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Abstract 17 

Meta-analysis is a quantitative way of synthesizing results from multiple studies to obtain reliable 18 

evidence of an intervention or phenomenon. Indeed, an increasing number of meta-analyses are 19 

conducted in environmental sciences, and resulting meta-analytic evidence is often used in 20 

environmental policies and decision-making. We conducted a survey of recent meta-analyses in 21 

environmental sciences and found poor standards of current meta-analytic practice and reporting. 22 

Only ~40% of the 73 reviewed meta-analyses reported heterogeneity (variation among effect sizes 23 

beyond sampling error), and publication bias was assessed in less than half. Furthermore, although 24 

almost all the meta-analyses had multiple effect sizes originating from the same studies, non-25 

independence among effect sizes was considered in only half of the meta-analyses. To improve the 26 

implementation of meta-analysis in environmental sciences, we here outline practical guidance for 27 

conducting a meta-analysis in environmental sciences. We describe the key concepts of effect size 28 

statistics and meta-analysis, and detail procedures for fitting multilevel meta-analysis and meta-29 

regression models and performing associated publication bias tests. We demonstrate a clear need for 30 

environmental scientists to embrace multilevel meta-analytic models, which explicitly model 31 

dependence among effect sizes, rather than the commonly used random-effects models. Further, we 32 

discuss how reporting and visual presentations of meta-analytic results can be much improved by 33 

following reporting guidelines such as PRISMA-EcoEvo (Preferred Reporting Items for Systematic 34 

Reviews and Meta-Analyses for Ecology and Evolutionary Biology). This paper, along with the 35 

accompanying online tutorial (link), serves as a practical guide on conducting a complete set of 36 

meta-analytic procedures (i.e., meta-analysis, heterogeneity quantification, meta-regression, 37 

publication bias tests and sensitivity analysis) and also as a gateway to more advanced, yet 38 

appropriate, methods.  39 

KEYWORDS 40 

Hierarchical models, robust variance estimation, spatial dependency, variance-covariance matrix, 41 

meta-analysis of variance, missing data, network meta-analysis, multivariate meta-analysis   42 
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Background 43 

Evidence synthesis is an essential part of science. The method of systematic review provides the 44 

most trusted and unbiased way to achieve the synthesis of evidence [1-3]. Systematic reviews often 45 

include a quantitative summary of studies on the topic of interest, referred to as a meta-analysis (for 46 

discussion on the definitions of ‘meta-analysis’, see [4]). The term meta-analysis can also mean a 47 

set of statistical techniques for quantitative data synthesis. The methodologies of the meta-analysis 48 

were initially developed and applied in medical and social sciences. However, meta-analytic 49 

methods are now used in many other fields, including environmental sciences [5-7]. In 50 

environmental sciences, the outcomes of meta-analyses (within systematic reviews) have been used 51 

to inform environmental and related policies (see [8]). Therefore, the reliability of meta-analytic 52 

results in environmental sciences is important beyond mere academic interests; indeed, incorrect 53 

results could lead to ineffective or sometimes harmful environmental policies [8].  54 

 55 

As in medical and social sciences, environmental scientists frequently use traditional meta-analytic 56 

models, namely fixed-effect and random-effects models [9, 10]. However, we contend that such 57 

models in their original formulation are no longer useful and are often incorrectly used, leading to 58 

unreliable estimates and their errors. This is mainly because the traditional models assume 59 

independence among effect sizes, but almost all primary research papers include more than one 60 

effect size, and this non-independence is often not considered (e.g., [11-13]). Furthermore, previous 61 

reviews of published meta-analyses in environmental sciences (hereafter, ‘environmental meta-62 

analyses’) have demonstrated that less than half report or investigate heterogeneity (inconsistency) 63 

among effect sizes [14-16]. Many environmental meta-analyses also do not present any sensitivity 64 

analysis, for example, for publication bias (i.e., statistically significant effects being more likely to 65 

be published, making collated data unreliable; [17, 18]). These issues might have arisen for several 66 

reasons, for example, because of no clear conduct guideline for statistical part of meta-analyses in 67 

envirometal sciences and rapid developments in meta-analytic methods. Taken together, the field 68 
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urgently requires a practical guide to implement correct meta-analyses and associated procedures 69 

(e.g., heterogeneity analysis, meta-regression, and publication bias tests; cf. [19]).  70 

 71 

To assist environmental scientists conducting meta-analyses, the aims of this paper are five-fold. 72 

First, we provide an overview of the processes involved in a meta-analysis while introducing some 73 

key concepts. Second, after introducing the main types of effect size (statistics), we mathematically 74 

describe the two commonly used traditional meta-analytic models, demonstrate their futility, and 75 

introduce a practical, multilevel meta-analytic model for environmental sciences that appropriately 76 

handles non-independence among effect sizes. Third, we show how to quantify heterogeneity (i.e., 77 

consistencies among effect sizes and/or studies) using this model, and then and explain such 78 

heterogeneity using meta-regression. Fourth, we show how to test for publication bias in a meta-79 

analysis and describe other common types of sensitivity analysis. Fifth, we cover other technical 80 

issues relevant to environmental sciences (e.g., scale and phylogenetic dependence) as well as some 81 

advanced meta-analytic techniques. In addition, these five aims (sections) are interspersed with two 82 

more sections, named ‘Notes’ on: 1) visualisation and interpretation and 2) reporting and archiving. 83 

Some of these sections are accompanied by results from a survey of 73 environmental meta-84 

analyses published between 2019 and 2021; survey results depict current practices and highlight 85 

associated problems (for the method of the survey, see Supporting Information). Importantly, we 86 

provide easy-to-follow implementations of much of what is described below, using the R package, 87 

metafor [20] and other R packages at the webpage (https://itchyshin.github.io/Meta-88 

analysis_tutorial/), which also connects the reader to the wealth of online information on meta-89 

analysis (see also [21]).  90 

 91 

Overview with key concepts  92 

Statistically speaking, we have three general objectives when conducting a meta-analysis [12]: 1) 93 

estimating an overall mean, 2) quantifying consistency (heterogeneity) between studies, and 3) 94 
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explaining the heterogeneity (see Table 1 for the definitions of the terms in italic). A notable feature 95 

of a meta-analysis is that an overall mean is estimated by taking the sampling variance of each 96 

effect size into account: a study (effect size) with a low sampling variance (usually based on a larger 97 

sample size) is assigned more weight in estimating an overall mean than one with a high sampling 98 

variance (usually based on a smaller sample size). However, an overall mean estimate itself is often 99 

not informative because one can get the same overall mean estimates in different ways. For 100 

example, we may get an overall estimate of zero if all studies have zero effects with no 101 

heterogeneity. In contrast, we might also obtain a zero mean across studies that have highly variable 102 

effects (e.g., ranging from strongly positive to strongly negative), signifying high heterogeneity. 103 

Therefore, quantifying indicators of heterogeneity is an essential part of a meta-analysis, necessary 104 

for interpreting the overall mean appropriately. Once we observe non-zero heterogeneity among 105 

effect sizes, then, our job is to explain this variation by running meta-regression models, and, at the 106 

same time, quantify how much variation is accounted for (often quantified as R2). In addition, it is 107 

important to conduct an extra set of analyses, often referred to as publication bias tests, which are a 108 

type of sensitivity analysis [11], to check the robustness of meta-analytic results. 109 

Choosing an effect size statistic 110 

In this section, we introduce different kinds of ‘effect size statistics’ or ‘effect statistics’. In the 111 

literature, the term ‘effect size’ is typically used to refer to the magnitude or strength of an effect of 112 

interest or its biological interpretation (e.g., environmental significance). Effect sizes can be 113 

quantified using a range of statistics (for details, see [22]). In our survey of environmental meta-114 

analyses, the two most commonly used effect size statistics are: the logarithm of response ratio, 115 

lnRR ([23]; also known as the ratio of means; [24]) and standardized mean difference, SMD (often 116 

referred to as Hedges’ g or Cohen’s d [25, 26]). These are followed by proportion (%) and Fisher’s 117 

z-transformation of correlation, or Zr. These four effect statistics nearly fit into the three categories, 118 

which are named: 1) single-group statistics (a statistical summary form one group; e.g., proportion), 119 

2) comparative statistics (comparing statistics between two groups e.g., SMD and lnRR), and 3) 120 
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association statistics (relationships between two variables; e.g., Zr). Table 2 summarizes effect 121 

statistics which are common or potentially useful for environmental scientists. Some of the readers 122 

may be surprised that ‘mean’ can be an effect size for a meta-analysis, although once one realises 123 

proportion is a type of mean, this makes sense (e.g., the mean concentration values of a certain 124 

pollutant can be meta-analysed across studies). Also, this example nicely illustrates that any 125 

statistics with sampling variance can become an ‘effect size’. The main reason why SMD, lnRR, Zr, 126 

or proportion are popular effect statistics is that they are unitless, while a meta-analysis of mean, or 127 

mean difference, can only be conducted when all effect sizes have the same unit (e.g., cm, kg).  128 

 129 

Table 2 also includes effect statistics that are likely to be unfamiliar to environmental scientists; 130 

these are effect sizes that characterise differences in the observed variability between samples, (i.e., 131 

lnSD, lnCV, lnVR and lnCVR; [27, 28]) rather than central tendencies (averages). These 132 

dispersion-based effect statistics can provide us with extra insights along with average-based effect 133 

statistics. Although the literature survey showed none of these were used in our sample, these effect 134 

sizes have been used in many fields, including agriculture (e.g., [29]), ecology (e.g., [30]), 135 

evolutionary biology (e.g., [31]), psychology (e.g., [32]), education (e.g., [33]), psychiatry (e.g., 136 

[34]), neurosciences (e.g., [35]), and more. Perhaps, it is not difficult to think of an environmental 137 

intervention that can affect not only mean but also variance of a group of individuals or plots. 138 

Indeed, per unit yield, organic agriculture has a lower temporal stability compared to conventional 139 

agriculture,  although the former promotes greater biodiversity [29],. Also, environmental stressors 140 

such as pesticides and eutrophication are likely to increase variability in biological systems because 141 

stress accentuates individual differences in environmental responses (e.g., [36, 37]). Such ideas are 142 

yet to be tested meta-analytically (cf. [38, 39]).  143 
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Choosing a meta-analytic model 144 

Two traditional models & a proposed practical model 145 

The fixed-effect model, which should probably be more correctly referred to as the ‘common-146 

effect’ model, can be written as [9, 10, 40]: 147 

𝑧! = 𝛽" +𝑚! ,					(1) 148 

𝑚! ∼ N-0, 𝑣!0, 149 

where the intercept, 𝛽" is the overall mean, zj (the response/dependent variable) is the effect size 150 

from the jth study (j = 1, 2,…, Nstudy; in this model, Nstudy = the number of studies = the number of 151 

effect sizes), mj is the effect of the jth sampling variance (vj), which is normally distributed with the 152 

mean of 0 and the ‘study-specific’ sampling variance, vj (see also Figure 1A). The overall mean is 153 

basically the same as a weighted average with the weights, 𝑤! = 1/𝑣!. An important assumption of 154 

meta-analysis is that sampling variance is known (note that we can usually estimate sampling 155 

variance correctly and unbiasedly, using formulas; Table 2; but see section ‘Scale dependence’). As 156 

you may see from this formulation, the fixed-effect model assumes that the only source of variation 157 

in effect sizes (zj) is the effect due to sampling variance (whose main determinant is the sample size, 158 

n; Table 2). 159 

 160 

Similarly, the random-effects model can be expressed as:  161 

𝑧! = 𝛽" + 𝑢! +𝑚! ,						(2) 162 

𝑢! ∼ N(0, 𝜏#), &		𝑚! ∼ N-0, 𝑣!0, 163 

where uj is the jth study effect (or ‘paper effect’, as we here equate ‘study’ with ‘paper’), which is 164 

normally distributed with the mean of 0 and the between-study variance, 𝜏#, and other notations are 165 

the same as in Equation 1 (Figure 1B). Here, the overall mean is the weighted average with weights 166 

𝑤! = 1/-𝜏# + 𝑣!#0. The model assumes each study has its specific mean, 𝑏" + 𝑢!, and 167 
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(in)consistencies among studies (effect sizes) are indicated by 𝜏#. When 𝜏# is 0 (or not different 168 

from 0), the random-effects model simplifies to the fixed-effect model (cf. Equations 1 & 2). Given 169 

no studies in environmental sciences are conducted in the same manner or even at exactly the same 170 

place and time, we should expect different studies to have different means. Therefore, in almost all 171 

cases in the environmental sciences, the random-effects model is a more ‘realistic’ model [9, 10, 172 

40]. Accordingly, most environmental meta-analyses (68.5%; 50 out of 73 studies) in our survey 173 

used the random-effects model, while only 2.7% (2 of 73 studies) used the fixed-effect model.  174 

 175 

Multilevel meta-analytic models 176 

Although we have introduced the random-effects model as being more realistic than the fixed-effect 177 

model (Equation 2), we argue that the random-effects model is rather limited and impractical for the 178 

environmental sciences. This is because random-effects models, like fixed-effect models, assume all 179 

effect sizes (zj) to be independent. However, when multiple effect sizes are obtained from a study 180 

(paper), these effect sizes are dependent (for more details, see the next section on non-181 

independence). Indeed, our survey showed that in almost all datasets used in environmental meta-182 

analyses, this type of non-independence among effect sizes occurred (97.3%; 71 out of 73 studies, 183 

with two studies being unclear, so effectively 100%). Therefore, we propose the simplest and most 184 

practical meta-analytic model for environmental sciences as [13, 40] (see also [41, 42]):  185 

𝑧$ = 𝛽" + 𝑢![$] + 𝑒$ +𝑚$ ,							(3) 186 

𝑢! ∼ N(0, 𝜏#), 	𝑒$ ∼ N(0, 𝜎#), &		𝑚$ ∼ N(0, 𝑣$) 187 

where we explicitly recognize that Neffect (i = 1, 2,…, Neffect) > Nstudy (j = 1, 2,…, Nstudy) and, 188 

therefore, we now have the study effect (between-study effect), uj[i] (for the jth study and ith effect 189 

size) and effect-size level (within-study) effect, ei (for the ith effect size), with the between-study 190 

variance, 𝜏#, and with-study variance, 𝜎#, respectively, and other notations are the same as above. 191 

We note that this model (Equation 3) is an extension of the random-effects model (Equation 2), and 192 
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we refer to it as the multilevel/hierarchical model (used in 7 out of 73 studies: 9.6%; note that 193 

Equation 3 is also known as a three-level meta-analytic model; Figure 1C). Also, environmental 194 

scientists who are familiar with (generalised) linear mixed-models may recognize uj (the study 195 

effect) as the effect of a random factor which is associated with a variance component, i.e., 𝜏# [43]; 196 

also, ei and mi can be seen as parts of random factors, associated with 𝜎# and vi (the former is 197 

comparable to the residuals, while the latter is something special for a meta-analysis). 198 

It seems that many researchers are aware of the issue of non-independence so that they often use 199 

average effect sizes per study (paper) or choose one effect size (at least 28.8%, 21 out of 73 200 

environmental meta-analyses). However, as we discussed elsewhere [13, 40], such averaging or 201 

selection of one effect size per study dramatically reduces our ability to investigate environmental 202 

drivers of variation among effect sizes [13]. Therefore, we strongly support the use of the multilevel 203 

model. Nevertheless, this proposed multilevel model, formulated as Equation 3 does not usually 204 

deal with the issue of non-independence completely, which we elaborate on in the next section.  205 

Non-independence among effect sizes and among sampling errors 206 

When you have multiple effect sizes from a study (paper), there are two broad types and three cases 207 

of non-independence (cf. [11, 12]): 1) effect sizes are calculated from different cohorts of 208 

individuals (or groups of plots) within a study (Figure 2A, referred to as ‘shared study identity’), 209 

and 2) effects sizes are calculated from the same cohort of individuals (or group of plots; Figure 2B, 210 

referred to as ‘shared measurements’) or partially from the same individuals and plots, more 211 

concretely, sharing individuals and plots from the control group (Figure 2C, referred to as ‘shared 212 

control group’). The first type of non-independence induces dependence among effect sizes, but not 213 

among sampling variances, and the second type leads to non-independence among sampling 214 

variances. Many datasets, if not almost all, will have a combination of these three cases (or even are 215 

more complex, see the section ‘Complex non-independence’). Failing to deal with these non-216 

independences will inflate Type 1 error (note that the overall estimate, b0 is unlikely to be biased, 217 

but standard error of b0, se(b0), will be underestimated; note that this is also true for all other 218 
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regression coefficients, e.g., b1; see Table 1). The multilevel model (as in Equation 3) only takes 219 

care of cases of non-independence that are due to the shared study identity but neither shared 220 

measurements nor shared control group.  221 

 222 

There are two practical ways to deal with non-independence  among sampling variances. The first 223 

method is that we explicitly model such dependence using a variance-covariance (VCV) matrix 224 

(used in 6 out of 73 studies: 8.2%). Imagine a simple scenario with a dataset of three effect sizes 225 

from two studies where two effects sizes from the first study are calculated (partially) using the 226 

same cohort of individuals (Figure 2B); in such a case, the sampling variance effect, 𝑚$, as in 227 

Equation 3, should be written as:  228 

𝑚$ ∼ N(0,𝐌) 229 

𝐌 = <
𝑣'['] 𝜌>𝑣'[']𝑣'[#] 0

𝜌>𝑣'[#]𝑣'['] 𝑣'[#] 0
0 0 𝑣#[(]

?,					(4) 230 

where M is the VCV matrix showing the sampling variances,𝑣'['] (study 1 & effect size 1), 𝑣'[#] 231 

(study 1 & effect size 2), and 𝑣#[(] (study 2 & effect size 3) in its diagonal, and sampling 232 

covariance, 𝜌>𝑣'[']𝑣'[#] = 	𝜌>𝑣'[#]𝑣'['] in its off-diagonal elements, where 𝜌 is a correlation 233 

between two sampling variances due to shared samples (individuals/plots). Once this VCV matrix is 234 

incorporated into the multilevel model (Equation 3), all the types of non-independence, as in Figure 235 

2, are taken care of. Table 3 shows formulas for the sampling variance and covariance of the four 236 

common effect sizes (SDM, lnRR, proportion and Zr). For comparative effect statistics (Table 2), 237 

exact covariances can be calculated under the case of ‘shared control group’ (see [44, 45]). But this 238 

is not feasible for most circumstances because we usually do not know what 𝜌 should be. Some 239 

have suggested to fix this value at 0.5 (e.g., [11]) or 0.8 (e.g., [46]); the latter is a more conservative 240 

assumption. Or one can run both and use one for the main analysis and the other for sensitivity 241 

analysis (for more, see the section ‘Conducting sensitivity analysis & critical appraisal’).  242 
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 243 

The second method overcomes this very issue of unknown 𝜌 by approximating average dependence 244 

among sampling variance (and effect sizes) from the data and incorporating such dependence to 245 

estimate standard errors (only used in 1 out of 73 studies). This method is known as ‘robust 246 

variance estimation’, RVE, and the original estimator was proposed by Hedges and colleagues in 247 

2010 [47]. Meta-analysis using RVE is relatively new, and this method has been applied to 248 

multilevel meta-analytic models only recently [48]. Note that the random-effects model (Equation 249 

2) and RVE could correctly model both types of non-independence. However, we do not 250 

recommend the use of RVE with Equation 2 because, as we will later show, estimating 𝜎# as well 251 

as 𝜏# will constitute the important part of understanding and gaining more insights from one’s data. 252 

We do not yet have a definite recommendation on which method to use to account for non-253 

independence among sampling errors (using the VCV matrix or RVE). This is because no 254 

simulation work in the context of multilevel meta-analysis has been done so far, using multilevel 255 

meta-analyses [13, 48]. For now, one could use both VCV matrices and RVE in the same model 256 

[48] (see also [21]). 257 

Quantifying & explaining heterogeneity 258 

Measuring consistencies with heterogeneity  259 

As mentioned earlier, quantifying heterogeneity among effect sizes is an essential component of any 260 

meta-analysis. Yet, our survey showed only 28 out of 73 environmental meta-analyses (38.4%) 261 

report at least one index of heterogeneity (e.g., 𝜏#, Q, and I2). Conventionally, the presence of 262 

heterogeneity is tested by Cochrane’s Q test. However, Q (often denoted as QT or Qtotal), and its 263 

associated p value, are not particularly informative: the test diesn’t tell about the extent of 264 

heterogeneity (e.g., [10]), only whether heterogeneity is zero or not (when p < 0.05). Therefore, for 265 

environmental scientists, we recommend two common ways of quantifying heterogeneity from a 266 

meta-analytic model: absolute heterogeneity measure (i.e., variance components, 𝜏# and 𝜎#) and 267 
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relative heterogeneity measure (i.e., I2; see also the section ‘Notes on visualisation and 268 

interpretation’ for another way of quantifying and visualising heterogeneity at the same time, using 269 

prediction intervals). We have already covered the absolute measure (Equations 2 & 3), so here we 270 

explain I2, which ranges from 0 to 1. The heterogeneity measure, I2, for the random-effect model 271 

(Equation 2) can be written as:  272 

𝐼# =
𝜏#

𝜏# + 𝑣‾
,							(5) 273 

𝑣‾ =
-𝑁)**)+, − 10∑ (1/𝑣$)-

!.'

-∑ (1/𝑣$)-
!.' 0# − ∑ (1/𝑣$)#-

!.'

,								(6) 274 

where 𝑣‾ is referred to as the typical sampling variance (originally this is called ‘within-study’ 275 

variance, as in Equation 2, and note that in this formulation, within-study effect and the effect of 276 

sampling error is confounded; see [49, 50]; see also [51]) and the other notations are as above. As 277 

you can see from Equation 5, we can interpret I2 as relative variance due to differences between 278 

studies, or not due to sampling variance.  279 

 280 

By seeing I2 as a type of interclass correlation (also known as repeatability, [52]), we can generalize 281 

I2 to multilevel models. In the case of Equation 3 ([40, 53]; see also [42]), we have:  282 

𝐼,/,01# =
𝜏# + 𝜎#

𝜏# + 𝜎# + 𝑣‾
.							(7) 283 

Because we can have two more I2, Equation 7 is denoted as 𝐼,/,01# ; these other two are 𝐼2,345#  and 284 

𝐼)**)+,# , respectively:  285 

𝐼2,345# =
𝜏#

𝜏# + 𝜎# + 𝑣‾
,							(8) 286 

𝐼)**)+,# =
𝜎#

𝜏# + 𝜎# + 𝑣‾
.					(9)	 287 
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𝐼,/,01#  represents variance due to differences both between and within studies or not due to 288 

differences in sampling variance, while 𝐼2,345#  is variance due to differences between studies, and 289 

𝐼)**)+,#  is variance due to differences within studies (Figure 3A). Once heterogeneity is quantified 290 

(note almost all data will have non-zero heterogeneity and an earlier meta-meta-analysis suggests in 291 

ecology, we have, on average, I2 close to 90%, [53]), it is time to fit a meta-regression model to 292 

explain the heterogeneity. Notably, the magnitude of 𝐼2,345#  (or 𝜏#) and 𝐼)**)+,#  (or 𝜎#) can already 293 

inform you which predictor variable (usually referred to as ‘moderator’) is likely to be important, 294 

which we explain in the next section. 295 

Explaining variance with meta-regression 296 

We can extend the multilevel model (Equation 3) to a meta-regression model with one moderator 297 

(also known as predictor, independent, explanatory variable, or fixed factor), as below: 298 

𝑧$ = 𝛽" + 𝛽'𝑥'![$] + 𝑢![$] + 𝑒$ +𝑚$ ,						(10) 299 

where 𝛽' is a slope of the moderator (x1), 𝑥'![$] denotes the value of x1, corresponding to the jth 300 

study (and the ith effect sizes). Equation 10 (meta-regression) is comparable to the simplest 301 

regression with the intercept (𝛽") and slope (𝛽'). Notably, 𝑥'![$] differs between studies and, 302 

therefore, it will mainly explain the variance component, 𝜏# (which relates to 𝐼2,345# ). On the other 303 

hand, if noted like 𝑥'$, this moderator would vary within studies or at the level of effect sizes, 304 

therefore, explaining 𝜎# (relating to 𝐼)**)+,# ). Therefore, when 𝜏# (𝐼2,345# ), or 𝜎# (𝐼)**)+,# ), is close to 305 

zero, there will be little point fitting a moderator(s) at the level of studies, or effect sizes, 306 

respectively. 307 

 308 

As in multiple regression, we can have multiple (multi-moderator) meta-regression, which can be 309 

written as: 310 

𝑧$ = 𝛽" +M𝛽6

7

6.'

𝑥6[$] + 𝑢![$] + 𝑒$ +𝑚$ ,							(11) 311 
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where ∑ 𝛽6
7
6.' 𝑥6[$] denotes the sum of all the moderator effects, with q being the number of slopes 312 

(staring with h = 1). We note that q is not necessarily the number of moderators. This is because 313 

when we have a categorical moderator, which is common, with more than two levels (e.g., method 314 

A, B & C), the fixed effect part of the formula is 𝛽" + 𝛽'𝑥' + 𝛽#𝑥#, where x1 and x2 is what is 315 

known as ‘dummy’ variables, which code whether the ith effect size belongs to, for example, 316 

method B or C, with 𝛽' and 𝛽# being contrasts between A and B and between A and C, respectively 317 

(for more explanations of dummy variables, see our webpage; also see [54, 55]). Traditionally, 318 

researchers conduct separate meta-analyses per different groups (known as ‘sub-group analysis’), 319 

but we prefer a meta-regression approach with a categorical variable, which is statistically more 320 

powerful [40]. Also, importantly, what can be used as a moderator(s) is very flexible, including, for 321 

example, individual/plot characteristics (e.g., age, location), environmental factors (e.g., 322 

temperature), methodological differences between studies (e.g., randomization), and bibliometric 323 

information (e.g., publication year; see more in the section ‘Checking for publication bias and 324 

robustness’). Note that moderators should be decided priori, meaning one’s meta-analysis plan and 325 

design should include a list of moderators to be considered.  326 

 327 

As with meta-analysis, the Q-test (Qm or Qmoderator) is often used to test the significance of a 328 

moderator(s). To complement this test, we can also quantify variance explained by a moderator(s) 329 

using R2. We can define R2 using Equation 11 as:  330 

𝑅# =
𝑓#

𝑓# + 𝜏# + 𝜎# ,							(12) 331 

𝑓# = VarPM𝛽6

7

6.'

𝑥6[$]Q,								(13) 332 

where R2 is known as marginal R2 (sensu [56, 57]; cf. [58]), 𝑓# is the variance due to a 333 

moderator(s), and (𝑓# + 𝜏# + 𝜎#) here equals to (𝜏# + 𝜎#) in Equation 7, as 𝑓# ‘absorbs’ variance 334 

from 𝜏# and/or 𝜎#. We can compare the similarities and differences in Figure 3B where we denote a 335 
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part of 𝑓# originating from 𝜏# as 𝑓2,345#  while 𝜎# as 𝑓)**)+,# . In a multiple meta-regression model, 336 

we often want to find a model with the ‘best’ or an adequate set of predictors (i.e., moderators). R2 337 

can potentially help such a model selection process. Yet, methods based on information criteria 338 

(such as AIC) may be preferable. Although model section based on the information criteria is 339 

beyond the scope of the paper, we refer the reader to relevant articles (e.g., [59, 60]), and we show 340 

an example of this procedure in our online tutorial (link). 341 

Notes on visualisation and interpretation 342 

Visualization and interpretation of results is an essential part of a meta-analysis [61, 62]. 343 

Traditionally, a forest plot is used to display the values and 95% of confidence intervals (CIs) for 344 

each effect size. and the overall effect and its 95% CI (denoted as a diamond, as shown in Figure 345 

4A). More recently, adding a 95% prediction interval (PI) to the overall estimate has been strongly 346 

recommended because 95% PIs show a predicted range of values in which an effect size from a new 347 

study would fall, assuming there is no sampling error [63]. Here, we think that examining the 348 

formulas for 95% CIs and PIs for the overall mean (from Equation 3) is illuminating:  349 

95%CI = 𝛽" ± 𝑡4*[8.".":] ⋅ 𝑠𝑒(𝛽"),						(14) 350 

95%PI = 𝛽" ± 𝑡4*[8.".":]>𝑠𝑒#(𝛽") + 𝜏# + 𝜎#,						(15) 351 

where 𝑡4*[8.".":] denotes the t value with the degree of freedom, df, at 97.5 percentile (or 𝛼 =352 

0.05) and other notations are as above. In a meta-analysis, it has been conventional to use z value 353 

1.96 instead of 𝑡4*[8.".":], but simulation studies have shown the use of t value over z value reduces 354 

Type 1 errors under many scenarios and, therefore, is recommended (e.g., [13, 64]). Also, it is 355 

interesting to note that by plotting 95% PIs, we can visualize heterogeneity as Equation 15 includes 356 

𝜏# and 𝜎#.  357 

 358 
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A ‘forest’ plot can becomes quickly illegible as the number of studies (effect sizes) becomes large, 359 

so other methods of visualizing the distribution of effect sizes have been suggested. Some suggested 360 

to present a ‘caterpillar’ plot, which is a version of the forest plot, instead (Figure 4B; e.g., [65]). 361 

We here recommend an ‘orchard’ plot, as it is can present results across different groups (or a result 362 

of meta-regression with a categorical variable), as shown in Figure 4C [65]. For visualization of a 363 

continuous variable, we suggest what is called a ‘bubble’ plot, shown in Figure 4D. Visualization 364 

not only helps us interpret meta-analytic results, but can also help to identify something we may not 365 

see from statistical results, such as influential data points and outliers that could threaten the 366 

robustness of our results.  367 

Checking for publication bias and robustness 368 

Detecting and correcting for publication bias 369 

Checking for and adjusting for any publication bias is  necessary to ensure the validity of meta-370 

analytic inferences [66]. However, our survey showed almost half of the environmental meta-371 

analyses (46.6%; 34 out of 73 studies) neither tested for nor corrected for publication bias (cf. [14-372 

16]). The most popular methods used were: 1) graphical tests using funnel plots (26 studies; 373 

35.6%), 2) regression-based tests such as Egger regression (18 studies; 24.7%), 3) Fail-safe number 374 

tests (12 studies; 16.4%), and 4) trim-and-fill tests (10 studies; 13.7%). We recently showed that 375 

these methods are unsuitable for datasets with non-independent effect sizes, with the exception of 376 

funnel plots [67] (for an example of funnel plots, see Figure 5A). This is because these methods 377 

cannot deal with non-independence in the same way as the fixed-effect and random-effects models. 378 

Here, we only introduce a two-step method for multilevel models that can both detect and correct 379 

for publication bias [67] (originally proposed by [68, 69]), more specifically, the “small study 380 

effect” where an effect size value from a small-sample-sized study can be much larger in magnitude 381 

than a ‘true’ effect [70, 71]. This method is a simple extension of Egger’s regression [72], which 382 

can be easily implemented by using Equation 10: 383 
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𝑧$ = 𝛽" + 𝛽'X
1
𝑛Z$
+ 𝑢![$] + 𝑒$ +𝑚$ ,								(16) 384 

𝑧$ = 𝛽" + 𝛽' [
1
𝑛Z$
\ + 𝑢![$] + 𝑒$ +𝑚$ ,							(17) 385 

Where 𝑛Z$ is know as effective sample size; for Zr and proportion it is just ni, and for SMD and 386 

lnRR, it is 𝑛$;𝑛$</(𝑛$; + 𝑛$<), as in Table 2. When 𝛽' is significant, we conclude there exists a 387 

small-study effect (in terms of a funnel plot, this is equivalent to significant funnel asymmetry). 388 

Then, we fit Equation 17 and then, we look at the intercept 𝛽", which will be a bias-corrected 389 

overall estimate (note that 𝛽" in Equation 16 provides less accurate estimates when non-zero overall 390 

effects exist [68, 69]; Figure 5B). An intuitive explanation of why 𝛽" (Equation 17) is the bias-391 

corrected estimate is that the intercept represents 1/𝑛=] = 0 (or 𝑛=] = ∞); in other words, 𝛽" is the 392 

estimate of the overall effect when we have a very large (infinite) sample size.  393 

 394 

Conveniently, this proposed framework can be extended to test for another type of publication bias, 395 

known as time-lag bias, or the decline effect, where effect sizes tend to get closer to zero over time, 396 

as larger or statistically significant effects are published more quickly than smaller or non-397 

statistically significant effects [73, 74]. Again, a decline effect can be statistically tested by adding 398 

year to Equation 3:  399 

𝑧$ = 𝛽" + 𝛽'𝑐-𝑦𝑒𝑎𝑟![$]0 + 𝑢![$] + 𝑒$ +𝑚$ ,						(18) 400 

where 𝑐-𝑦𝑒𝑎𝑟![$]0 is the mean-centred publication year of a particular study (study j and effect size 401 

i); this centring makes the intercept 𝛽" meaningful, representing the overall effect estimate at the 402 

mean value of publication years (see [55]). When the slope is significantly different from 0, we 403 

deem that we have a decline effect (or time-lag bias; Figure 5C).  404 

 405 

However, there may be some confounding moderators, which need to be modelled together. Indeed, 406 

Egger’s regression (Equations 16 & 17) is known to detect the funnel asymmetry when there is little 407 
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heterogeneity; this means that we need to model >1/𝑛Z$ with other moderators that account for 408 

heterogeneity. Given this, we probably should use a multiple meta-regression model, as below:  409 

𝑧$ = 𝛽" + 𝛽'X
1
𝑛Z$
+ 𝛽#𝑐-𝑦𝑒𝑎𝑟![$]0 +M𝛽6

7

6.(

𝑥6[$] + 𝑢![$] + 𝑒$ +𝑚$ ,							(19) 410 

where ∑ 𝛽6
7
6.( 𝑥6[$] is the sum of the other moderator effects apart from the small-study effect and 411 

decline effect, and other notations are as above (for more details see [67]). We need to carefully 412 

consider which moderators should go into Equation 19 (e.g., fitting all moderators or using an AIC-413 

based model selection method; see [59, 60]). Of relevance, when running complex models, some 414 

model parameters cannot be estimated well, or they are not ‘identifiable’ [75]. This is especially so 415 

for variance components (random-effect part) rather than regression coeffects (fixed-effect part). 416 

Therefore, it is advisable to check whether model parameters are all identifiable, which can be 417 

checked using the profile function in metafor (for an example, see our tutorial webpage).  418 

Conducting sensitivity analysis & critical appraisal 419 

Sensitivity analysis explores the robustness of meta-analytic results by running a different set of 420 

analyses from the original analysis, and comparing the results (note that some consider publication 421 

bias tests a part of sensitivity analysis; [11]). For example, we might be interested in assessing how 422 

robust results are to the presence of influential studies, to the choice of method for addressing non-423 

independence, or weighting effect sizes. Unfortunately, in our survey, only 37% of environmental 424 

meta-analyses (27 out of 73) conducted sensitivity analysis. There are two general and interrelated 425 

ways to conduct sensitivity analyses [60, 76, 77]. The first one is to take out influential studies (e.g., 426 

outliers) and re-run meta-analytic and meta-regression models. We can also systematically take 427 

each effect size out and run a series of meta-analytic models to see whether any resulting overall 428 

effect estimates are different from others; this method is known as ‘leave-one-out’, which is 429 

considered less subjective and thus recommended.  430 

 431 
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The second way of approaching sensitivity analysis is known as subset analysis, where a certain 432 

group of effect sizes (studies) will be excluded to re-run the models without this group of effect 433 

sizes. For example, one may want to run analysis without studies which did not randomize samples. 434 

Yet, as mentioned earlier, we recommend using meta-regression (Equation 13) with a categorical 435 

variable of randomization status (‘randomized’ or ‘not randomized’), to statistically test for an 436 

influence of moderators. It is important to note that such tests for risk of bias (or study quality) can 437 

be considered as a way of quantitatively evaluating the importance of study features that were noted 438 

at the stage of critical appraisal, which is essential part of any systematic review (see [11, 78]). In 439 

other words, we can use meta-regression or subset analysis to quantitively conduct critical appraisal 440 

using (study-level) moderators that code, for example, blinding, randomization, and selective 441 

reporting. Despite the importance of critical appraisal ([78]), only 4 of 73 environmental meta-442 

analyses (5.6%) in our survey assessed the risk of bias in each study included in a meta-analysis 443 

(i.e., evaluating a primary study in terms of the internal validity of study design and reporting). We 444 

emphasize that critically appraising each paper or checking them for risk of bias is an extremely 445 

important topic. Also, critical appraisal is not restricted to quantitative synthesis. Therefore, we do 446 

not cover any further in this paper (see more for [79, 80])  447 

Notes on transparent reporting & open archiving  448 

For environmental systematic reviews and maps, there are reporting guidelines called RepOrting 449 

standards for Systematic Evidence Syntheses in environmental research, ROSES [81] and synthesis 450 

assessment checklist, the Collaboration for Environmental Evidence Synthesis Appraisal Tool 451 

(CEESAT; [82]). However, these guidelines are somewhat limited in terms of reporting quantitative 452 

synthesis because they cover only a few core items. These two guidelines are complemented by the 453 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Ecology and 454 

Evolutionary Biology (PRISMA-EcoEvo; [83]; cf. [84, 85]), which provides an extended set of 455 

reporting items covering what we have described above. Items 20-24 from PRISMA-EcoEvo are 456 

most relevant: these items outline what should be reported in the Methods section: i) sample sizes 457 
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and study characteristics, ii) meta-analysis, iii) heterogeneity, iv) meta-regression and v) outcomes 458 

of publication bias and sensitivity analysis (see Table 4). Our survey, as well as earlier surveys, 459 

suggest there is a large room for improvement in the current practice ([14-16]). Incidentally, the 460 

orchard plot is well aligned with Item 20, as this plot type shows both the number of effect sizes and 461 

studies for different groups (Figure 4C). Further, our survey of environmental meta-analyses 462 

highlighted the poor standards of data openness (with 24 studies sharing data: 32.9%) and code 463 

sharing (7 studies: 29.2%). Environmental scientists must archive their data as well as their analysis 464 

code in accordance with the FAIR principles (Findable, Accessible, Interoperable, and Reusable; 465 

[86]) using dedicated depositories such as Dryad, FigShare, Open Science Framework (OSF), 466 

Zenodo or others (cf. [87, 88]), preferably not on the publisher’s webpage (as paywall may block 467 

access). However, archiving itself is not enough; data requires metadata (detailed descriptions) and 468 

the code needs to also be FAIR [89, 90].  469 

Other relevant and advanced issues 470 

Scale dependence 471 

The issue of scale dependence is a unique yet widespread problem in environmental sciences (see 472 

[7, 91]); our literature survey indicated three quarters of the environmental meta-analyses (56 out of 473 

73 studies) have inferences that are potentially vulnerable to scale-dependence [92]. For example, 474 

studies that set out to compare group means in biodiversity measures, such as species richness, can 475 

vary as a function of the scale (size) of the sampling unit. When the unit of replication is a plot (not 476 

an individual animal or plant), the aerial size of a plot (e.g., 100 cm2 or 1 km2) will affect both the 477 

precision and accuracy of effect size estimates (e.g., lnRR and SMD). In general, a study with larger 478 

plots might have more accurately estimated species richness differences, but less precisely than a 479 

study with smaller plots and greater replication. Lower replication means that our sampling variance 480 

estimates are likely to be misestimated, and the study with larger plots will generally have less 481 

weight than the study with smaller plots, due to a higher sampling variance. Inaccurate variance 482 
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estimates in little-replicated ecological studies are known to cause an accumulating bias in 483 

precision-weighted meta-analysis, requiring correction [93]. To assess the potential for scale-484 

dependence, it is recommended that analysts test for possible for covariation among plot size, 485 

replication, variances, and effect sizes [91]. If detected,  analysts should use an effect size statistic 486 

that is less sensitive to scale dependence (lnRR), and could use the size of a plot as a moderator in 487 

meta-regression and consider, or we could run an unweighted model ([7]; note that only 12%, 9 out 488 

of 73 studies, accounted sampling area in some way).  489 

Missing data 490 

In many fields, meta-analytic data almost always encompass missing values see [94-96]. Broadly, 491 

we have two types of missing data in meta-analyses [97, 98]: 1) missing data in standard deviations 492 

or sample sizes, associated with means, preventing effect size calculations (Table 2), and 2) missing 493 

data in moderators. There are several solutions for both types. The best, and first to try, should be 494 

contacting the authors. If this fails, we can potentially ‘impute’ missing data. Single imputation 495 

methods using the strong correlation between standard deviation and mean values (known as mean-496 

variance relationship) are available, although single imputation can lead to Type I error [94, 95] 497 

(see also [93]) because we do not model the uncertainty of imputation itself. Contrastingly, multiple 498 

imputation, which creates multiple versions of imputed datasets, incorporates such uncertainty. 499 

Indeed, multiple imputation is a preferred and proven solution for missing data in effect sizes and 500 

moderators [97, 98]. Yet, correct implementation can be challenging (see [98]). What we require 501 

now is an automated pipeline of merging meta-analysis and multiple imputation, which accounts for 502 

imputation uncertainty, although it may be challenging for complex meta-analytic models. 503 

Fortunately, however, for lnRR, there is a series of new methods that can perform better than the 504 

conventional method and which can deal with missing SDs [99]; note that these methods do not 505 

deal with missing moderators. Therefore, where applicable, we recommend these new methods, 506 

until an easy-to-implement multiple imputation workflow arrives.  507 
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Complex non-independence 508 

Above, we have only dealt with the model that include study identities as a clustering/grouping 509 

(random) factor. However, many datasets are more complex, with potentially more clustering 510 

variables in addition to the study (paper) identity. It is certainly possible that an environmental 511 

meta-analysis contains data from multiple species. Such a situation creates an interesting 512 

dependence among effect sizes from different species, known as phylogenetic relatedness, where 513 

closely related species are more likely to be similar in effect sizes compared to distantly related 514 

ones (e.g., mice vs. rats and mice vs. sparrows). Our multilevel model framework is flexible and can 515 

accommodate phylogenetic relatedness. A phylogenetic multilevel meta-analytic model can be 516 

written as [40, 100, 101]:  517 

𝑧$ = 𝛽" + 𝑎-[$] + 𝑠-[$] + 𝑢![$] + 𝑒$ +𝑚$ ,						(20) 518 

𝑎- ∼ N(0, 𝜔#A),			𝑠- ∼ N(0, 𝛾#),			𝑢! ∼ N(0, 𝜏#),			𝑒$ ∼ N(0, 𝜎#), &		𝑚$ ∼ N(0, 𝑣$),	 519 

where 𝑎-[$] is the phylogenetic (species) effect for the kth species (effect size i; Neffect (i = 1, 2,…, 520 

Neffect) > Nstudy (j = 1, 2,…, Nstudy) > Nspecies (k = 1, 2,…, Nspecies)), normally distributed with 𝜔#A 521 

where is the phylogenetic variance and A is a correlation matrix coding how close each species are 522 

to each other and 𝜔# is the phylogenetic variance, 𝑠-[$] is the non-phylogenetic (species) effect for 523 

the kth species (effect size i), normally distributed with the variance of 𝛾# (the non-phylogenetic 524 

variance), and other notations are as above. It is important to realize that A explicitly models 525 

relatedness among species, and we do need to provide this correlation matrix, using a distance 526 

relationship usually derived from a molecular-based phylogenetic tree (for more details, see [40, 527 

100, 101]). Some may think that the non-phylogenetic term (𝑠-[$]) is unnecessary or redundant 528 

because 𝑠-[$] and the phylogenetic term (𝑎-[$]) are both modelling variance at the species level. 529 

However, a simulation recently demonstrated that failing to have the non-phylogenetic term (𝑠-[$]) 530 

will often inflate the phylogenetic variance 𝜔#, leading to an incorrect conclusion that there is a 531 

strong phylogenetic signal (as shown in [101]). The non-phylogenetic variance (𝛾#) arises from, for 532 
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example, ecological similarities among species (herbivores vs. carnivores or arboreal vs. ground-533 

living) not phylogeny [40].  534 

 535 

Like phylogenetic relatedness, effect sizes arising from closer geographical locations are likely to 536 

be more correlated [102]. Statistically, spatial correlation can be also modelled in a manner 537 

analogous to phylogenetic relatedness (i.e., rather than a phylogenetic correlation matrix, A, we fit a 538 

spatial correlation matrix). For example, Maire and colleagues [103] used a meta-analytic model 539 

with spatial autocorrelation to investigate the temporal trends of fish communities in the network of 540 

rivers in France. We note that a similar argument can be made for temporal correlation, but in many 541 

cases, temporal correlation could be dealt with, albeit less accurately, as a special case of ‘shared 542 

measurements’, as in Figure 2. An important idea to take away is that one can model different, if 543 

not all, types of non-independence as a random factor(s) in a multilevel model.  544 

Advanced techniques 545 

Here we touch upon five advanced meta-analytic techniques with potential utility for environmental 546 

sciences, providing relevant references so that interested readers can obtain more information on 547 

these advanced topics. The first one is the meta-analysis of magnitudes, or absolute values (effect 548 

sizes), where researchers may be interested in deviations from 0, rather than the directionality of the 549 

effect [104]. For example, Cohen and colleagues [105] investigated absolute values of phenological 550 

responses, as they were concerned with the magnitudes of changes in phenology rather than 551 

directionality. 552 

 553 

The second method is the meta-analysis of interaction where our focus is on synthesizing the 554 

interaction effect of, usually, 2 ´2 factorial design (e.g., the effect of two simultaneous 555 

environmental stressors; [44, 106, 107]). Recently, Siviter and colleagues [108] showed that 556 

agrochemicals interact synergistically (i.e., non-additively) to increase the mortality of bees; that is, 557 
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two agrochemicals together caused more mortality than the sum of mortalities of each chemical 558 

(i.e., additive effect). 559 

 560 

Third, network meta-analysis has been heavily used in medical sciences; network meta-analysis 561 

usually compares different treatments in relation to placebo and ranks these treatments in terms of 562 

effectiveness [109]. The very first ‘environmental’ network meta-analysis, as far as we know, 563 

investigated the effectives of ecosystem services among different land types [110]. 564 

 565 

Fourth, a multivariate meta-analysis is where one can model two or more different types of effect 566 

sizes with the estimation of pair-wise correlations between different effect sizes. The benefit of such 567 

an approach is known as the ‘borrowing of strength’, where the error of fixed effects (moderators; 568 

e.g., b0 and b1) can be reduced when different types of effect sizes are correlated (i.e., se(b0) and 569 

se(b1) can be smaller [111]) For example, it is possible for lnRR (differences in mean) and lnVR 570 

(differences in SDs) to be modelled together (cf. [112]).  571 

 572 

Fifth, as with network meta-analysis, there has been a surge in the use of ‘individual participants 573 

data’, called ‘IPD meta-analysis’, in medical sciences [113, 114]. The idea of IPD meta-analysis is 574 

simple – rather than using summary statistics reported in papers (sample means and variances), we 575 

directly use raw data from all studies. We can either model raw data using one complex multilevel 576 

(hierarchical) model (one-step method) or calculate statistics for each study and use a meta-analysis 577 

(two-step method; note that both methods will usually give the same results). Study-level random 578 

effects can be incorporated to allow the response variable of interest to vary among studies, and 579 

overall effects correspond to fixed, population-level estimates. The use of IPD or ‘full-data 580 

analyses’ has also surged in ecology, aided by open-science policies that encourage the archival of 581 

raw data alongside articles, and initiatives that synthesise raw data (e.g., PREDICTS [115], 582 

BioTime [116]). In health disciplines, such meta-analyses are considered the ‘gold standard’ [117], 583 
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owing to their potential for resolving issues regarding study-specific designs and confounding 584 

variation, and it is unclear whether and how they might resolve issues such as scale dependence in 585 

environmental meta-analyses [91, 118]. 586 

Conclusions  587 

In this article, we have attempted to describe the most practical ways to conduct quantitative 588 

synthesis, including meta-analysis, meta-regression, and publication bias tests. In addition, we have 589 

shown that there is much to be improved in terms of meta-analytic practice and reporting via a 590 

survey of 73 recent environmental meta-analyses. Such improvements are urgently required, 591 

especially given the potentially influence that environmental meta-analyses can have for policies 592 

and decision making [8]. So often, meta-analysts have called for better reporting of primary 593 

research (e.g., [119, 120]), and now this is the time to raise the standards of reporting in meta-594 

analyses. We hope our contribution will helps to catalyse a turning point for better practice in 595 

quantitative synthesis in environmental sciences. We remind the reader most of what is described is 596 

implemented in the R environment at our tutorial webpage and researchers can readily use the 597 

proposed models and techniques (link). Finally, meta-analytic techniques are always developing 598 

and improving. It is certainly possible that in the future, our proposed models and related methods 599 

will become dated, just as the traditional fixed-effect and random-effects models already are. 600 

Therefore, we must endeavour to be open-minded to new ways of doing quantitative research 601 

synthesis in environmental sciences. 602 
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Figure legends 622 

 623 
Fig. 1 Visualisation of the three statistical models of meta-analysis: A) a fixed-effect model (1-624 

level), B) a random-effects model (2-level), and C) a multilevel model (3-level; see the text for what 625 

symbols mean). 626 

 627 

Fig. 2 Visualisation of the three types of non-independence among effect sizes: 1) due to shared 628 

study identities (effect sizes from the same study may be similar in values), 2) due to shared 629 

measurements (effect sizes come from the same group of individuals/plots but are based on 630 
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different types of measurements), and 3) due to shared control (effect sizes are calculated using the 631 

same control group and multiple treatment groups; see the text for more details). 632 

 633 

Fig. 3 Visualisation of variation (heterogeneity) partitioned into different variance components: A) 634 

quantifying different types of I2 from a multilevel model (3-level; see Fig. 1C) and B) variance 635 

explained, R2, by moderators. Note that different levels of variances would be explained, depending 636 

on which level a moderator belongs to (study level and effect-size level). 637 

 638 

Fig. 4 Different types of plots useful for a meta-analysis using data from Midolo et al. [121]: A) a 639 

typical forest plot with the overall mean shown as a diamond at the bottom (20 effect sizes from 20 640 

studies are used), B) a caterpillar plot (100 effect sizes from 24 studies are used), C) an orchard plot 641 

of categorical moderator with seven levels (all effect sizes are used), and D) a bubble plot of a 642 

continuous moderator. Note that the first two only show confidence intervals, while the latter two 643 

also show prediction intervals (see the text for more details). 644 

 645 

Fig. 5 Different types of plots for publication bias tests: A) a funnel plot using model residuals, 646 

showing a funnel (white) that shows the region of statistical non-significance (30 effect sizes from 647 

30 studies are used), B) a bubble plot visualising a multilevel meta-regression that tests for the 648 

small study effect (note that the slope was non-significant: 𝛽 = 0.120, 95%CI = [-0.095, 0.334]; all 649 

effect sizes are used), and C) a bubble plot visualising a multilevel meta-regression that tests for the 650 

decline effect (the slope was non-significant: 𝛽 = 0.003, 95%CI = [-0.002, 0.008]). 651 

 652 
  653 
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Fig 1 654 
 655 

 656 
 657 
  658 
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Fig 3 663 
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Fig 4 667 
 668 

 669 
 670 
  671 



	 32	
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Tables  678 

Table 1 Definitions of key concepts and associated statistical parameters, which are used in formulas in the main text 679 

Term Definition (with associated parameters, if any) 

Effect size A measurement of effect (usually state of a single group, comparison between groups, or association, see Table 2). In a 

meta-analytic model, it becomes the response variable (denoted as zi in the formulas). 

Sampling variance A measure of uncertainty in effect size (denoted as vi). Its inverse is often called ‘weight’ (the square-root of weight is 

‘precision’, and the square root of sampling variance is ‘sampling standard error’). 

Meta-analysis  A statistical method to aggregate effect sizes from studies on the same or similar topics, by assigning different weights 

basing on sampling variance of effect sizes. Strictly speaking, in a formal (weighted) meta-analysis, sampling variance 

needs to be incorporated and it is assumed to be known (Table 2). 

Overall mean (effect) An average effect size based on a meta-analytic model (denoted as 𝛽" and its standard errors se(𝛽")).  

Heterogeneity An indicator of consistency among effect sizes, or an extent of variation around the overall effect (𝛽"); heterogeneity can 

be quantified by absolute measures, such as 𝜏#, or relative measures, such as I2.  



	 34	

Meta-regression A regression model which extends a meta-analytic model with a moderator(s), aiming to explain heterogeneity 

(quantified as R2) and quantifying the effect of a moderator (denoted as, for example, 𝛽'). 

Publication bias tests A set of statistical methodologies to detect and correct for publication bias, where a subset of results (positive findings) is 

more likely to be published and present in the meta-analytic dataset than otherwise.  

Sensitivity analysis A set of statistical analyses that checks the robustness of one’s main analysis; if sensitivity analysis shows different 

results (qualitatively and/or quantitively), then we must doubt the robustness of the main findings. 

 680 

  681 
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Table 2 Selected list of effect size statistics and their sampling variances, belonging to three types: 1) single-group effect, 2) comparative effect 682 

and 3) association effect 683 

Type Statistic  Estimate Sampling variance Reference 

Single group Mean 𝑥‾$ 𝑠$#/𝑛$ [122] 

Single group Proportion 𝑝$ =
𝑦$
𝑛$

 𝑝$(1 − 𝑝$)
𝑛$

=
𝑦$(𝑛$ − 𝑦$)

𝑛$(
 

[122] 

Single group Log standard deviation 

(lnSD) 

ln𝑠$ 1
2(𝑛$ − 1)

 [27] 

Single group Log coefficient of 

variation (lnCV) 

ln [
𝑠$
𝑥‾$
\ 𝑠$#

𝑛$𝑥‾$#
+

1
2(𝑛$ − 1)

 
[27] 

Comparative Mean difference (MD) 𝑥‾$< − 𝑥‾$;  𝑠$;#

𝑛$;
+
𝑠$<#

𝑛$<
 

[122] 

Comparative Standardised mean 

difference (SMD) 

𝑑$ =
𝑥‾$< − 𝑥‾$;

X(𝑛$; − 1)𝑠$;
# + (𝑛$< − 1)𝑠$<#

𝑛$; + 𝑛$< − 2

 1
𝑛$;

+
1
𝑛$<

+
𝑑$#

2(𝑛$; + 𝑛$<)
 

[25] 

Comparative Risk (proportion) 

difference (RD) 

𝑦$<
𝑛$<

−
𝑦$;
𝑛$;

 𝑦$<(𝑛$< − 𝑦$<)
𝑛$<(

+
𝑦$;(𝑛$; − 𝑦$;)

𝑛$;(
 

[122] 
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Comparative Log odds ratio (lnOR) ln [
𝑦$<

𝑛$< − 𝑦$<
\ − ln [

𝑦$;
𝑛$; − 𝑦$;

\ 1
𝑦$<

+
1

𝑛$< − 𝑦$<
+

1
𝑦$;

+
1

𝑛$; − 𝑦$;
 [122] 

Comparative Log response ratio 

(lnRR) 

ln [
𝑥‾$<
𝑥‾$;
\ 𝑠$;#

𝑛$;𝑥‾$;#
+

𝑠$<#

𝑛$<𝑥‾$<#
 

[123] 

Comparative Log variability ratio 

(lnVR) 

ln [
𝑠$<
𝑠$;
\ 1

2(𝑛$; − 1)
+

1
2(𝑛$< − 1)

 
[27] 

Comparative Log coefficient of 

variation ratio (lnCVR) 

ln [
𝑠$<
𝑥‾$<
\ − ln [

𝑠$;
𝑥‾$;
\ 𝑠$;#

𝑛$;𝑥‾$;#
+

1
2(𝑛$; − 1)

+
𝑠$<#

𝑛$<𝑥‾$<#
+

1
2(𝑛$< − 1)

 
[27] 

Association Fisher’s z-transformation 

of correlation, r (Zr) 

1
2 ln [

1 + 𝑟$
1 − 𝑟$

\ 
1

𝑛$ − 3
 [122] 

     

For the column 3rd and 4th, notations represent: 𝑥‾ (mean), s (standard deviation), n (sampling size), y (the number of events), the subscript T (treatment 684 

group), the subscript C (control group) and the subscript i (the ith effect size or study). Note that better estimators may be found in the relevant 685 

references; for example, SMD can be best estimated by multiplying by g1 − (
>(@!"A@!#B#)B'

h, and see also [93]. 686 

  687 
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Table 3 Examples of dependence between two sampling variances (v1 and v2) and their covariance for four common effect size statistics  688 

Statistic Situation Variances Covariance 

Proportion 
Shared 

measurement 

𝑣' =
𝑦'(𝑛' − 𝑦')

𝑛'(
	 

𝑣# =
𝑦#(𝑛# − 𝑦#)

𝑛#(
 

𝜌X
𝑦'(𝑛' − 𝑦')

𝑛'(
𝑦#(𝑛# − 𝑦#)

𝑛#(
 

Zr  
Shared 

measurement 

𝑣' =
1
2 ln [

1 + 𝑟'
1 − 𝑟'

\	 

𝑣# =
1
2 ln [

1 + 𝑟#
1 − 𝑟#

\ 

𝜌X
1
4 ln [

1 + 𝑟'
1 − 𝑟'

\ ln [
1 + 𝑟#
1 − 𝑟#

\ 

lnRR  
Shared 

measurement 

𝑣' =
𝑠';#

𝑛';𝑥‾';#
+

𝑠'<#

𝑛'<𝑥‾'<#
 

𝑣# =
𝑠#;#

𝑛#; ⋅ 𝑥‾#;#
+

𝑠#<#

𝑛#< ⋅ 𝑥‾#<#
 

 

𝜌Xi
𝑠';#

𝑛';𝑥‾';#
+

𝑠'<#

𝑛'<𝑥‾'<#
ji

𝑠#;#

𝑛#; ⋅ 𝑥‾#;#
+

𝑠#<#

𝑛#< ⋅ 𝑥‾#<#
j 

 
Shared 

control 
𝑣' =

𝑠';#

𝑛';𝑥‾';#
+

𝑠'<#

𝑛'<𝑥‾'<#
 

𝑠';#

𝑛'; ⋅ 𝑥‾';#
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𝑣# =
𝑠';#

𝑛'; ⋅ 𝑥‾';#
+

𝑠#<#

𝑛#< ⋅ 𝑥‾#<#
 

 

SMD  
Shared 

measurement 

𝑣' =
1
𝑛';

+
1
𝑛'<

+
𝑑'#

2(𝑛'; + 𝑛'<)
 

𝑣# =
1
𝑛#;

+
1
𝑛#<

+
𝑑'#

2(𝑛#; + 𝑛#<)
 

 

𝜌Xi
1
𝑛';

+
1
𝑛'<

+
𝑑'#

2(𝑛'; + 𝑛'<)
j i

1
𝑛#;

+
1
𝑛#<

+
𝑑##

2(𝑛#; + 𝑛#<)
j 

 
Shared 

control 

𝑣' =
1
𝑛';

+
1
𝑛'<

+
𝑑'#

2(𝑛'; + 𝑛'< + 𝑛#<)
 

𝑣# =
1
𝑛';

+
1
𝑛#<

+
𝑑##

2(𝑛'; + 𝑛'< + 𝑛#<)
 

 

1
𝑛';

+
𝑑'𝑑#

2(𝑛'; + 𝑛'< + 𝑛#<)
 

    

For the 2nd column, see Figure 2. For the 3rd and 4th column, notations represent: the subscript 1C and 2C (control group for 1st and 2nd effect size, 689 

respectively, but for shared control, 1C is used for both effect sizes, but 1C and 2C are the same cohort or set of plots), the subscript 1T and 690 

2T(treatment group for the 1st and 2nd effect size, respectively; for shared groups, 1T and 2T represents different groups of individuals/plots whereas for 691 

shared measurements, 1T and 2T are the same set of individuals/plots), and the other notations are as in Table 1 and the main text (see also [44, 45]).  692 
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Table 4 Items relevant to reporting results for a meta-analysis from the Preferred Reporting Items for Systematic reviews and Meta-Analysis 693 

for Ecology and Evolutionary Biology (PRISMA-EcoEvo; [83]) 694 

Item Description 

20: Sample sizes and study 

characteristics 

“Report the number of studies and effect size for data included in meta-analyses and subsets of data 

included in meta-regressions. Provide a summary of kye characteristics for reported outcomes (either in 

text or figures; e.g., one quarter of effect sizes reported for vertebrates and the rest invertebrates) and 

their limitations (e.g., collinearity and overlaps between moderators), including characteristics related 

individual study quality (risk of bias).” 

21: Meta-analysis “Provide a quantitative synthesis of results across studies, including estimates for the main effect size, 

with confidence/credible intervals.” 

22: Heterogeneity “Report indicators of heterogeneity in the estimated effect (e.g. I2, tau2 and other variance components).” 

23: Meta-regression “Provide estimates of meta-regression slopes (i.e. regression coefficients) for all variables that were 

assessed for their contribution to heterogeneity. Include confidence/credible intervals, and report 

interactions if they were included. Describe outcomes from model selection, if done (e.g. R2 and AIC).” 

24: Outcomes of publication bias and 

sensitivity analysis 

“Provide results for the assessments of the risks of bias (e.g. Egger’s regression, funnel plots) and 

robustness of the review’s results (e.g. subgroup analyses, meta-regression of study quality, results from 

alternative methods of analysis, and temporal trends)” 

695 
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