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 19 

Social insects are known for reproductive and behavioral division of labor, but little attention 20 

has been paid to metabolic forms of division of labor. Metabolic division of labor is the 21 

partitioning of complementary metabolic tasks between individuals, and it is widespread in 22 

social insects. We define two forms of metabolic division of labor, homosynergetic and 23 

heterosynergetic, we pinpoint trophallaxis, trophic eggs and cannibalism as the primary 24 

transfers underlying the homosynergetic form and discuss their evolution.  We argue that 25 

homosynergetic metabolic division of labor underpins fundamental aspects of colony 26 

physiology and may be a necessary feature of superorganismal systems, impacting many life 27 

history traits. Investigating metabolic division of labor is necessary to understand major 28 

evolutionary transition(s) to superorganismality in social insects.  29 
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 34 

Introduction 35 

Division of labor is a central aspect of living organisms and can be observed across levels of 36 

biological organization: between organelles within a cell, between cells within a multicellular 37 

organism, between microbes in a community and between multicellular organisms within a 38 

social group [1,2].  39 

Metabolic division of labor is the partitioning of a given metabolic process into several 40 

elementary metabolic tasks performed by separate units within a cooperative entity. Following 41 

the two forms of major evolutionary transitions [3] – fraternal transitions between like units (e.g. 42 

multicellularity) and egalitarian transitions between unlike units (e.g. eukaryotes) – we describe 43 

two branches of metabolic division of labor: homosynergetic, between like units, and 44 

heterosynergetic, between unlike units. As these forms of cooperation are guided by different 45 

underlying forces and pressures, this distinction is necessary to understand the principles 46 

governing these types of metabolic division of labor. Most research on metabolic division of 47 

labor has addressed only the heterosynergetic form, primarily in microbial communities or 48 

symbioses. 49 

Social insects engage in both forms of metabolic division of labor. Leaf-cutting ants’ exchanges 50 

with their fungus gardens [4] and carpenter ants and their obligate endosymbiont Blochmannia 51 

[5] both represent well-studied examples of heterosynergetic metabolic division of labor in 52 

social insects. In this review we instead focus on the less explored and amorphous 53 

homosynergetic metabolic division of labor, which we propose to have been key to the major 54 

evolutionary transition to superorganismality. In insect societies, colony-level social physiology 55 

[2,6,7] relies on the partitioning of physiological tasks among colony members. Although earlier 56 

studies have explored social physiology and physiological castes [2,7,8], these processes 57 

have not yet been viewed through the lens of metabolic division of labor, nor have the 58 

implications metabolic division of labor on social evolution been considered. 59 

Broadly, metabolic division of labor allows the decoupling of breakdown of incoming food 60 

(catabolism) and synthesis of endogenous molecules (anabolism), although there can be much 61 

finer subdivisions of metabolic pathways across individuals. The partitioning of metabolic tasks 62 

across individual units requires the transfer of metabolites, including digestive intermediates, 63 

between cells, tissues or individuals [2,7], allowing metabolic ‘short-cutting’ on the collective 64 

scale. Thus, for a system to use metabolic division of labor, at minimum the system needs a 65 

processor, a user and a direct or indirect transfer of metabolized material from the processor 66 
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to the user. The transfer can be synchronous (direct passage) or asynchronous (externally 67 

stored) [9]. In homosynergetic metabolic division of labor, dissociation of producer and user 68 

allows signature asymmetries to come about between otherwise like units (e.g. germline and 69 

soma [10]).  70 

Homosynergetic metabolic division of labor occurs between the cells of multicellular organisms 71 

(if we consider the organism as a colony of cells) [11,12], between parents and offspring, and 72 

between colony members in social insect colonies. In multicellular organisms, certain cells 73 

produce and secrete molecules into the extracellular space or bloodstream, these molecules 74 

travel through the body and are taken up by other cells where they act or are used. For 75 

example, neurons often rely on metabolic processes performed by neighboring glial cells [13]. 76 

A common trait between these examples is that highly related members produce molecules at 77 

a clear cost to themselves, yet this homosynergetic metabolic division of labor benefits the 78 

collective. Social transfers of material are frequent in social insect colonies [6,14], for example 79 

through trophallaxis or trophic eggs [9,15].  80 

Across social insects, there are a range of degrees of homosynergetic metabolic division of 81 

labor depending on within-colony relatedness and reproductive autonomy that have greater or 82 

lesser impacts on optimization at the colony level. At the eusocial extreme, homosynergetic 83 

metabolic division of labor may be a signature of superorganismality, where it can create an 84 

integrated metabolism across the colony [1]. As such forms of cooperation evolve to become 85 

obligatory, the higher organizational unit becomes entrenched [3,16,17]. While causes for 86 

hypometric metabolic scaling of the colony remain unclear [18-20], underlying mechanisms 87 

need to be explored in light of homosynergetic metabolic division of labor. Generally, to better 88 

understand social insects and their major evolutionary transitions to superorganismality, we 89 

need a better understanding of metabolic division of labor.  90 

1)    Currencies of metabolic division of labor in social insects 91 

Metabolized material transferred between individuals acts as a currency of metabolic division 92 

of labor, where all individuals are able to use it and it is costly to produce. We highlight three 93 

forms of transfer of metabolized material that often result in homosynergetic metabolic division 94 

of labor on the scale of the colony: trophallaxis, trophic eggs, cannibalism (Figure 1).  95 
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96 
Figure 1: Different forms of homosynergetic metabolic division of labor in social insects 97 

grouped into the three main types of social transfer (Trophic eggs, Trophallaxis and its various 98 

forms, and Destructive and Non-destructive cannibalism). For metabolic division of labor to 99 

occur, the system requires a processor, a user and a direct or indirect transfer of metabolized 100 

material from the processor to the user. Here, we highlight ten examples of homosynergetic 101 

metabolic division of labor in social insects cited throughout the text and here classified 102 

according to their method of transfer. Source refers to the source material that is transformed 103 

or metabolized.  104 

Trophic eggs 105 

Trophic eggs are a high-quality processed food source, where the producer has transformed 106 

exogenous food into endogenously produced, readily usable and storable materials. Trophic 107 

eggs have been described in ants and stingless bees [21-23]. Production and consumption of 108 

trophic eggs can be considered a form of homosynergetic metabolic division of labor (Figure 109 

1). In some ponerine ants, non-reproductive workers produce trophic eggs and offer them to 110 

reproductives. In invasive yellow crazy ants, larvae are exclusively fed with trophic eggs 111 

produced by a special caste of physogastric workers, themselves receiving food from other 112 

workers via trophallaxis [24,25]. 113 

Trophic eggs as a form of metabolic division of labor could have evolved through the 114 

combination of worker reproduction and worker policing [22,26]. In species with totipotent 115 

workers or where workers have ovaries, it can be in a worker’s interest to perform the metabolic 116 

labor of transforming exogenous food into eggs. Dominant individuals then eat worker-117 

produced eggs when policing and this provides a metabolic ‘shortcut’ relative to feeding on 118 

solely exogenous food. Thus, with these two behaviors in place, all elements required for 119 

metabolic division of labor are fulfilled (Figure 1).  120 
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Trophallaxis 121 

Trophallaxis is the direct ingestion by one individual of material excreted, secreted or 122 

regurgitated by another, and these behaviors occur under various forms and between various 123 

partners [15]. All forms of trophallaxis can transmit metabolized material between individuals 124 

and have the potential to enable metabolic division of labor (Figure 1).  125 

Oral-oral trophallaxis, where one individual regurgitates and the other drinks, occurs in many 126 

ants, bees, wasps and termites. The trophallactic fluid (crop milk) of bees, ants, wasps and 127 

termites contains numerous proteins and metabolites that are endogenously synthesized, and 128 

which result in homosynergetic metabolic division of labor (Figure 1) [26-29]. These fluids have 129 

consistent caste signatures, suggesting cross-feeding or at least differential synthesis of 130 

trophallactic proteins between castes [30]. Oral fluids of adults frequently contain larval storage 131 

proteins [9,26,31], typically only produced by larvae in solitary species [32], potentially 132 

representing a critical currency of homosynergetic metabolic division of labor in social insects.  133 

Some social insect larvae have been shown to provide a metabolic service to adult nestmates, 134 

acting as a digestive caste [33,34]. Larva-to-adult and adult-to-larva trophallaxis occur in ants, 135 

bees and wasps. In social wasps, larval regurgitate is a major source of adult nutrition [34,35].  136 

Anal-oral trophallaxis transmits microbes [36], but it has also been shown to transmit 137 

endogenously produced proteins and metabolites. Termites are best-studied for this form of 138 

trophallaxis [37], but it has also been documented in ants and bees (Figure 1) [15,38]. Another 139 

form of trophallaxis has recently been discovered wherein ant pupae secrete moulting fluid that 140 

adults and larvae drink [39]. There is some similarity in the types of proteins transmitted by 141 

moulting fluid and transmitted during oral-oral trophallaxis [24,39] indicating that more recently 142 

evolved forms of trophallaxis, e.g. oral-oral, may have co-opted molecular tools from a 143 

potentially more ancient form of social transfer, e.g. pupal moulting fluid.  144 

Cannibalism: Why and why not homosynergetic metabolic division of labor 145 

Cannibalism is observed in response to starvation across social insects [40-42], yet under 146 

starvation, it is difficult to argue that cannibalized larvae were initially produced for this purpose. 147 

But beyond response to suboptimal conditions, there is evidence that larvae are a form of live 148 

food storage and act as metabolic processors (Figure 1). In the ant Camponotus floridanus, 149 

higher production of larvae in response to high food availability does not result in a higher 150 

number of pupae but in an increase in larval cannibalism [44]. If such cannibalism is a form of 151 

metabolic division of labor, the larvae would be both processors and the mode of transfer. 152 
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Thus, in addition to simple storage, cannibalized larvae could represent a metabolic caste 153 

specialized in the transformation of exogenous material into larval tissue that is then 154 

provided to other colony members including other larvae (Figure 1).  155 

Larval tubercules, hemolymph feeding and non-destructive cannibalism 156 

Macabre forms of trophallaxis that verge on cannibalism are found in early-branching and 157 

ponerine ant taxa. Reproductives of Stigmatomma [45,46], Myopopone [47], Prionopelta [48], 158 

and Mystrium [49] pierce the larval cuticle at specific site and drink larval hemolymph through 159 

small cuts, using larval “secretions” as primary food source. In these “Dracula ants” [49], the 160 

queens engage in non-destructive cannibalism on larvae. In other ant species, mostly the 161 

genus Platythyrea, adults drink from evolved taps, glands or tubercles found on larvae (Figure 162 

1) [50].  163 

Why would a mother drink the blood of her young? For insects that undergo complete 164 

metamorphosis, as larvae grow, they accumulate and store nutrients as larval storage proteins 165 

to provide resources for metamorphosis. If larvae perform the metabolic labor of transforming 166 

exogenous nutrients into the ideal composition to build new ant biomass, drinking their 167 

hemolymph, rich in these larval storage proteins, could allow reproductives to avoid this 168 

metabolic labor. 169 

Larval storage proteins as a primary metabolic currency for Hymenoptera 170 

The Hymenopteran evolutionary history (parasitic wasps), the habit of feeding on larval and 171 

pupal fluids (both rich in larval storage proteins), and the presence of larval storage proteins in 172 

adult oral secretions collectively suggest that social Hymenoptera may use larval storage 173 

proteins ancestrally sourced from host-prey as a primary currency of homosynergetic 174 

metabolic division of labor [9,26, 28,231,32]. If this is the case, we predict that uptake and 175 

breakdown of larval storage proteins should occur through different molecular pathways than 176 

uptake and breakdown of exogenous sources. 177 

Consequences for superorganismality across forms  178 

Some forms of social transfer allow each individual to take in, contribute and redistribute 179 

materials. This not only rapidly distributes materials across exceptionally large colonies [49], 180 

but also enables a networked social circulatory system. Social transfers that do not allow such 181 

a redistribution (once-in-a-lifetime transfers e.g. pupal moulting fluids, transfers during claustral 182 

founding [50] are not capable of creating such a network. Species that engage in frequent and 183 
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redistributable social transfers are well placed to evolve homosynergetic metabolic division of 184 

labor, have the cooperation become obligate, and to undergo the major evolutionary transition 185 

toward superorganismality.  186 

 187 

2) Why metabolic division of labor has evolved and how? 188 

As with other forms of division of labor [16,17], the metabolic division of labor can likely allow 189 

the cooperative group to collectively circumvent trade-offs each entity is facing individually 190 

[16,53]. Evolutionarily, there are pre-adaptations (facilitators) that should favor the evolution of 191 

homosynergetic metabolic division of labor and there are fitness maxima (benefits) that should 192 

become available only upon its evolution.  193 

 Benefits of Metabolic division of labor 194 

Complexification of metabolic processes 195 

In microbial communities, metabolic division of labor increases fitness by spreading the 196 

metabolic burden across individuals or types [54], but also allows for an elongation and 197 

complexification of metabolic pathways [55]. Complex metabolic processes are costly because 198 

they require production of many different enzymes [56], which through metabolic division of 199 

labor, can be distributed over different specialist individuals. Assuming these principles apply 200 

in social insects, this could enable species to evolve more complex metabolic processes (e.g. 201 

requiring more enzymes to break down or build up) and thus adapt to new or difficult to process 202 

food sources (Figure 2).  203 

Building asymmetry through dissociation of metabolic costs and benefits  204 

Homosynergetic metabolic division of labor can minimize metabolic costs for reproductives, 205 

relegate those costs to more disposable workers or larvae, thus maximizing the lifespan and 206 

egg production of reproductive(s), beneficial to colony fitness (Figure 2, [57]). For instance, 207 

the process of digestion is metabolically costly but essential for nutrient intake. Thus, allocating 208 

metabolic costs related to digestion of exogenous macronutrients to the worker caste while 209 

transferring processed nutrients to the queen caste should optimize egg production, minimize 210 

metabolic costs to queens, and increase queen lifespan [9,58,59].   211 

When social insects use metabolized materials to rear their young, it allows manipulative or 212 

directive signals to hitchhike through the social transfer [9]. The royal and worker jellies that 213 

are synthesized by honeybee nurses are highly elaborated cocktail of proteins and 214 
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macromolecules that steer larvae toward queen or worker fates, respectively [60-62]. These 215 

jellies include both signals and nutrition allowing the colony to manipulate larval diet quality 216 

and thus build adaptive asymmetries within the collective (e.g body size, longevity; Figure 2, 217 

[57]). Over the ant phylogeny, passive larval morphologies, indicating worker-controlled 218 

feeding through trophallaxis or trophic eggs, correlate with larger queen to worker body size 219 

dimorphism [57]. 220 

Facilitators of the emergence of metabolic division of labor 221 

As metabolic division of labor requires the transfer of metabolites from producer to a user, its 222 

emergence relies on mechanisms of transfer, such as trophallaxis or the laying of trophic eggs, 223 

both behaviors that likely evolved originally for another purpose (Figure 2). Oral-oral 224 

trophallaxis evolved primarily in ant lineages exploiting a sugary liquid diet notoriously low in 225 

nitrogen [63]. Such a low-quality diet should favor the evolution of metabolic division of labor, 226 

both heterosynergetic with microbes and homosynergetic to build more complex 227 

macromolecules from minimal building blocks. Worker reproduction and policing likely 228 

facilitated the evolution of trophic eggs [21,22]. Whether larval cannibalism is a primitive form 229 

of metabolic division of labor is debatable, but it may have led to the evolution of hemolymph 230 

drinking. 231 

 232 

Figure 2: Diagram depicting hypothesized evolutionary drivers (red boxes) and facilitators 233 

(orange box) for homosynergetic metabolic division of labor to emerge as well as some 234 
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predicted consequences (blue boxes) of homosynergetic metabolic division of labor on life 235 

history traits of individuals and of the colony. 236 

 237 

3)  Consequences of metabolic division of labor on life history 238 

 239 

Increased metabolic efficiency with colony size 240 

As in solitary organisms, metabolic rate scales hypometrically at the level of the colony 241 

[19,20,64], where smaller colonies have higher metabolic rates. Yet in contrast with solitary 242 

species, in social insect colonies this association cannot be explained by constraints in 243 

resource supply or by changes in surface to volume ratio. Instead, the social synergy 244 

hypothesis [20,64] explains the hypometric scaling with the idea that larger colonies are 245 

energetically more efficient. In line with this theory, stronger homosynergetic metabolic division 246 

of labor should allow larger colonies to optimize their energetic yield, therefore reducing their 247 

metabolic rate.  248 

 249 

Body size variation and differential allocation of metabolic costs between queen and workers 250 

Metabolic division of labor can lead to an unequal allocation of colony-level metabolic costs 251 

and benefits between individuals, and as such, it can accentuate asymmetries between colony 252 

members. The cheap worker hypothesis [65], while proposed without metabolic division of 253 

labor in mind, is likely underpinned by the ability of such species to dissociate costs and 254 

benefits across a colony’s individuals. These asymmetries have developmental and life history 255 

consequences [57-59] including the adult size dimorphism and differences in longevity and 256 

fecundity between reproductives and workers (Figure 2).  257 

 258 

Asymmetries in both cost and resource allocation across the colony can come about through 259 

many mechanisms. For costs, at the individual level, metabolic scaling varies phylogenetically 260 

and between castes [18,20,66], suggesting species-specific and caste-specific variation in the 261 

tradeoff between metabolic investment in colony fitness versus individual maintenance [66]. 262 

Such variation in metabolic scaling relations may indicate species where metabolic division of 263 

labor is redistributing worker and queen metabolic costs. For resource allocation, termite 264 

workers do not produce uric-acid oxidase, preventing them from using stocks of uric acid as a 265 

source of nitrogen; instead this enzyme is highly abundant in reproductives, who can then 266 

metabolize uric acid received by trophallaxis from non-reproductives and use this nitrogen 267 

source for reproduction [29]. 268 

 269 

Reinforcement of superorganismality 270 
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Homosynergetic metabolic division of labor leads to increasing interdependence between 271 

colony members [2,17], entrenching and reinforcing the higher-level individual. The gradient 272 

of reproductive autonomy across individuals in social insect species [67] likely parallels the 273 

degree of homosynergetic metabolic division of labor a species uses (based on proxies of 274 

dimorphism, [57] or metabolic rate [66]). As Michod & Nedelcu 2006 [68] and Strassmann & 275 

Queller 2009 [3] indicated, the fraternal transition to (super)organismality is characterized by 276 

high cooperation and low reproductive autonomy. Increasing use of homosynergetic metabolic 277 

division of labor represents both an increase in cooperation and a decrease in any form of 278 

autonomy.  279 

 280 

Development of anatomical structures 281 

Metabolic division of labor can favor the specialization of anatomical structures that enable the 282 

necessary transfer [2,8] (Figure 2). For trophallaxis, the proventriculus separating the crop 283 

from the midgut is highly elaborated in ants that engage in trophallaxis [15]. Glands can also 284 

be highly elaborated – for example, the hypopharyngeal and mandibular glands of honeybee 285 

workers are where most royal jelly proteins are synthesized [69,70]. The anatomy of other 286 

exocrine glands in social insects engaging in trophallaxis should be investigated in relation 287 

with metabolic division of labor to reveal signs of morphological adaptation.  288 

 289 

Costs of metabolic division of labor 290 

Metabolic division of labor can lead to metabolic interdependence [2,17]. While this 291 

interdependence can create an evolutionary point-of-no-return, it may also reduce the 292 

resilience of the colony to internal or external stressors.  Another cost related to the transfer of 293 

material is the higher risk of pathogen transmission, and therefore, metabolic division of labor 294 

is expected to evolve together with immune defense mechanisms [9]. 295 

Conclusion  296 

Homosynergetic metabolic division of labor is widespread and understudied in social insects, 297 

despite the fact that it underlies major features of colony physiology. 298 

This is a novel view of social insect colonies, as metabolically networked individuals. Future 299 

research needs to explore the importance of metabolic division of labor for colony fitness to 300 

ultimately establish its role in social insect life-history evolution. 301 

Studying homosynergetic metabolic division of labor across social insects should inform our 302 

understanding of superorganismality, and the major evolutionary transitions in individuality that 303 

have occurred multiple times across social insect lineages. In contrast to multicellular systems 304 
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where metabolic division of labor occurs between different cells or tissues, in social insects, 305 

metabolic division of labor occurs between distinct and accessible individuals, making social 306 

insects an excellent study system to explore networked metabolism.  307 

 308 

  309 
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