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Abstract

Ecosystems are composed of networks of interacting species. These interactions allow communities of species
to persist through time through both neutral and adaptive processes. Despite their importance, a robust
understanding of (and ability to predict and forecast) interactions among species remains elusive. This
knowledge-gap is largely driven by a shortfall of data—although species occurrence data has rapidly increased
in the last decade, species interaction data has not kept pace, largely due to the effort required to sample
interactions. This means there are many interactions between species that occur in nature, but we do not know
these interactions occur because we have never observed them. These so-called false-negatives bias data and
hinder inference about the structure and dynamics of interaction networks. Here, we show the realized number
of false-negatives in data can be quite high, even in thoroughly sampled systems, due to variation in
abundances in a community. We provide a naive model of occurrence detection to estimate the false-negative
rate in a given dataset. We also show how to directly incorporate uncertainty due to observation error into
model-based predictions of interactions between species. One hypothesis is interactions between “rare” species
are themselves rare because these species are less likely to encounter one-another than species of higher
relative abundance, and this can (in part) explain the common pattern of nestedness in bipartite interaction
networks. We demonstrate that across several datasets of spatial/temporally replicated networks, there are
positive associations between species co-occurrence and interactions, and we show how this is evidence of
“neutrally forbidden links” between rare species. Finally, we assess how false negatives influence various
models of network prediction, and recommend directly accounting for observation error in predictive models.
We conclude by discussing how the understanding of false-negatives can inform how we design monitoring
schemes for species interaction surveys.

1. Introduction
When you measure, include the measurer.
—MC Hammer

Species interactions drive many processes in evolution and ecology. A better understanding of
species interactions is an imperative to understand the evolution of life on Earth, to mitigate the
impacts of anthropogenic change on biodiversity (Makiola et al. 2020), and for predicting zoonotic
spillover of disease to prevent future pandemics (Becker et al. 2022). At the moment we lack
sufficient data to meet these challenges (Poisot et al. 2021), largely because species interactions are
hard to sample (Jordano 2016a; Jordano 2016b). Over the past few decades biodiversity data has
become increasingly available through remotely collected data and adoption of open data practices
(Kenall et al. 2014; Stephenson 2020). Still, interaction data remains relatively scarce because
sampling typically requires direct human observation. This induces a constraint on the amount,
spatial scale, and temporal frequency of resulting data that it is feasible to collect by humans. Many
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crowdsourced methods for biodiversity data aggregation (e.g. GBIF, eBird) rely on automated
identification of species, which does not easily generalize to interaction sampling. There is interest
in using remote methods for interaction sampling, which primarily detect co-occurrence and derive
properties like species avoidance from this data (Niedballa et al. 2019). However, co-occurrence itself
is not necessarily indicative of an interaction (Blanchet et al. 2020). This is an example of semantic
confusion around the word interaction—for example one might consider competition a type of
species interaction, even though it is marked by a lack of co-occurrence between species, unlike
other types of interactions, like predation or parasitism, which require both species to be together at
the same place and time. Here we consider interaction in the latter sense, where two species can
only interact if (and only if) they are in the sample place at the same time. In addition, here we only
consider direct (not higher-order) interactions.

We cannot feasibly observe all (or even most) of the interactions that occur in an ecosystem. This
means we can be confident two species actually interact if we have a record of it (assuming they are
correctly identified), but not at all confident that a pair of species do not interact if we have no record
of those species observed together. In other words, it is difficult to distinguish true-negatives (two
species never interact) from false-negatives (two species interact sometimes, but we do not have a
record of this interaction). For a concrete example of a false-negative in a food web, see Figure 1.
Because even the most highly sampled systems will still contain false-negatives, there is increasing
interest in combining species-level data (e.g.traits, abundance, range, phylogenetic relatedness, etc.)
to build models to predict interactions between species we haven’t observed together before
(Strydom et al. 2021). However, false-negatives could impact the efficacy of our predictive models
and have practical consequences for answering questions about interactions (de Aguiar et al. 2019).
This constraint is amplified as the interaction data we have is geographically biased toward the
usual suspects (Poisot et al. 2021). We therefore need a statistical approach to assess these biases in
the observation process and their consequences for our understanding of interaction networks.

The importance of sampling effort and its impact on resulting ecological data has produced a rich
body of literature. The recorded number of species in a dataset or sample depends on the total
number of observations (Walther et al. 1995; Willott 2001), as do estimates of population abundance
(Griffiths 1998). This relationship between sampling effort, spatial coverage, and species detectability
has motivated more quantitatively robust approaches to account for error in sampling data in many
contexts: to determine if a given species is extinct (Boakes et al. 2015), to determine sampling design
(Moore and McCarthy 2016), and to measure species richness across large scales (Carlson et al.
2020). In the context of interactions, an initial concern was the compounding effects of limited
sampling effort combined with the amalgamation of data (across both study sites, time of year, and
taxonomic scales) would lead any empirical set of observations to inadequately reflect the reality of
how species interact (Paine 1988) or the structure of the network as a whole (Martinez et al. 1999;
McLeod et al. 2021). Martinez et al. (1999) showed that in a plant-endophyte trophic network,
network connectance is robust to sampling effort, but this was done in the context of a system for
which observation of 62,000 total interactions derived from 164,000 plant-stems was feasible. In
some systems (e.g. megafauna food-webs) this many observations is either impractical or infeasible
due to the absolute abundance of the species in question.

The intrinsic properties of ecological communities create several challenges for sampling: first,
species are not observed with equal probability—we are much more likely to observe a species of
high abundance than one of very low abundance (Poisot et al. 2015). Canard et al. (2012) presents a
null model of food-web structure where species encounter one-another in proportion to each
species’ relative-abundance. This assumes that there are no associations in species co-occurrence
due to an interaction (perhaps because this interaction is “important” for both species; Cazelles et al.



(2016)). Second, observed co-occurrence is often equated with meaningful interaction strength, but
this is not necessarily the case (Blanchet et al. 2020) —a true non-interaction would require that
neither of two species, regardless of whether they co-occur, ever exhibit any meaningful effect on
the fitness of the other. So, although co-occurrence is not directly indicative of the type of
interactions we discuss here, it is a precondition for these types of interactions.

Here, we illustrate how our confidence that a pair of species never interacts highly depends on
sampling effort. We demonstrate how the realized false-negative-rate of interactions is related to the
relative abundance of the species pool, and introduce a method to produce an estimate of the false-
negative-rate given total sampling effort (the total count of all interactions seen among all species-
pairs) and a method for including uncertainty into model predictions of interaction probabilities to
account for observation error. We then confront these models with data, by showing that positive
associations in co-occurrence data are rampant in network datasets, which suggests interactions
between rare species are “neutrally forbidden links” (Canard et al. 2012). We conclude by
recommending that the simulation of sampling effort and species occurrence can and should be used
to help design surveys of species interaction diversity (Moore and McCarthy 2016), and by
advocating use of models like those presented here as a tool for both guiding design of surveys of
species interactions and for including detection error into predictive models.

Figure 1: This conceptual example considers a sample of the trophic community of bears, wolves,
salmon (pink fish), pike (yellow fish), berry trees, and aspen trees. The true metaweb (all realized

interactions across the entire spatial extent) is shown on the left. In the center is what a hypothetical
ecologist samples at each site. Notice that although bears are observed co-occurring with both
salmon and pike, there was never a direct observation of bears eating pike, even though they

actually do interact. Therefore, this interaction between bears and pike is a false-negative.



2. Accounting for false-negatives in species interactions
In this section, we demonstrate how differences in species’ relative-abundance can lead to many
false-negatives in interaction data. We also introduce a method for producing an estimate of the
false-negative-rate in datasets via simulation. Because the true false-negative-rate is latent, we can
never actually be sure how many false-negatives are in our data. However, here we outline an
approach to deal with this fact—first by using simulation to estimate the false-negative-rate for a
dataset of a fixed size using neutral models of observation. We then illustrate how to incorporate
uncertainty directly into predictions of species interactions to account for observation error based
on null estimates of both the false-positive rate (as an a priori estimate of species misidentification
probability) and false-negative rate (as generated via the method we introduce).

2.1. How many observations of a non-interaction do we need to be
confident it’s a true negative?

We start with a naive model of interaction detection: we assume that every interacting pair of
species is incorrectly observed as not-interacting with an independent and fixed probability, which
we denote 𝑝fn and subsequently refer to as the False-Negative-Rate (FNR). If we observe the same
species not-interacting 𝑁  times, then the probability of a true-negative (denoted 𝑝tn) is given by
𝑝tn = 1 − (𝑝fn)𝑁 . This relation (the cumulative-distribution-function of geometric distribution, a
special case of the negative-binomial distribution) is shown in Figure 2(a) for varying values of 𝑝fn
and illustrates the confidence with which we can say an interaction never occurs — 𝑝tn — is highly
dependent on the number of times 𝑁  we have observed a given pair of species co-occurring. In
addition, note that there is no non-zero 𝑝fn for which we can ever prove that an interaction does not
exist — no matter how many observations of co-occurrence without interaction we have, 𝑝tn < 1.

From Figure 2(a) it is clear that the more often we see two species co-occurring, but not interacting,
the more likely the interaction is a true-negative. This has several practical consequences: first it
means negatives taken outside the overlap of the range of each species aren’t informative because
co-occurrence was not possible, and therefore neither was an interaction. In the next section we
demonstrate that the distribution of abundance in ecosystems can lead to very high realized values
of FNR (𝑝fn) simply as an artifact of sampling effort. Second, we can use this relation to compute the
expected number of total observations needed to obtain a “goal” number of observations of a
particular pair of species (Figure 2). As an example, if we hypothesize that species 𝐴 and 𝐵 do not
interact, and we want to see species 𝐴 and 𝐵 both co-occurring and not interacting 10 times to be
confident this is a true negative, then we need an expected 1000 observations of co-occurrence
among all species if the relative abundances of 𝐴 and 𝐵 are both 0.1.



Figure 2: (a) The probability that an observed interaction is a true negative (y-axis) given how many
times it has been sampled as a non-interaction (x-axis). Each color reflects a different value of 𝑝fn,
the false-negative-rate (FNR)—this is effectively the cumulative distribution function (cdf) of the

geometric distribution. (b) The expected number of total observations needed (colors) to observe 10
co-occurrences between a species with relative abundance 𝑃(𝐴) (x-axis) and a second species with

relative abundance 𝑃(𝐵). (c) false-negative-rate (y-axis) as a function of total sampling effort (x-
axis) and network size, computed using the method described above. For 500 independent draws
from the niche model (Williams and Martinez 2000) at varying levels of species richness (colors)

with connectance drawn according to the flexible-links model (MacDonald et al. 2020) as described
in the main text. For each draw from the niche model, 200 sets of 1500 observations are simulated,
for which the mean false-negative-rate at each observation-step is computed. Means denoted with
points, with 1 in the first shade and 2 in the second. (d): Same as (c), except using empirical food

webs from Mangal (Poisot et al. 2016). The outlier on (d) is a 714 species food-web.

2.2. False-negatives as a product of relative abundance
We now show that the realized FNR changes drastically with sampling effort due to the intrinsic
variation of the abundance of individuals of each species within a community. We do this by
simulating the process of observation of species interactions, applied both to 243 empirical food
webs from the Mangal database (Poisot et al. 2016; Banville et al. 2021) and random food-webs



generated using the niche model, a simple generative model of food-web structure that accounts for
allometric scaling (Williams and Martinez 2000). Our neutral model of observation assumes each
observed species is drawn in proportion to each species’ abundance at that place and time. The
abundance distribution of a community can be reasonably-well described by a log-normal
distribution (Preston 1948; Volkov et al. 2003). In addition to the log-normal distribution, we also
tested the case where the abundance distribution is derived from power-law scaling 𝑍 log(𝑇𝑖)−1 where
𝑇𝑖 is the trophic level of species 𝑖 and 𝑍 is a scaling coefficient (Savage et al. 2004), which yields the
same qualitative behavior. The practical consequence of abundance distributions spanning many
orders of magnitude is that observing two rare species interacting requires two low probability
events: observing two rare species at the same time.

To simulate the process of observation, for an ecological network 𝑀  with 𝑆 species, we sample
relative abundances for each species from a standard-log-normal distribution, and then renormalize
to form a distribution. For each true interaction in the adjacency matrix (i.e. 𝑀ij = 1) we estimate
the probability of observing both species 𝑖 and 𝑗 at a given place and time by simulating 𝑛
observations of all individuals of any species, where the species of the individual observed at the
{1, 2, …, 𝑛}-th observation is drawn from the generated categorical distribution of relative
abundances. For each pair of species (𝑖, 𝑗), if both 𝑖 and 𝑗 are observed within the n-observations,
the interaction is tallied as a true positive if 𝑀ij = 1. If only one of 𝑖 or 𝑗 are observed—but not both
—in these 𝑛 observations, and 𝑀ij = 1, this is counted as a false-negative. This process is illustrated
conceptually in Figure 3(a).

In Figure 2(c) we see this model of observation applied to niche model networks across varying
levels of species richness, and in Figure 2(d) the observation model applied to Mangal food webs. For
all niche model simulations in this manuscript, for a given number of species 𝑆 the number of
interactions is drawn from the flexible-links model fit to Mangal data (MacDonald et al. 2020),
meaning the number of interactions 𝑆 for a random niche model food-web is sampled as

𝐿 ∼ BetaBinmoial(𝑆2 − 𝑆 + 1, 𝜇𝜑, 1 − 𝜇𝜑)

where the maximum a posteriori (MAP) estimate of (𝜇, 𝜑) applied to Mangal data from MacDonald
et al. (2020) is (𝜇 = 0.086, 𝜑 = 24.3). All simulations were done with 500 independent replicates of
unique niche model networks per unique number of total interactions observed 𝑛. All analyses
presented here are done in Julia v1.8 (Bezanson et al. 2015) using both EcologicalNetworks.jl v0.5
and Mangal.jl v0.4 (Banville et al. 2021) and are hosted on Github. Note that the empirical food web
data, for the reasons described above, very likely already contains many false-negatives — we’ll
revisit this issue in the final section.

From Figure 2(c) it is evident that the number of species considered in a study is inseparable from
the false-negative-rate in that study, and this effect should be taken into account when designing
samples of ecological networks in the future. We see a similar qualitative pattern in empirical
networks Figure 2(d) where the FNR drops off quickly as a function of observation effort, mediated
by total richness. The practical consequence of the bottom row of Figure 2 when conducting an
analysis is whether there are enough total number of observed interactions (the x-axis) for the
threshold FNR we deem acceptable (the y-axis) is feasible. This raises two points: first, empirical data
on interactions are subject to the practical limitations of funding and human-work hours, and
therefore existing data tend to fall on the order of hundreds or thousands observations of individuals
per site. Clear aggregation of data on sampling effort has proven difficult to find and a meta-analysis
of network data and sampling effort seems both pertinent and necessary, in addition to the effects of
aggregation of interactions across taxonomic scales (Gauzens et al. 2013; Giacomuzzo and Jordán
2021). This inherent limitation on in-situ sampling means we should optimize where we sample
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across space so that for a given number of samples, we obtain the maximum information possible.
Second, what is meant by “acceptable” FNR? This raises the question: does a shifting FNR lead to
rapid transitions in our ability inference and predictions about the structure and dynamics of
networks, or does it produce a roughly linear decay in model efficacy? We explore this in the final
section.

We conclude this section by advocating for the use of neutral models similar to above to generate
expectations about the number of false-negatives in a dataset of a given size. This could prove
fruitful both for designing surveys of interactions but also because we may want to incorporate
models of imperfect detection error into predictive interactions models, as Joseph (2020) does for
species occupancy modeling. Additionally, we emphasize that one must consider the context for
sampling—is the goal to detect a particular species (as in Figure 2(c), or to get a representative
sample of interactions across the species pool? These arguments are well-considered when sampling
individual species (Willott 2001), but have not yet been adopted for designing samples of
communities.

2.3. Including observation error in interaction predictions
Here we show how to incorporate uncertainty into model predictions of interaction probability to
account for imperfect observation (both false-negatives and false-positives). Models for interaction
prediction typically yield a probability of interaction between each pair of species, 𝑝ij. When these
are considered with uncertainty, it is usually bootstrap-uncertainty, i.e. the variance in the
interaction probability prediction across several cross-validation folds, where the data is split into
training and test sets several times. In contrast, the method we introduce adjusts the value of a
model’s predictions to produce a distribution of interaction probabilities corrected by a given false-
negative-rate 𝑝fn and false-positive-rate 𝑝fp (outlined in figure Figure 3). First we describe how to
sample from this distribution of adjusted interaction probabilities via simulation, and show that this
distribution can be well-approximated analytically.

To get an estimate of each interaction probability that accounts for observation error, we resample
the output prediction from an arbitrary model for each interaction 𝑝ij by simulating a set of several
particles. Each particle is a realization of an interaction being realized assuming 𝑝ij is a correct
estimate of the probability of an interaction being feasible. Each particle starts by being drawn as
either true or false according to 𝑝ij, and then adjusting the observed state of the particle by the rate
of observation error 𝑝fp and 𝑝fn to yield a single boolean outcome for each particle (Resampling
within Figure 3(b)). Across of many particles, the resulting frequency of true outcomes is a single
resample of the probability 𝑝∗

ij that the interaction is feasible, not just that it was observed. Across
several samples each of several particles, this forms a distribution of probabilities which are adjusted
by the true and false-negative-rates.

There is also an analytic way to approximate this distribution using the Normal approximation to
Binomial distribution. As a reminder, as the total number of samples 𝑁  from a binomial distribution
for 𝑛 trials with success probability 𝑛 from approaches infinity, the sum of total successes across all
samples approaches a normal distribution with mean 𝑛𝑝 and variance 𝑛𝑝(1 − 𝑝). Here we denote a
Normal distribution with mean 𝜇 and standard-deviation 𝜎 as 𝒩(𝜇, 𝜎). We can use this to correct
the estimate 𝑝ij based on the false-negative-rate 𝑝fn and false-positive rate 𝑝fp to obtain the limiting
distribution as the number of resamples approaches infinity for the resampled 𝑝∗

ij for a given number
of particles 𝑛𝑝. We do this by first adjusting for the rates of observation error to get the mean
resampled probability, 𝔼[𝑝∗

ij], as

𝔼[𝑝∗
ij] = 𝑝ij(1 − 𝑝fp) + (1 − 𝑝ij)𝑝fn



Figure 3: (a) The process for estimating the false-negative-rate (FNR) for an interaction dataset
consisting of 𝑁  total observed interactions. (b) The method for resampling interaction probability

based on estimates of false-negative and false-positive rates. (c) The method for interaction
probability resampling applied to three mammals and three parasites from the Hadfield et al. (2014)

dataset. The original probability 𝑝ij is indicated with a vertical dashed line. The histogram is
simulated from the resampling process, and the line indicates the gaussian approximation to this

distribution. Both resampling simulations and the gaussian approximation is applied with 𝑛𝑝 = 150

This yields the Normal approximation

∑
𝑛𝑝

𝑖=1
𝑝∗

ij ∼ 𝒩(𝑛𝑝 ⋅ 𝔼[𝑝∗
ij], √𝑛𝑝𝔼[𝑝∗

ij](1 − 𝔼[𝑝∗
ij]))

which then can be converted back to a distribution of frequency of successes to yield the final
approximation

𝑝∗
ij ∼ 𝒩

(
((
(𝔼[𝑝∗

ij],
√
√√
√𝔼[𝑝∗

ij](1 − 𝔼[𝑝∗
ij])

𝑛𝑝 )
))
)

We can then further truncate this distribution to remain on the interval (0, 1), as the output is a
probability, although in practice often the probability mass outside (0, 1) is extremely low except for
𝑝ij values very close to 0 or 1. As an example case study, we use a boosted-regression-tree to predict



interactions in a host-parasite network (Hadfield et al. 2014) (with features derived in the same
manner as Strydom et al. (2021)) to produce a set of interaction predictions. We then applied this
method to a set of a few resampled interaction probabilities between mammals and parasite species
shown in Figure 3(c).

Why is this useful? For one, this analytic method avoids the extra computation required by
simulating samples from this distribution directly. Further, it enables a natural analogue between 𝑛𝑝
(the number of particles) and the number of observations of co-occurrence for a given pair of species
—the fewer the particles, the higher the variance of the resulting approximation.

The normal approximation is undefined for 0 particles (i.e. 0 observations co-occurrence), although
as 𝑛𝑝 approaches 0 in the limit, the approximated normal (once truncated) approaches the uniform
distribution on the interval (0, 1), the maximum entropy distribution where we have no information
about the possibility of an interaction.

This also has implications for what we mean by uncertainty in interaction predictions. A model’s
prediction can be uncertain in two different ways: (1) the model’s predictions may have high
variance across bootstrap iterations, or (2) the model’s predictions may be centered around a
probability of interaction of 0.5, where we are the most unsure about whether this interaction exists.
Improving the incorporation of different forms of uncertainty in probabilistic interaction predictions
seems a necessary next step toward understanding what pairs of species we know the least about, in
order to prioritize sampling to provide the most new information possible.

3. Positive associations in co-occurrence decrease the false-
negative-rate

The model above doesn’t consider the possibility that there are positive or negative associations
which shift the probability of species co-occurrence away from what is expected based on their
relative abundances due to their interaction (Cazelles et al. 2016). If we denote the probability that
we observe the co-occurrence of two species 𝐴 and 𝐵 as 𝑃(𝐴𝐵) and if there is no association
between the marginal probabilities of observing 𝐴 and observing 𝐵 denoted 𝑃(𝐴) and 𝑃(𝐵)
respectively, then the probability of observing their co-occurrence is the product of the marginal
probabilities for each species, 𝑃(𝐴𝐵) = 𝑃(𝐴)𝑃(𝐵). In the other case where there is some positive
strength of association between observing both 𝐴 and 𝐵 because this interaction is “important” for
each species, then the probability of observation both 𝐴 and 𝐵, 𝑃(𝐴𝐵), is greater than 𝑃(𝐴)𝑃(𝐵)
as 𝑃(𝐴) and 𝑃(𝐵) are not independent and instead are positively correlated, i.e. 𝑃(𝐴𝐵) >
𝑃(𝐴)𝑃(𝐵). In this case, the probability of observing a single false-negative in our naive model from
Figure 2(a) is 𝑝fn = 1 − 𝑃(𝐴𝐵), which due to the above inequality implies 𝑝fn < 1 − 𝑃(𝐴)𝑃(𝐵).
This indicates an decreasing probability of a false negative as the strength of association gets
stronger, e.g. if 𝑃(𝐴𝐵) ≫ 𝑃(𝐴)𝑃(𝐵). Still, this does not consider variation in species abundance in
space and time (Poisot et al. 2015). If positive or negative associations between species structure
variation in the distribution of 𝑃(𝐴𝐵) across space/time, then the spatial biases induced by data
collection would further impact the realized false-negative-rate, as the false negative rate would not
be constant for each pair of species across sites.

To test for these positive associations in data we scoured Mangal for datasets with many spatial or
temporal replicates of the same system, which led the the resulting seven datasets set in figure
Figure 4. For each dataset, we compute the marginal probability 𝑃(𝐴) of occurrence of each species
𝐴 across all networks in the dataset. For each species pair observed interacting, 𝐴 and 𝐵, we then
compute and compare the probability of co-occurrence if each species occurs independently,
𝑃(𝐴)𝑃(𝐵), to the empirical probability of co-occurrence, 𝑃(𝐴𝐵). Following our analysis above, if



𝑃(𝐴𝐵) is greater than 𝑃(𝐴)𝑃(𝐵), then we expect our neutral estimates of the FNR above to
overestimate the realized FNR. In Figure 4, we see the difference between 𝑃(𝐴𝐵) and 𝑃(𝐴)𝑃(𝐵)
for the seven suitable datasets with enough spatiotemporal replicates and a shared taxonomic
backbone (meaning all individual networks use common species identifiers) found on Mangal to
perform this analysis.

In each of these datasets, the joint probability of co-occurrence 𝑃(𝐴𝐵) is decisively greater than our
expectation if species co-occur in proportion to their relative abundance 𝑃(𝐴)𝑃(𝐵). This is one
potential cause of the widely observed property of nestedness seen in bipartite networks (Bascompte
and Jordano 2007) — that interactions between rare species are neutrally forbidden links (Canard et
al. 2012).

Figure 4: The difference between joint-probability of co-occurrence 𝑃(𝐴𝐵) and expected probability
of co-occurrence under independence (𝑃(𝐴)𝑃(𝐵)) for interacting species for each dataset. The red-
dashed line indicates 0 (no association). Each histogram represents a density, meaning the area of
the entire curve sums to 1. The continuous density estimate (computed using local smoothing) is
shown in grey. The p-value on each plot is the result of a one-sided t-test comparing the mean of

each distribution to 0.

4. The impact of false-negatives on network properties and
prediction

Here, we assess the effect of false-negatives on our ability to make predictions about interactions, as
well as their effect on network structure. The prevalence of false-negatives in data is the catalyst for
interaction prediction in the first place, and as a result methods have been proposed to counteract
this bias (Stock et al. 2017; Poisot et al. 2022). However, it is feasible that the FNR in a given dataset
is so high that it could induce too much noise for an interaction prediction model to detect the signal
of possible interaction between species.

To test this we use the dataset from Hadfield et al. (2014) that describes host-parasite interaction
networks sampled across 51 sites, and the same method as Strydom et al. (2021) to extract latent
features for each species in this dataset based on applying PCA to the co-occurrence matrix. We then
predict a metaweb (equivalent to predicting true or false for an interaction between each species
pair, effectively a binary classification problem) from these species-level features using four



candidate models for binary classification—three often used machine-learning (ML) methods
(Boosted Regression Tree (BRT), Random Forest (RF), Decision Tree (DT)), and one simpler model
from classic statistics (Logistic Regression (LR)). Each of the ML models are bootstrap aggregated (or
bagged) with 100 replicates each. We partition the data into 80-20 training-test splits, and then seed
the training data with false negatives at varying rates, but crucially do nothing to the test data. We
fit all of these models using MLJ.jl, a high-level Julia framework for a wide-variety of ML models
(Blaom et al. 2020). We evaluate the efficacy of these models using two common measures of binary
classifier performance: the area under the receiver-operator curve (ROC-AUC) and the area under
the precision-recall curve (PR-AUC), for more details see Poisot (2022). Here, PR-AUC is slightly
more relevant as it is a better indicator of prediction of false-negatives. The results of these
simulations are shown in Figure 5(a & b).



Figure 5: (a) The area-under the receiver-operator curve (ROC-AUC) and (b) The area-under the
precision-recall curve (PR-AUC; right) for each different predictive model (colors/shapes) across a

spectrum of the proportion of added false-negatives (x-axis). (c) The mean trophic-level of all species
in a network generated with the niche model across different species richnesses (colors). For each
value of the FNR, the mean trophic level was computed across 50 replicates. The shaded region for

each line is one standard-deviation across those replicates.

One interesting result seen in Figure 5(a & b) is that the ROC-AUC value does not approach random
in the same way the PR-AUC curve does as we increase the added FNR. The reason for this is that
ROC-AUC is fundamentally not as useful a metric in assessing predictive capacity as PR-AUC. As we
keep adding more false-negatives, the network eventually becomes a zeros matrix, and these models
can still learn to predict non-interaction for all possible species pairs, which scores far better ROC-
AUC values than random guessing (ROC-AUC = 0.5). This highlights a more broad issue of label
class imbalance, meaning there are far more non-interactions than interactions in data. A full
treatment of the importance of class-balance is outside the scope of this paper, but is explored in-
depth in Poisot (2022). Further we see, if anything, gradual decline in the performance of the model
until we reach very high FNR levels (i.e. 𝑝fn > 0.7). This is consistent with other recent work (Gupta



et al. 2023), although it must be considered that the empirical data on which these models are
trained already are almost certain to already contain false-negatives.

Although these ML models are surprisingly performant at link prediction given their simplicity,
there have been several major developments in applying deep-learning methods to many tasks in
network inference and prediction—namely graph-representation learning (Zhang et al. 2019;
Khoshraftar and An 2022) At this time, these advances can not yet be applied to ecological networks
because they typically require far more network data than we currently have perform better than
simpler models. We already have lots of features that could be used as inputs into these models
(i.e. species level data about occurrence, genomes, abundance, etc.), but our network datasets barely
get into the hundreds of local networks sampled across space and time. As the number of locally
sampled networks grows, these models will become more useful, but this scaling up of network data
can only be done with systematic monitoring of interactions.

We also consider how the FNR affects network properties. In Figure 5(c) we see the mean trophic
level across networks simulated using the niche model (as above), across a spectrum of FNR values.
In addition to the clear dependence on richness, we see that mean trophic level, despite varying
widely between niche model simulations, tends to be relatively robust to false-negatives and does
not deviate widely from the true value until very large FNRs. This is not entirely unsurprising.
Removing links randomly from a food-web is effectively the inverse problem of the emergence of a
giant component (more than half of the nodes are in a connected network) in random graphs (Li et
al. 2021) for a thorough review). The primary difference being that we are removing edges, not
adding them, and thus we are witnessing the dissolution of a giant component, rather than the
emergence of one. Further applications of percolation theory to the topology of sampled ecological
networks could improve our understanding of how false-negatives impact the inferences about the
structure and dynamics on these networks.

5. Discussion
Species interactions enable the persistence and functioning of ecosystems, but our understanding of
interactions is limited due to the intrinsic difficulty of sampling them. Here we have provided a
naive model for the expected number of false-negatives in an interaction dataset. We demonstrated
that we expect many false-negatives in species interaction datasets purely due to the intrinsic
variation of abundances within a community. We also, for the first time to our knowledge, measured
the strength of association between co-occurrence and interactions (Cazelles et al. 2016) across many
empirical systems, and found that these positive associations are both very common. We have also
demonstrated how the false-negative-rate decreases as the covariance between co-occurrence and
interaction increases, and that this provides evidence in support of “neutrally-forbidden
links” (Canard et al. 2012) in networks. We have also shown that false-negatives could further
impact our ability to both predict interactions and infer properties of the networks, which highlights
the need for further research into methods for correcting this bias in existing data.

A better understanding of how false-negatives impact species interaction data is a practical necessity
—both for inference of network structure and dynamics, but also for prediction of interactions by
using species level information. False-negatives could pose a problem for many forms of inference in
network ecology. For example, inferring the dynamic stability of a network could be prone to error if
the observed network is not sampled “enough”. What exactly “enough” means is then specific to the
application, and should be assessed via methods like those here when designing samples. Further,
predictions about network rewiring (Thompson and Gonzalez 2017) due to range shifts in response
to climate change could be error-prone without accounting for interactions that have not been
observed but that still may become climatically infeasible. As is evident from Figure 2(a), we can



never guarantee there are no false-negatives in data. In recent years, there has been interest toward
explicitly accounting for false-negatives in models (Stock et al. 2017; Young et al. 2021), and a
predictive approach to networks—rather than expecting our samples to fully capture all interactions
(Strydom et al. 2021). As a result, better models for predicting interactions are needed for interaction
networks. This includes explicitly accounting for observation error (Johnson and Larremore 2021) —
certain classes of models have been used to reflect hidden states which account for detection error in
occupancy modeling (Joseph 2020), and could be integrated in the predictive models of interactions
in the future.

Future work on improving this family of models could include directly accounting for the rate of
interactions between species by modeling each interaction as its own stochastic process. Further,
this approach could be used to directly account for spatial and temporal variance in species
occurrence, which is a property of interactions that we have not focused on in our naive model of
network sampling. This could enable further extension on the particle filter method developed
earlier to associate uncertainty with interaction predictions, as these methods were initially
developed for observations where there is structure in the sequence of observations. A natural
extension would be accounting this method to account for phenology differences between species.

This work has several practical consequences for the design of surveys for species’ interactions.
Simulating the process of observation could be a powerful tool for estimating the sampling effort
required by a study that takes relative abundance into account, and provides a baseline for expected
FNR. It is necessary to take the size of the species pool into account when deciding how many total
samples is sufficient for an “acceptable” FNR (Figure 2(c & d)). Further the spatial and temporal
turnover of interactions means any approach to sampling prioritization must be spatiotemporal. We
demonstrated earlier that observed negatives outside of the range of both species aren’t informative,
and therefore using species distribution models could aid in this spatial prioritization of sampling
sites.

We also should address the impact of false-negatives on the inference of process and causality in
community ecology. We demonstrated that in model food webs, false-negatives do not impact the
measure of total trophic levels until very high FNR (Figure 5(c)), although we cannot generalize this
further to other properties. This has immediate practical concern for how we design what taxa to
sample—does it matter if the sampled network is fully connected? It has been shown that the
stability of subnetworks can be used to infer the stability of the metaweb beyond a threshold of
samples (Song et al. 2022). But does this extend to other network properties? And how can we be
sure we are at the threshold at which we can be confident our sample characterizes the whole
system? We suggest that modeling observation error as we have done here can address these
questions and aid in the design of samples of species interactions. To try to survey to avoid all false-
negatives is a fool’s errand. Species ranges overlap to form mosaics, which themselves are often
changing in time. Communities and networks don’t end in space, and the interactions that connect
species on the periphery of a given network to species outside the spatial extent of a given sample
will inevitably appear as false-negatives in practical samples. The goal should instead be to sample a
system enough to have a statistically robust estimate of the current state and empirical change over
time of an ecological community at a given spatial extent and temporal resolution, and to determine
what the sampling effort required should be prior to sampling.
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