit of population genetics.  322 

Theory that seeks to expand quantitative genetic inferences across linked populations has 323 

largely focused on idealised arrays of populations with equal and symmetric migration 324 

subjected to a linear environmental gradient exerting selection (a configuration reminiscent of 325 

a north to south oriented fringing reef). Even such simplified representations of multiple 326 

populations show that interactions between the steepness of the environmental gradient, 327 

migration rates, and the intrinsic rate of population growth can result in a wide variety of 328 

outcomes (Holt & Gomulkiewicz, 1997; Kirkpatrick & Barton, 1997; Pease et al., 1989). 329 

Such simplified scenarios suggest that local adaptation is possible under some parameter 330 

combinations, especially for centre of range populations, while in peripheral populations 331 

allele frequencies are affected by immigration from central populations such that their 332 

phenotypes are not able to fully match the optimum set by the local environment (i.e., 333 

peripheral populations are maladapted to local conditions). Fig. 3a provides a conceptual 334 

illustration of these dynamics, where range edge populations arrayed across a thermal 335 

gradient are slightly maladapted. Under rapid climate change (Fig. 3b; following Davis & 336 

Shaw, 2001), the species-wide dynamics will be altered and lagging edge populations will be 337 

greatly maladapted as their new optima lie outside any historical phenotypic value for the 338 

species. In contrast, leading edge populations may receive immigrants carrying genetic 339 

variation that can shift local phenotypes to the new local optimum (genetic rescue). In reality, 340 

estimates of migration rates, population sizes, intrinsic rates of population growth, and 341 

genetic architectures are available for only a few wild species, let alone corals that produce 342 

microscopic dispersive planktonic larvae. However, just as genomic resources can lead to 343 

greater understanding about how VA is linked to the phenotype (via the animal model), these 344 

same genetic data can be used to infer population sizes and migration rates, providing greater 345 

clarity on the demographic parameters which determine possible outcomes across the species 346 

range. Coral-focused evolutionary models that attempt to incorporate coral population 347 
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parameters support the broad-brush concepts summarised in Fig. 3, concluding that poleward 348 

flowing ocean currents can disperse warm adapted larvae into more temperate populations 349 

(Matz et al., 2018; Matz et al., 2020; McManus et al., 2021).  350 

Additionally, molecular and population genetic methods can help reveal which loci are or 351 

have been subject to selection (see Introduction) and when combined with geographic 352 

surveys of genetic variation can map the spatial distributions of putative adaptive loci. 353 

Especially promising are genotype-environment association studies (Lasky et al., 2023), 354 

which attempt to associate measured components of complex environments with observed 355 

shifts in allele frequencies arising from natural selection. Thus, genotype-environment 356 

association studies potentially reveal the environmental factors to which species have adapted 357 

in the past and thereby complement the genotype-phenotype focus of quantitative genetics. A 358 

few such studies in corals have found correlations between selected loci and sea surface 359 

temperature (Selmoni et al., 2020; Thomas et al., 2017), consistent with the idea that warmer 360 

(low latitude) populations may harbour warm-adapted alleles that could conceivably shift 361 

phenotypes in historically cooler (higher latitude) populations (as in Fig. 3), assuming that 362 

gene flow is sufficiently high.  363 

Ultimately, integrating genomics with quantitative and population genetics provides better 364 

understanding of the effects of: 1) the genetic architecture of adaptive traits and potential 365 

constraint arising from genetic correlations; 2) the demographic and historical patterns that 366 

have shaped genetic variation within and between coral populations; and 3) possible 367 

evolutionary trajectories under anthropogenic selective pressures. As coral reef conservation 368 

moves to more active management strategies to facilitate adaptation, incorporating 369 

knowledge about population size and migration with information about the genetics of 370 

adaptive traits can provide the opportunity for more effective targeted interventions. 371 

The hidden problem of cryptic genetic structure in corals  372 

Molecular genetic studies of corals commonly uncover distinct genetic groups that are 373 

sympatric, suggesting that cryptic species are common (reviewed by Riginos & Beger, 2022). 374 

While many cryptic genetic groups appear to segregate by depth (e.g., Rippe et al., 2021; van 375 

Oppen et al., 2018), they may associate with subtle thermal microenvironments on a reef flat 376 

(Rose et al., 2018), or not have known niche differences. Thus, when individual colonies are 377 

selected for phenotyping based on morphology alone, an implicit assumption is that samples 378 

constitute a single random breeding population. Reanalysing a previous study, Gomez-379 
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Corrales and Prada (2020) demonstrated that thermal performance can differ by cryptic 380 

genetic groups and therefore substantially change parameter estimates and biological 381 

interpretation. This issue of cryptic coral species provides additional motivation for 382 

integrating population genetics with quantitative genetic studies for corals to confirm that 383 

study metrics correspond to individuals from the same species.  384 

 385 

Implications and recommendations 386 

Understanding and predicting adaptation in corals requires deeper knowledge of the genetic 387 

basis of adaptive traits and better characterisation of the phenotypes conferring fitness in the 388 

wild. Here we briefly outline some key principles for this integration:  389 

1) Incorporate quantitative genetics into ongoing experimental designs  390 

Quantitative genetic designs can be woven into ongoing experiments, producing data on the 391 

genetic basis of potentially adaptive traits. Many classic statistical methods, such as 392 

regression, originate from quantitative genetics (Fisher, 1919), so in many cases, quantitative 393 

genetic principles can be built into existing experimental frameworks. The key requirement is 394 

that study subjects comprise individuals with some known degree of relatedness. Large 395 

numbers of crosses may be impractical but inference of relatedness from genotypes can boost 396 

samples sizes (Charmantier et al., 2014; Gienapp et al., 2017; Johnston et al., 2022). 397 

Additionally, by genotyping individuals, investigators can identify cryptic species and adjust 398 

analyses accordingly.  399 

Experimental power comes from the choice of replication level: within family (or clonal) 400 

replication will be less useful than between family replication for population level inference. 401 

Box 1 provides some indications of how experimental designs can be tweaked (see also 402 

Gienapp et al., 2017; Wilson et al., 2010), and general quantitative genetic references (such 403 

as Falconer & Mackay, 1996; Lynch & Walsh, 1998) can provide deeper insights on relevant 404 

experimental designs. Incorporating these principles during experimental planning and before 405 

field sampling will greatly improve the potential insights gained from manipulative 406 

experiments and may facilitate the use of wild populations as a surrogate for experimental 407 

treatments (Ashraf et al., 2020; Bay & Guerrero, 2020; Kruuk, 2004). Thus, integrating 408 

quantitative genetic principles should enhance the power, precision, and accuracy of existing 409 

studies, all while strengthening opportunities for interdisciplinary collaboration.  410 
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2) Understand the trade-offs and genetic constraints of the multivariate phenotype 411 

A large body of quantitative genetic theory generally concludes that “trait-by-trait 412 

explanations of the natural world are doomed to fail” (Walsh & Blows, 2009). Thus, we 413 

suggest that moving beyond the current focus on estimating single trait heritability to 414 

quantifying additive genetic variance for combinations of traits will yield more useful 415 

insights. While individual traits may harbour genetic variance, it is ultimately the patterns of 416 

variance shared among traits that determines if and how organisms can adapt to 417 

environmental change. 418 

Critically, the multivariate animal model can provide understanding of genetic trade-offs that 419 

may occur as thermal traits evolve, which is key to realistic predictions about coral future 420 

adaptive capacity (Hoffmann et al., 2021). While gaining insight into genetic trade-offs or 421 

constraints may take substantial effort, serious consideration must be given to whether 422 

selection on thermal tolerance affects other fitness attributes such as growth or reproduction. 423 

Furthermore, studies are needed to understand how potential trade-offs might have diverged 424 

among populations experiencing different selective pressures, various sources of immigrants, 425 

and various population sizes. 426 

3) Use quantitative and population genetics to incorporate evolutionary thinking into 427 

restoration and resilience building. 428 

The rapid decline of coral reef ecosystems has motivated discussion regarding possible active 429 

human interventions to maintain and restore function in coral reef ecosystems (Anthony et 430 

al., 2020; Baums et al., 2019; National Academies of Sciences, 2019; van Oppen et al., 431 

2017). Additionally, there is growing sentiment that reef management should plan for future 432 

ecological conditions rather than reconstruct pre-disturbed states (Higgs et al., 2018; van 433 

Oppen et al., 2017).  434 

Incorporating principles from evolutionary genetics into management planning can improve 435 

the accuracy of managing for future conditions. Application of genomic prediction in 436 

agriculture has shown that combining good quality phenotyping with genomic data can 437 

provide insight into the genetic architecture underlying a wide range of complex traits and 438 

allow more efficient selection of high fitness individuals (Meuwissen et al., 2001), where 439 

recent methodological developments demonstrate that genomic predictions can be extended 440 
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to multivariate phenotypes (Reddiex & Chenoweth, 2021) allowing selection of individuals 441 

with superior multivariate phenotypes.  442 

Because natural migration may not redistribute adaptive genetic variation fast enough to track 443 

the changes associated with climate change, human-assisted migration could accelerate 444 

adaptation rates in wild populations and enable genetic rescue (Aitken & Whitlock, 2013; 445 

Coles & Riegl, 2013; van Oppen et al., 2017; Weeks et al., 2011). For polygenic traits such as 446 

thermal tolerance, geographically separated populations have often arrived at different 447 

combinations of alleles underlying similar phenotypes (Bolnick et al., 2018; Yeaman, 2022). 448 

This difference in genetic solutions to similar environmental challenges may mean that 449 

assisted migration could accelerate adaptation by leveraging the fact that populations can be 450 

at the same latitude, experiencing broadly similar environments, but contain very different 451 

genetic solutions to equivalent stresses. To date, pilot studies have focused on crossing 452 

individuals from warmer and cooler environments (e.g., Howells et al., 2021; Kirk et al., 453 

2018). Substantial gains might also be feasible by interbreeding individuals from 454 

geographically separated warm environments to yield individuals with novel combinations of 455 

alleles and the possibility of extreme phenotypes. 456 

Conversely, evidence for considerable local adaptation (presumably across multiple traits: 457 

Baums, 2008) and considerable genetic variation for thermal tolerance within a reef 458 

(Humanes et al., 2022), suggests that transplantation over short distances might provide 459 

benefits through increased genetic variation available to selection. Importantly, robust 460 

estimates of adaptive potential of wild populations may reveal cases where natural standing 461 

variation is sufficient to support adaptive changes without assisted migration. 462 

 463 

Conclusions 464 

Shifting emphasis from single trait heritability toward describing additive genetic variance 465 

across multivariate phenotypes is key to predicting how wild populations will fare under 466 

future climate warming. Significant recent investment in coral reef research has yielded high 467 

quality phenotypic and genetic resources that have removed some of the previous barriers to 468 

characterising natural adaptive capacity. Incorporating quantitative genetic analyses in coral 469 

studies can reduce uncertainty in predictions and enhance targeted and effective conservation 470 

interventions. 471 
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 472 

 473 

>>>>START BOX 1 474 

Box 1: Notes on sample sizes 475 

Too many factors influence quantitative genetic experiments for a single recommendation for 476 

what constitutes an adequate sample size. The critical determinant is the “noise” in trait 477 

measures, where high measurement error, high micro-environmental sensitivity, and lower 478 

‘true’ heritability, all contribute to experimental noise. Thus, if noise is low, fewer samples 479 

may give a good estimation of genotypic value. In contrast, traits with low heritability (high 480 

noise) such as life history and physiology traits will require more replication.  481 

 482 

Klein (1974) provides some instructive calculations of power for breeding designs: for 483 

moderate heritability (0.4), an experiment with 100 families and 2-4 offspring per family has 484 

a > 98% probability of detecting broad-sense heritability (H2) if it exists (using mid-parent-485 

offspring regression or full sibling designs), but this design only has a 66% probability of 486 

detecting narrow-sense h2 (using the intraclass correlation of half-siblings). An experiment 487 

would need 200 families with 4 offspring per family to get to > 90% probability of detecting 488 

moderate narrow sense h2 and over twice that sample size if heritability is 0.2 (Klein, 1974). 489 

Different experimental designs resulting in the same number of families would also differ in 490 

their ability to detect additive genetic effects; for instance, a design including 50 sires each 491 

mated to two dams would have greater power but lower accuracy than a design including 25 492 

sires each mated to 4 dams. Similar overall numbers are suggested for pedigree structured 493 

populations: Quinn et al. (2006) recommend minimum of 100 observations per year for 3 494 

years to detect h2 as low as 0.2 (with different distributions of those 300 data points, e.g., 30 495 

observations over 10 years, having lower power to detect genetic effects than 100 496 

observations over 3 years). Bonnet et al. (2022) re-analysed data from 19 published bird and 497 

mammal studies, finding generally low levels of h2 in fitness related traits. This approach 498 

illustrates the value of increased pedigree depth (number of years/generations, Bonnet et al., 499 

2022, Table S2) and completeness (number of observations, Bonnet et al., 2022, Table S1) 500 

available from large, long-term, data sets allows detection of low additive genetic variance in 501 

fitness traits. 502 

 503 
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Power of genomic relationship matrix approaches can be more difficult to generalise due to 504 

population dynamics in wild populations, although Müller et al. (2015) provide some 505 

indication of sample size through simulation. For a population of 200 unrelated individuals, 506 

using 2,500 markers (10 chromosomes, 18 Morgans total)  reliability equalled 0.36 for h2 = 507 

0.25, increasing 0.78 for h2 = 0.75 (where reliability is calculated as the squared correlation 508 

coefficient between genetic estimated breeding values and the simulated true genetic values). 509 

While these sample sizes are unrealistic for many experimental budgets and timelines, they 510 

highlight that all current quantitative genetic studies are likely underpowered and are 511 

incapable of correctly rejecting the null hypothesis that the trait is not heritable. In Table 1, 512 

we provide some suggestions on how researchers can pragmatically allocate experimental 513 

efforts within the logistical constraints of their system to maximise power, precision, and 514 

accuracy in estimating additive genetic effects. In all cases, increasing the number of families 515 

(rather than offspring per family), replicated measurement of the same individual over time, 516 

increasing the pedigree depth or number of generations, and avoiding clonal replication will 517 

likely be the best approach for increasing the power to detect additive genetic variation 518 

associated with thermal tolerance traits. 519 

 520 

INCLUDE TABLE 1 IN BOX 1 521 

>>>>END BOX 1 522 
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 535 
Table 1. Key determinants of power, precision and accuracy in different quantitative genetic experimental designs. Quantitative genetic 536 
experiments require substantial sample sizes. If effective sample sizes are beyond the logistical constraints of their experimental system, 537 
practitioners should prioritise experimental effort towards maximising the key principles of power, accuracy, and precision. For each of the three 538 
main experimental designs, the data required to increase power, accuracy, and precision are identified along with key references. 539 
 540 
 541 
Method Power Accuracy Precision Key References 
Structured breeding 

(includes nested, 
full-sibling, and 
half-sibling design) 

Number of sires The number of dams (the number of times a sire 
effect can be measured) 

Number of 
offspring per 
cross 

(Klein, 1974; Klein et al., 
1973; Lynch & Walsh, 
1998, pp 543) 

Unstructured 
breeding (Pedigree 
‘animal’ models) 

Number of 
individuals in the 
base population 

The number of genetic lineages from the base 
population represented in the pedigree. If only parent 
and offspring are measurable, then the number of 
generations should be maximised, but if complex 
relationships (relatives breeding across years) can be 
measured, then maximising the cohorts (or years) 
can increase the links in the pedigree. 

Phenotypes 
per lineage 

(Hanocq et al., 1996) 
(Bonnet et al., 2022; 
Clément et al., 2001; 
Morrissey et al., 2007; 
Quinn et al., 2006) 

Genomic 
relationship matrix 
(GRM ‘animal’ 
models) 

Number of 
unrelated 
individuals and 
number of SNP a 
markers 

Accuracy and precision depend on the sample size of the reference 
population and its genetic structure. The optimal number of SNPs a 
required balances the ability to characterise genetic similarity 
between individuals while also maximising the proportion of genetic 
variance those markers explain. b 

(Lee et al., 2017; Mancin et 
al., 2022; McGaugh et al., 
2021; Müller et al., 2015) 
 

 542 
a SNP = single nucleotide polymorphism 543 
b Beyond a certain number, more markers do not improve the resolution of genomic relationships. Linking too many markers to a phenotype 544 
negatively affects the ability to detect relationships between phenotype and small effect loci. Methods for selection are described in the key 545 
references. 546 
 547 
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Figure 1. Heritability and the partitioning of phenotypic variance. Trait values in 

individuals are due to a combination of genetic and environmental effects. Individual 

phenotypes differ, leading to variation in a popualtion. The environment also exerts selection 

against some phenotypes in the population.  Heritability is the ratio of genetic variance (VG) 

to the phenotypic variance (VP). The rate of adaptation is dependent on heritabilty (narrow 

sense: h2) and the strength of selection.   

 

Figure 2: Simulations illustrate how genetic correlations among traits affect adaptation 

rates and outcomes.  The selective response is predicted by the multivariate breeder’s 

equation (∆z = GB) that describes the genetic variance and covariance between traits. In the 

two-trait examples shown here, genetic variance within traits (V1, V2), and selection upon 

each trait (S1, S2) are held constant in each example, but the covariance between traits 

(colour coded off-diagonal elements) differs, where: A) CV = - 0.8 (red) represents a strong 

negative correlation; B) CV = 0 (blue) represents uncorrelated traits; C) CV = 0.8 (yellow) is 

strongly positive. G matrices can also be visualised by an ellipse showing the distribution of 

individual breeding values (points) where the alignment of shared genetic variation with the 

direction of selection (shown by the arrow) defines the amount of genetic variation available 

for evolution. Adaptive walks (from simulations) show the process of phenotype evolution as 

selection acts upon both traits. When genetic correlation (covariance) is strong 

and not aligned with the direction needed for adaptation (red), the adaptive walk is slow, with 

populations moving over a wide range of values of both traits. When traits are genetically 

uncorrelated (blue) and each is heritable, evolution can proceed free from genetic constraint, 

relatively directly approaching the new optimum. When genetic variance is positively 

correlated (yellow), adaptation is fastest and follows a more direct path as alignment of 

genetic variance with the direction of selection facilitates simultaneous adaptation of each 

trait. The degree of correlation therefore determines whether traits evolve independently, in 

turn defining the rate of adaptation and the range of possible phenotypes available within a 

population. Simulations were performed in SLiM version 3.7.1 where each dot on the 

adaptive walk is trait value every 1000 generations. 

 

Figure 3: Conceptual models for source-sink dynamics and effects of migration under 

stable and rapidly warming climate scenarios. Populations of varying sizes are arrayed 

across a thermal landscape under stable (historical) conditions and rapid wholescale warming. 



Colour represents temperature, where the colour of environment (bar) determines the optimal 

trait value (triangles) and populations (circles) are colored by mean trait value. Perfectly 

adapted populations are found when the colour of the circle matches both the environment 

and optimal trait colours. Maladaptation is implied when colours do not match. Arrows 

indicate directional gene flow and are coloured by the source population's mean phenotype 

and arrow width indicates strength of gene flow. Self-recruitment to populations occurs but is 

not shown. A) For the stable climate scenario: this concept diagram follows an abundant 

centre model of a species range, where the central population is large, well adapted to 

ambient conditions, and exports many propagules. Populations towards left and right range 

margins are weakly maladapted to local conditions due to higher migration from, rather than 

to, the central population. B) Under the rapidly warming climate scenario, optimal 

phenotypes for all populations need to match warmer temperatures. Equatorial populations 

(right of centre) are on the lagging edge of the species range and are now maladapted due to 

migration load of cooler temperature alleles arriving from the centre source population. In 

contrast, populations on the poleward leading edge of the species range are "rescued" by 

warm alleles arriving from upstream populations. 

 

 

Figure S1: summary of published heritabilty estimates. Manipulative laboratory based 

experiments are far more common than field experiments. There is large variation among 

heritabilty estimates for the same trait from different experiments (e.g. estimates of h2  = 0 

and h2  = 1 available for growth in laboratory conditions). Narrow sense estimates are always 

lower than broad sense estimates for the same trait, suggesting substantial non-additive 

genetic variance is being included in broad sense estimates, and any prediction of adaptive 

capacity based on these estimates is likely to be overestimated. Similarly, the use of clones is 

widespread, also adding to potential overestimation of h2 and therefore adaptive capacity.  
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Figure 1. Heritability and the partitioning of phenotypic variance. Trait values in individuals 
are due to a combination of genetic and environmental effects. Individual phenotypes differ, 
leading to variation in a popualtion. The environment also exerts selection against some pheno-
types in the population.  Heritability is the ratio of genetic variance (VG) to the phenotypic variance 
(VP). The rate of adaptation is dependent on heritabilty (narrow sense: h2) and the strength of 
selection.  
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Figure 2: Simulations illustrate how genetic correlations among traits affect adaptation rates and 
outcomes.  The selective response is predicted by the multivariate breeder’s equation (∆z = GB) that 
describes the genetic variance and covariance between traits. In the two-trait examples shown here, 
genetic variance within traits (V1, V2), and selection upon each trait (S1, S2) are held constant in each 
example, but the covariance between traits (colour coded off-diagonal elements) differs, where: A) CV =  
-0.8 (red) represents a strong negative correlation; B) CV = 0 (blue) represents uncorrelated traits; C) CV 
= 0.8 (yellow) is strongly positive. G matrices can also be visualised by an ellipse showing the distribution 
of individual breeding values (points) where the alignment of shared genetic variation with the direction of 
selection (shown by the arrow) defines the amount of genetic variation available for evolution. Adaptive 
walks (from simulations) show the process of phenotype evolution as selection acts upon both traits. 
When genetic correlation (covariance) is strong and not aligned with the direction needed for adaptation 
(red), the adaptive walk is slow, with populations moving over a wide range of values of both traits. When 
traits are genetically uncorrelated (blue) and each is heritable, evolution can proceed free from genetic 
constraint, relatively directly approaching the new optimum. When genetic variance is positively correlated 
(yellow), adaptation is fastest and follows a more direct path as alignment of genetic variance with the 
direction of selection facilitates simultaneous adaptation of each trait. The degree of correlation therefore 
determines whether traits evolve independently, in turn defining the rate of adaptation and the range of 
possible phenotypes available within a population. (Simulations were performed in SLiM version 3.7.1 
where each dot on the adaptive walk is trait value every 1000 generations.)
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Figure 3: Conceptual models for source-sink dynamics and effects of migration under stable 
and rapidly warming climate scenarios. Populations of varying sizes are arrayed across a thermal 
landscape under stable (historical) conditions and rapid wholescale warming. Colour represents 
temperature, where the colour of environment (bar) determines the optimal trait value (triangles) and 
populations (circles) are colored by mean trait value. Perfectly adapted populations are found when 
the colour of the circle matches both the environment and optimal trait colours. Maladaptation is 
implied when colours do not match. Arrows indicate directional gene flow and are coloured by the 
source population's mean phenotype and arrow width indicates strength of gene flow. Self-recruit-
ment to populations occurs but is not shown). A) For the stable climate scenario: this concept 
diagram follows an abundant centre model of a species range, where the central population is large, 
well adapted to ambient conditions, and exports many propagules. Populations towards left and right 
range margins are weakly maladapted due to higher migration from, rather than to, the central popu-
lation. B) Under the rapidly warming climate scenario, optimal phenotypes for all populations need to 
match warmer temperatures. Equatorial populations (right of centre) are on the lagging edge of the 
species range and are now maladapted due to migration load of cooler temperature alleles arriving 
from the centre source population. In contrast, populations on the poleward leading edge of the 
species range are "rescued" by warm alleles arriving from upstream populations.


