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 19 

Social insects are known for reproductive and behavioral division of labor, but little attention 20 

has been paid to metabolic forms of division of labor. Metabolic division of labor is the 21 

partitioning of complementary metabolic tasks between individuals within the colony, and it is 22 

widespread in social insects. Here we pinpoint trophallaxis, trophic eggs and cannibalism as 23 

the most well-studied transfers underlying metabolic division of labor in social insects and 24 

discuss their evolution.  We argue that metabolic division of labor underpins fundamental 25 

aspects of colony physiology and may be a necessary feature of superorganismal systems, 26 

impacting many life history traits. It is critical to investigate metabolic division of labor to better 27 

understand major evolutionary transition(s) to superorganismality in social insects.  28 
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Introduction 34 

Division of labor is a central aspect of living organisms and can be observed across levels of 35 

biological organization: between organelles within a cell, between cells within a multicellular 36 

organism, between microbes in a community and between multicellular organisms within a 37 

social group [1]. Social insects display many types of division of labor including the dissociation 38 

of reproduction between workers and reproductives, task specialization within the worker 39 

caste, and also metabolic division of labor. While most research has focused on behavioral 40 

and reproductive division of labor, less attention has been paid to metabolic division of labor, 41 

a potentially defining feature of advanced eusociality.  42 

We define metabolic division of labor as the partitioning of a given metabolic process into 43 

several elementary metabolic tasks performed by separate units within a cooperative entity. 44 

Broadly, metabolic division of labor allows the decoupling of breakdown of incoming food 45 

(catabolism) and synthesis of endogenous molecules (anabolism), although there can be much 46 

finer subdivisions of subsections of metabolic pathways across individuals. Separating 47 

metabolic tasks across individual units requires the transfer of metabolites between cells, 48 

tissues or individuals. Thus, for a system to have metabolic division of labor, the system needs 49 

a processor, a user and a direct or indirect transfer of metabolized material from the processor 50 

to the user. The transfer of metabolized material can be synchronous (direct passage) or 51 

asynchronous (externally stored) [2]. Dissociation of producer and user allows signature 52 

asymmetries to come about between units (e.g. germline and soma, [3]).  53 

Metabolic division of labor occurs between the cells of multicellular organisms [4,5], within 54 

microbial communities [6-8] and between colony-members in social insect colonies. In 55 

multicellular organisms, certain cells produce and secrete molecules into the extracellular 56 

space or bloodstream, these molecules travel through the body and are taken up by other cells 57 

where they act or are used. In microbial communities, related or unrelated microbes secrete 58 

signals or waste-products into the medium and other microbes take these up and use them. 59 

An important difference is that the cells of a multicellular organism are clonal and produce such 60 

molecules at a clear metabolic cost to themselves, while in microbial communities, cross-61 

feeding is more often a form of opportunism, recycling or tit-for-tat cooperation. Social transfers 62 

of material are frequent in social insect colonies [9,10], for example through trophallaxis or 63 

trophic eggs [11,2]. Across social insects, there are likely a range of degrees of metabolic 64 

division of labor depending on within-colony relatedness and reproductive opportunity, from 65 

simple recycling to full altruistic cooperation. At the eusocial extreme, fully altruistic metabolic 66 

division of labor may be a signature of superorganismality, where it creates an integrated 67 



metabolism across the colony in a major evolutionary transition in individuality [1]. To better 68 

understand social insects and their major evolutionary transitions to superorganismality, we 69 

need a better understanding of metabolic division of labor.  70 

1)    Forms and currencies of metabolic division of labor in social insects 71 

We highlight three forms of transfer that often result in metabolic division of labor: 72 

Trophallaxis, trophic eggs, cannibalism (Figure 1). In most cases, social transfer behaviors 73 

that came to mediate metabolic division of labor likely evolved originally for another purpose 74 

[2,12].  75 

76 
Figure 1: Different forms of metabolic division of labor in social insects grouped into the three 77 

main types of social transfer (Trophic eggs, Trophallaxis and its various forms, and Destructive 78 

and Non-destructive cannibalism). For division of metabolic labor to occur, the system requires 79 

a processor, a user and a direct or indirect transfer of metabolized material from the processor 80 

to the user. Here, we highlight ten examples of metabolic division of labor in social insects 81 

cited throughout the text and here classified according to their method of transfer. Source 82 

refers to the source material that is transformed or metabolized.  83 

Trophic eggs 84 

Trophic eggs are a high-quality processed food source, where the producer has transformed 85 

exogenous food into endogenous, readily usable and storable materials. Trophic eggs are 86 

frequently observed in ants and stingless bees [13,14]. Production and consumption of trophic 87 

eggs can be considered a form of metabolic division of labor (Figure 1); in some ponerine 88 

ants, non-reproductive workers produce trophic eggs and offer them to the reproductives. In 89 

invasive yellow crazy ants, larvae are exclusively fed with trophic eggs produced by a special 90 



caste of physogastric workers, themselves receiving food from other workers via trophallaxis 91 

[15,16]. 92 

Trophic eggs as a form of metabolic division of labor could have come about through the 93 

combination of worker reproduction and worker policing [13,14]. In species with totipotent 94 

workers or where workers have ovaries, it can be in a worker’s interest to perform the metabolic 95 

labor of transforming exogenous food into eggs. Dominant individuals eat worker-produced 96 

eggs through policing and this provides a metabolic ‘shortcut’ relative to feeding on solely 97 

exogenous food. Thus, with these two behaviors in place, all elements required for metabolic 98 

division of labor are fulfilled (Figure 1).  99 

Trophallaxis 100 

Trophallaxis is the direct ingestion by one individual of material excreted, secreted or 101 

regurgitated by another, and these behaviors occur under various forms and between various 102 

partners [11]. All forms of trophallaxis can transmit metabolized material between individuals 103 

and have the potential to enable metabolic division of labor (Figure 1).  104 

Oral-oral trophallaxis, where one individual regurgitates and the other drinks, occurs in many 105 

ants, bees, wasps and termites. The trophallactic fluids (crop contents) of bees, ants, wasps 106 

and termites contain numerous proteins and metabolites that are endogenously synthesized, 107 

and which likely constitute a form of metabolic division of labor (Figure 1)[17-20]. These fluids 108 

have consistent caste signatures, suggesting cross-feeding or at least differential synthesis of 109 

trophallactic proteins between castes [21]. Oral fluids of adults frequently contain larval storage 110 

proteins [17,21], typically only produced by larvae in solitary species [22].  111 

Social insect larvae have been suggested and shown to provide a metabolic service to adult 112 

nestmates, acting as a digestive caste [23,24]. Larva-to-adult and adult-to-larva trophallaxis 113 

occurs in ants, bees and wasps. In social wasps, larval regurgitate is a major source of adult 114 

nutrition [24,25].  115 

Anal-oral trophallaxis transmits microbes, but it has also been shown to transmit endogenously 116 

produced proteins and metabolites [26]. Termites are best-studied for this form of trophallaxis 117 

[27], but it has also been documented in ants and bees (Figure 1) [11,28]. A new form of 118 

trophallaxis has recently been discovered wherein ant pupae secrete pupal moulting fluid that 119 

adults and larvae drink [26]. This fluid is quite similar to that passed during oral-oral trophallaxis 120 

[17,26] indicating that more recently evolved forms of trophallaxis, e.g. oral-oral, may have co-121 

opted similar currencies from a more ancient form of social transfer, e.g. pupal moulting fluid.  122 



Cannibalism: Why and why not metabolic division of labor 123 

Cannibalism is observed in response to starvation across social insects [29-32] Under 124 

starvation, it is hard to argue that cannibalized larvae were initially produced for this purpose. 125 

But beyond response to suboptimal conditions, there is evidence that larvae are a form of live 126 

food storage or act as metabolic processors (Figure 1). Larval cannibalism (up to a rate of 127 

66% [33]) is observed outside of starvation or stressful conditions in several species of ants 128 

and wasps [34,35]. In the ant Camponotus floridanus higher production of larvae in response 129 

to high food availability does not result in a higher number of pupae but in an increase in larval 130 

cannibalism [36]. If such cannibalism is a form of metabolic division of labor, the larvae would 131 

be both processors and the mode of transfer. Thus, in addition to simple storage, cannibalized 132 

larvae could represent a metabolic caste specialized in the transformation of exogenous 133 

material into larvae tissue that is then provided to other colony members including other 134 

larvae (Figure 1). Difficulties in demonstrating larval cannibalism as an adaptation for 135 

metabolic division of labor include 1) measuring the proportion of larvae produced solely to be 136 

cannibalized, and 2) the experimental manipulation of cannibalism. While larval cannibalism 137 

has been documented in many social insect species, its importance under non-starvation 138 

conditions must be better understood. 139 

Larval tubercules, hemolymph feeding and non-destructive cannibalism 140 

Macabre forms of trophallaxis that verge on cannibalism are found in early-branching ant 141 

taxa  –  larval hemolymph feeding. Reproductives of Stigmatomma [37,38], Myopopone [39], 142 

Prionopelta [40], and Mystrium [41] pierce the larval cuticle at specific site and drink larval 143 

hemolymph through small cuts, using larval “secretions” as primary food source. In these 144 

“Dracula ants” [41], the queens engage in non-destructive cannibalism of larvae. In other ant 145 

species, mostly of the genus Platythyrea, adults drink from evolved taps, glands or tubercles 146 

found on their larvae (Figure 1) [42].  147 

Why would a mother drink the blood of her young? For insects that undergo complete 148 

metamorphosis, as larvae pass through the stages of growth they must accumulate and store 149 

nutrients to provide resources for metamorphosis. If larvae perform the metabolic labor of 150 

transforming exogenous nutrients into the ideal composition to build new ant biomass, drinking 151 

their hemolymph would allow reproductives to avoid this metabolic labor.  152 

Larval storage proteins as currency for Hymenoptera 153 



The Hymenopteran evolutionary history (parasitic wasps), the habit of feeding on larval and 154 

pupal fluids (both rich in larval storage proteins), and the presence of larval storage proteins in 155 

adult oral secretions collectively suggest that social Hymenoptera may rely on the currency of 156 

larval storage proteins ancestrally sourced from prey [17,19,21,22,43].  157 

Consequences for superorganismality across forms  158 

Some forms of social transfer allow each individual to take in, contribute and redistribute 159 

materials. This not only rapidly distributes materials across exceptionally large colonies [44], 160 

but also enables a networked social circulatory system. Social transfers that do not allow such 161 

a redistribution (once-in-a-lifetime transfers e.g. pupal moulting fluids, transfers during claustral 162 

founding [45]) are not capable of creating such a network. Species that engage in frequent and 163 

redistributable social transfers are well placed to evolve altruistic metabolic division of labor, 164 

as observed in multicellular systems, and to undergo the major evolutionary transition toward 165 

superorganismality.  166 

2) Why metabolic division of labor has evolved and how? 167 

 Benefits of Metabolic division of labor 168 

Circumvent trade-offs 169 

As with other forms of division of labor, the benefits of metabolic division of labor within a 170 

cooperative group include the increase in task performance due to task specialization, the 171 

reduction in costs related to switching between tasks, and the ability to collectively circumvent 172 

trade-offs each entity is facing individually [46].  173 

Complexification of metabolic processes 174 

In microbial communities, metabolic division of labor increases the yield of a reaction by 175 

reducing metabolic burden [47], and allows for an elongation of metabolic pathways [48]. If 176 

these principles apply in social insects, we would expect that the need for complex metabolic 177 

processes should favor the emergence of metabolic division of labor. Therefore, in 178 

species feeding on a low-quality diet requiring ample processing to create social insect 179 

biomass, metabolic division of labor should be necessary for colony productivity (Figure 2). 180 

For example, to build insect biomass, nectar and honeydew are likely much lower quality than 181 

are insect prey, and require more molecular processing to satisfy larval needs for growth. 182 

Colonies of species feeding on low-quality diets tend to be much larger [12], possibly indicating 183 

a need for more metabolic laborers. In contrast to nectar and pollen, the royal jelly synthesized 184 



by honeybee nurses is a highly elaborated cocktail of proteins and macromolecules [49,50]. 185 

Thus, metabolic division of labor may be an adaptive mechanism to manipulate larval diet 186 

quality and thus build adaptive asymmetries within the collective (e.g body size, longevity; 187 

Figure 2, [51]). 188 

Building asymmetry through dissociation of metabolic costs and benefits  189 

Metabolic division of labor can minimize metabolic costs for reproductives, relegate those costs 190 

to more disposable workers or larvae and thus maximize the lifespan and egg production of 191 

the reproductive(s), beneficial to colony fitness (Figure 2, [51]). For instance the process of 192 

digestion is metabolically costly but essential for nutrient intake. Thus allocating metabolic cost 193 

related to digestion of exogenous macronutrients to the worker caste and the intake of 194 

processed nutrients to the queen castes would optimize egg production while minimizing 195 

metabolic costs to queens [21,52,53].  196 

Resilience to variation in food availability 197 

Variation in food availability in the environment is another factor that can promote the 198 

emergence of colony-level metabolic division of labor. Metabolic division of labor can buffer 199 

environmental variability by building up energy storage in times of wealth to be used in times 200 

of scarcity (Figure 2).  201 

 202 

Facilitators of the emergence of metabolic division of labor 203 

As metabolic division of labor requires the transfer of metabolites from producer to a user, its 204 

emergence relies on mechanisms of transfer, such as trophallaxis or trophic eggs, both social 205 

transfer behaviors that likely evolved originally for another purpose (Figure 2). Trophallaxis 206 

evolved primarily in ant lineages exploiting a sugary liquid diet notoriously low in nitrogen [12] 207 

– such a low-quality diet should favor the evolution of metabolic division of labor (as discussed 208 

above). Worker reproduction may have facilitated the transfer of metabolized products 209 

between individuals through the evolution of trophic eggs [13,14]. Whether larval cannibalism 210 

is a primitive form of metabolic division of labor is debatable, but it may have led to the evolution 211 

of hemolymph drinking. 212 



 213 

Figure 2: Diagram depicting different evolutionary drivers (red boxes) and facilitators (orange 214 

box) for metabolic division of labor to emerge as well as the consequences (blue boxes) of 215 

metabolic division of labor on life history traits of individuals and of the colony. 216 

 217 

3)     Consequences of metabolic division of labor on life history 218 

Queens and workers divergence in body size, lifespan and reproduction 219 

Metabolic division of labor leads to an unequal allocation of metabolic costs and benefits 220 

between individuals, and as such, it can accentuate asymmetries between colony members. 221 

These asymmetries can have developmental and life history consequences [51-53] including 222 

the adult size dimorphism or differences in longevity and fecundity between reproductives and 223 

workers (Figure 2). Termites workers are lacking of uric-acid oxidase which prevent them from 224 

using stocks of uric acid as a source of nitrogen; instead this enzyme is highly abundant in 225 

reproductives which can thus metabolize uric acid that they receive from non-reproductives 226 

and use this nitrogen source for their reproduction [20]. 227 

 228 

Reinforcement of superorganismality 229 

Colony level-metabolic division of labor leads to increasing interdependence between colony 230 

members, and thus reinforces the higher-level individual, the colony or superorganism. In 231 

larvae of species that are fed by trophallaxis, larval development is dependent on trophallactic 232 

fluid metabolites and proteins provided by workers, as in the case of the honeybee [50].  233 



 234 

Development of anatomical structures 235 

Metabolic division of labor can favor the specialization of anatomical structures that enable the 236 

transfer (Figure 2). For trophallaxis, the proventriculus separating the crop from the midgut is 237 

highly elaborated in ants that engage in trophallaxis [11]. Glands can also be highly elaborated, 238 

for example, the hypopharyngeal and the mandibular glands of honeybee workers is where 239 

most proteins in royal jelly are synthesized [54,55]. The anatomy of different exocrine glands 240 

in other social insects engaging in trophallaxis should be investigated in relation with metabolic 241 

division of labor to reveal signs of morphological adaptation.  242 

 243 

Costs of metabolic division of labor 244 

As a results of task specialization, metabolic division of labor can lead to metabolic 245 

interdependence. While this interdependence can create an evolutionary point of no return, it 246 

may, on the other hand, reduce the resilience of the colony to internal or external 247 

stressors.  Another cost related to the transfer of material is the higher risk of pathogen 248 

transmission and therefore, metabolic division of labor is expected to evolve together with 249 

immune defense mechanisms [2]. 250 

Conclusion  251 

Division of metabolic labor is likely widespread in social insects and underlies colony 252 

physiology, but further studies are needed to understand its use and implications. New social 253 

transfers and forms of metabolic division of labor are still being discovered, even today [26].  254 

Given the novelty of this view of social insects, we need to explore the importance of metabolic 255 

division of labor to colony fitness in order to ultimately establish its role in social insect life-256 

history evolution. 257 

The fact that metabolic division of labor occurs so broadly in social insects will also inform our 258 

understanding of superorganismality, and the major evolutionary transitions in individuality that 259 

have occurred multiple times across social insect lineages. As opposed to multicellular 260 

systems where metabolic division of labor occurs between cells, in social insects it occurs 261 

between distinct and accessible individuals, making social insects a good study system to 262 

explore networked metabolism.  263 

 264 

  265 
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