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Abstract 21	

1. Although meta-analysis has become an essential tool in ecology and evolution, reporting of meta-22	

analytic results can still be much improved. To aid this, we have introduced the orchard plot, which 23	

presents not only overall estimates and their confidence intervals but also shows corresponding 24	

heterogeneity (as prediction intervals) and individual effect sizes.  25	

2. Here, we have added significant enhancements by integrating many new functionalities as 26	

orchaRd 2.0. This updated version allows the visualisation of heteroscedasticity (different 27	

variances across levels of a categorical moderator), marginal estimates (e.g., marginalising out 28	

effects other than the one visualized), conditional estimates (i.e., estimates of different groups 29	

conditioned upon specific values of a continuous variable), and visualizations of all types of 30	

interactions between two categorical/continuous moderators. 31	

3. orchaRd 2.0 has additional functions which calculate key statistics from multilevel meta-32	

analytic models such as I2 and R2. Importantly, orchaRd 2.0 contributes to better reporting by 33	

complying with PRISMA-EcoEvo (preferred reporting items for systematic reviews and meta-34	

analyses in ecology and evolution). Taken together, orchaRd 2.0 can improve the presentation 35	

of meta-analytic results and facilitate the exploration of previously neglected patterns.  36	

4. In addition, as a part of a literature survey, we found that graphical packages are rarely cited 37	

(~3%). We plea that researchers credit developers and maintainers of graphical packages, e.g., by 38	

citations in a figure legend, acknowledging the use of relevant packages.  39	
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1 | INTRODUCTION 43	

Meta-analysis has become an essential synthesis tool across the medical, social, and biological 44	

sciences (Gurevitch et al. 2018; Cooper, Hedges & Valentine 2019; Higgins et al. 2019; Schmid, 45	

Stijnen & White 2021). In fields such as medicine, meta-analytic results are typically shown in a 46	

forest plot that presents effect sizes and their 95% confidence intervals (CIs) from each study in the 47	

meta-analysis. However, in ecology and evolution, the use of forest plots is rare because meta-48	

analyses in this field often include > 100 effect sizes, making a traditional forest plot impractical 49	

(Senior et al. 2016; Gurevitch et al. 2018). Instead, researchers use a “forest-like plot” with the 50	

overall mean effect size estimate and their 95% CIs for different levels of a categorical moderator 51	

(predictor variable). Such estimates are derived from a meta-regression model or from subset/sub-52	

group analyses. For example, such a plot could show estimates from five different taxa, six different 53	

geographical areas, or three different methods. A recent survey found 72 out of 102 ecological and 54	

evolutionary meta-analyses presented forest-like plots (Nakagawa et al. 2021). Contributing to the 55	

popularity of forest-like plots is the fact that meta-analytic moderators are often categorical rather 56	

than continuous variables. Despite their popularity, forest-like plots in ecology and evolution often 57	

lack important information such as individual effect sizes and estimates of heterogeneity among 58	

effect sizes (Schild & Voracek 2015; Nakagawa et al. 2021).  59	

Nakagawa et al. ( 2021) introduced an information-rich version of a forest-like plot, named 60	

the ‘orchard’ plot. Orchard plots provide: 1) point estimates (i.e., regression coefficients); 2) CIs, 3) 61	

prediction intervals, PIs (which show heterogeneity among effect sizes); and 4) individual effect 62	

sizes scaled by their precision (the inverse of the square root of the sampling variance). Nakagawa 63	

et al. ( 2021) implemented the orchard plot using functions that use the most popular and 64	

comprehensive meta-analysis R package, metafor (Viechtbauer 2010), and ggplot2 graphics 65	

(Wickham 2009). However, the original implementation (orchaRd 1.0) was limited to relatively 66	

simple meta-regression (models with moderators), as the package only allowed the user to draw 67	

orchard plots from a model with one categorical moderator. In addition, it was only possible to 68	
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visualise a meta-regression model that assumed homoscedasticity across levels of the single 69	

categorical moderator (i.e., all levels have the same variance, which may be unrealistic, e.g., 70	

Zajitschek et al. 2020; Wilson et al. 2022).  71	

In this article, we enhance the visualization capabilities of the orchaRd package by 72	

integrating the functionalities of the R package emmeans (Lenth et al. 2018) in four ways. The first 73	

three extend orchard plots by allowing visualisation of: i) heteroscedasticity (different variances 74	

across levels of a categorical moderator); ii) marginal estimates (e.g., marginalising all other 75	

moderators apart from the one visualized); and iii) conditional estimates (i.e., estimates of different 76	

groups/levels of a categorical variable, conditioned upon specific values of a continuous variable). 77	

The fourth capability allows for ‘bubble’ plots to be created of: i) a continuous variable; and ii) 78	

interactions between a continuous and categorical variable from multi-moderator models with and 79	

without heteroscedasticity. In addition, we add helper functions to calculate key statistics from 80	

multilevel meta-analytic models such as I2 (Cheung 2014) and R2 (Aloe, Becker & Pigott 2010; 81	

Nakagawa & Schielzeth 2013) along with their CIs. These new functionalities not only better 82	

visualize meta-analytic results in ecology and evolution but also facilitate the exploration of 83	

previously neglected patterns, such as heteroscedasticity in meta-analytic data. Further, orchaRd 84	

2.0 improves reporting transparency in a meta-analysis by following the ‘Preferred Reporting 85	

Items for Systematic reviews and Meta-Analyses in Ecology and Evolution’ (PRISMA-EcoEvo; 86	

O'Dea et al. 2021). Importantly, our package’s vignette provides detailed instructions and examples 87	

on how to use all the main functions (https://daniel1noble.github.io/orchaRd/).  88	

2 | SURVEY 89	

To gauge the potential usefulness of the orchaRd package’s extensions, we surveyed 102 meta-90	

analyses in ecology and evolution. Notably, this dataset was initially collected to quantify reporting 91	

quality of ecological and evolutionary meta-analyses to assist in creating PRISMA-EcoEvo (O'Dea 92	

et al. 2021). Briefly, we obtained 102 articles with meta-analyses that were published between 1 93	
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January 2010 and 25 March 2019 and part of the “Ecology” and “Evolutionary Biology” journals 94	

classified under the InCites Journal Citation Reports (Clarivate Analytics) (see more details in 95	

O'Dea et al. 2021). We previously explored this dataset to survey the use of forest and forest-like 96	

plots in ecology and evolution (Nakagawa et al. 2021). 97	

For this study’s survey, we asked the following 10 questions.  98	

Q1: How many papers have at least one categorical variable/moderator? (Defining a moderator 99	

as a predictor in a meta-regression analysis) 100	

Q2: How many papers have at least one test or model for heteroscedasticity?  101	

Q3: How many papers have at least one model with more than one categorical moderator?  102	

Q4: How many papers have at least one model with at least one categorical moderator and one 103	

continuous moderator?  104	

Q5: How many papers that used a multi-moderator regression have at least one forest-like plot 105	

(figure) made from the multi-moderator meta-regression? 106	

Q6: How many papers that used a multi-moderator regression also modelled interactions?  107	

Q7: How many papers, which use R, cite an R software package they used for meta-analysis?  108	

Q8: How many papers, which use R, cite an R software package they used for the graphical 109	

presentation of meta-analytic results?  110	

We report relevant results below, but full results of this survey can be found in the Supplementary 111	

Information.  112	

3 | NEW SOFTWARE CAPABILITIES 113	

The orchaRd 2.0 package has six main functions with three different functionalities: 114	

mod_results (creating a table or a ‘table’ function – See Fig 1 mod_results tables), 115	

orchard_plot (a figure function), bubble_plot (a figure function), catepillars (a 116	

figure function), i2_ml (calculating I2 statistics or a statistics function) and r2_ml (statistics; each 117	
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function’s description is found in Table 1). Among these six functions, the core function is 118	

orchard_plot. This function enables users to draw orchard plots from a table created by 119	

mod_results, which uses emmeans functionality (Lenth et al. 2018) to process metafor 120	

model objects (object classes: rma, rma.mv, and robust.rma; Viechtbauer 2010). Below we 121	

showcase three new capabilities of orchard_plot. Then, we describe the other main functions. 122	

Notably, the focus of our orchaRd package is to visualise multilevel meta-analytic models (i.e., 123	

multiple effect sizes per study).  124	

3.1 | Orchard plots: heteroscedasticity 125	

Categorical variables (moderators) are extremely common in meta-analyses. In our survey, > 97% 126	

of the papers had at least one categorical variable. The categorical variable was used to subset data 127	

for sub-group analyses, where a series of meta-analyses (intercept models) were run, or to fit a 128	

meta-regression model (Q1). In many meta-analyses, researchers assumed all levels of a categorical 129	

moderator had the same variation (homoscedasticity). Our survey shows that only 5% of papers 130	

investigated heteroscedasticity while others assumed homoscedasticity (Q2). Yet, differences in 131	

variances can be as biologically insightful as differences in means among groups. For example, 132	

Pottier et al. ( 2022) found that not only were aquatic ectotherms more thermally plastic than their 133	

terrestrial counterparts, but their plastic responses were much more variable than those of terrestrial 134	

ectotherms (even after taking into account the sample size difference). Our orchard_plot now 135	

allows for visualization of modelled heteroscedasticity by depicting different prediction intervals 136	

(PIs) for different groups (Fig 1). Of importance, modelling heteroscedasticity, when it exists, 137	

reduces Type 1 error (Rubio-Aparicio et al. 2017; Rubio-Aparicio et al. 2020); and orchard plots 138	

can assist meta-analysts in finding heteroscedasticity. Incidentally, modelling heteroscedasticity for 139	

a categorical moderator becomes essential if one wants to obtain absolute group means (e.g., 140	

selection gradients; Kingsolver et al. 2012; Siepielski et al. 2017; see also Noble, Stenhouse & 141	

Schwanz 2018). Absolute estimates can be calculated assuming a ‘folded’ normal distribution (see 142	

Morrissey 2016; Nakagawa & Lagisz 2016), with the accuracy of mean magnitudes being 143	
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dependent on within-group variances. As such, it is important that heteroscedasticity is evaluated if 144	

such an approach is taken. 145	

 146	

 147	

 148	

Figure 1| Orchard plots (using orchard_plot function) and model result tables (using 149	

mod_result function) for terrestrial and aquatic ectotherm developmental acclimation response 150	

ratios (dARR). A) Model assuming the variance in terrestrial and aquatic ectothermic species is the 151	

same (i.e., homogeneity of variance); B) Model assuming the variance in terrestrial and aquatic 152	

ectothermic species is not the same (i.e., heterogeneity of variance), with the lower and upper 153	

confidence intervals (CIs) and prediction intervals (PIs) adjusted accordingly for each level of the 154	

habitat type moderator (data from Pottier et al. 2022). 155	

 156	

3.2 | Orchard plots: marginal means 157	

Many meta-analyses include multiple variables (moderators), and often they are modelled together 158	

in a single meta-regression model. In our survey, meta-analytic studies often modelled two or more 159	
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categorical moderators together (Q3: 41%) and modelled at least one categorical moderator and one 160	

continuous moderator (Q4: 30%). Not all meta-analyses, which had multi-moderator models, 161	

reported marginal estimates (Q5: 27%). It is understandable because obtaining ‘marginal’ means 162	

becomes difficult once the number of moderators increases unless one relies on computational 163	

solutions, for example, via the emmeans package. Therefore, many meta-analysts have been using 164	

only estimates from uni-moderator models. We have now made it straightforward to produce 165	

marginal means from a multi-moderator meta-regression model using orchard_plot. It is 166	

notable that marginalisation is usually done by weighting in proportion to the frequencies in the 167	

sample (data) of different groups that are averaged over. In such a case, marginal means are often 168	

similar, if not identical, to means from a uni-moderator model. However, if ‘equal’ weighting is 169	

used (giving the same weights to all groups), marginalised means could be different from those 170	

from a uni-moderator model, especially when a categorical moderator is unbalanced between 171	

groups/levels (Fig 2). Equal weighting is, for example, useful when your sample is unequal in your 172	

dataset, but in the population, it should be ~50:50 %; for example, males and females in many 173	

animals (cf. Deffner, Rohrer & McElreath 2022).  174	

 175	

 176	
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µ = 0.19, 95% CI = 0.06 to 0.32

k  = 1089 (150)

−1.0 −0.5 0.0 0.5 1.0
Developmental Acclimation Response Ratio (dARR)

Precision (1/SE) 100 200 300

Proportional
A)

µ = 0.14, 95% CI = 0 to 0.27

k  = 1089 (150)

−1.0 −0.5 0.0 0.5 1.0
Developmental Acclimation Response Ratio (dARR)

Precision (1/SE) 100 200 300

Equal
B)



	 9	

Figure 2| Orchard plots of overall meta-analytic mean developmental acclimation response ratios 178	

(dARR). A) Marginalised mean estimate assuming aquatic and terrestrial ectotherms are weighted 179	

proportionally to their representation in the sample of data (see Fig. 1 for sample sizes for each 180	

group); B) Marginalised mean estimate assuming aquatic and terrestrial ectotherms are weighted 181	

equally. Comparing the mean and 95% confidence intervals shows how estimates affect the mean 182	

and the inferences.  183	

 184	

3.3 | Orchard plots: conditional means 185	

As mentioned above, our survey showed that it was not uncommon to have a study with a 186	

continuous moderator and a categorical moderator (Q3: 30%). For such a combination one can 187	

estimate group-level means (and overall means) conditioned upon specific values of a continuous 188	

moderator (Fig 3). For example, O’Dea et al. ( 2019) estimated how thermal environments during 189	

development affect phenotypic mean and variance. They found that increasing temperature did not 190	

change phonotypic means, while phenotypic variance increased as developmental temperature 191	

increased. Examining ‘conditional’ means is illuminating and important for statistical inference 192	

because the statistical significance of conditional estimates can change along the gradient of a 193	

continuous moderator. Yet, none of the 32 papers with a model containing at least one categorical 194	

and continuous moderator presented conditional estimates, as for example are depicted in Fig 3B 195	

(see also Vendl et al. 2022).  196	

 197	
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 198	

 199	

Figure 3| Orchard plots of mean log response ratios across four major trait categories (Physiology, 200	

Morphology, Life-history and Behaviour) in fish. A) Overall meta-analytic mean log response ratio 201	

for each trait category; B) Predicted overall meta-analytic mean for each trait category for three 202	

levels of temperature difference, 5, 10, and 15 degrees (data from O'Dea et al. 2019).  203	

 204	

3.4 | Interactions: orchard, bubbles and bubbleless 205	

In our survey, ~30 (out of 102) meta-analyses modelled some type of interaction (Q5). Three types 206	

of interactions might manifest in a meta-analysis, those between: 1) categorical ´ categorical 207	

variables; 2) categorical ´ continuous variables; and 3) continuous ´ continuous variables. The first 208	

type of interaction (categorical ´ categorical) can be easily visualised using an orchard plot because 209	

interactions between two categorical variables can be conceptualised as one categorical variable 210	

(e.g., a categorical variable with 2 levels ´ one with 3 levels is equivalent to a categorical variable 211	

with 6 levels; Fig 4A). If we want to see a plot with the second type (categorical ´ continuous), one 212	

can use bubble plots via the bubble_plot function (note that metafor also has a function for 213	

bubble plots, called regplot, which provides a single-panel interaction plot, unlike our multi-214	

panel interaction plots; Fig 4B). The third type (continuous ´ continuous) is the least intuitive one 215	
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to visualize, but one can also use bubble_plot to draw ‘bubbleless’ plots, which are line plots 216	

with multiple panels (Fig 4C); they are bubbleless because often there are only a few or no 217	

corresponding data points to plot for a given point of one of the two continuous variables. 218	

 219	

 220	

 221	

Figure 4| Orchard plots and bubble plots using Fishers’ z-transformed correlation coefficient (Zr). 222	

A) Example of two categorical moderators (Captive vs. Wild; Offspring vs. Egg) combined into a 223	

single moderator. B) Example of a continuous moderator (Publication Year) combined with a 224	

categorical moderator (Captive vs Wild); C) Two continuous moderators, Sampling Standard Error 225	

and Year, with predictions made for two years (data from Lim, Senior & Nakagawa 2014). In B and 226	

C, dashed lines represent 95% confidence intervals while dotted lines 95% prediction intervals.  227	

 228	

3.4 | Other functions 229	

In addition to orchard and bubble plots, the orchaRd package provides ‘caterpillar’ plots (via the 230	

function catepillars, which is a forest plot without labels for each effect size; see our vignette 231	

– https://daniel1noble.github.io/orchaRd/). We also present two new non-plot functions to give 232	

meta-analysts convenient tools to quantify heterogeneity and variances explained by multilevel 233	

meta-analyses. The function i2_ml calculates I2, which is the percentage of variation among effect 234	
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sizes not driven by sampling error (much of which is due to differences in sample sizes across 235	

studies; Higgins & Thompson 2002). Our function not only calculates the original I2 (referred to as 236	

‘total’ I2) but heterogeneity explained by each additional random effect in the model (e.g., 237	

heterogeneity due to study ID or due to species ID) (sensu Nakagawa & Santos 2012). Furthermore, 238	

different sets of I2 values can be calculated for different groups (levels) for a categorical moderator 239	

model with heteroscedasticity. While I2 is estimated from a meta-analytic (intercept-only) model, R2 240	

is used to quantify variance (heterogeneity) accounted by moderators. The function r2_ml 241	

calculates marginal R2, proposed by Nakagawa & Schielzeth ( 2013) as a pseudo-R2 for linear 242	

mixed-effects models. Notably, both i2_ml and r2_ml can provide 95% confidence interval(s), 243	

using bootstrapping.  244	

4 | IMPROVING REPORTING 245	

4.1 | PRISMA-EcoEvo and orchaRd 246	

O’Dea et al. ( 2021) recommends information to be reported in systematic reviews and meta-247	

analyses in ecology and evolution. Visualisations from the orchard package are completely 248	

consistent with reporting recommendations of PRISMA-EcoEvo. This is especially so with three 249	

(sub-)items, recommended for the Method section: 1) presenting the numbers of studies and effect 250	

sizes for each estimate; 2) reporting indicators of heterogeneity; and 3) including estimates and 251	

confidence intervals for moderators. The survey conducted by O’Dea et al. ( 2021) showed very 252	

poor reporting of these items: 57%, 52% and 59%, respectively. As one can see, our package takes 253	

care of these three items in a single orchard plot (Fig. 1-4). It is notable that now orchard plots even 254	

visualise different heterogeneities among different groups (i.e., heteroscedasticity) via prediction 255	

intervals, PIs.  256	
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4.2 | Plea and proposal 257	

Graphical presentation can facilitate better reporting in meta-analyses. However, in our survey, only 258	

2 papers (3.1%) out of 64 articles which used R, cited any graphical package(s) used for visualizing 259	

meta-analytic results (e.g., orchaRd; Q8). This figure starkly contrasts with 85% of the papers (55 260	

out of 64; Q7) citing the software packages used for meta-analyses (e.g., metafor). This survey 261	

result marks a severe under-recognition of graphical packages. The real-world risk here is that this 262	

lack of recognition severely disincentivises developers from maintaining and further developing 263	

graphical packages.  264	

We argue that authors should acknowledge graphical packages used for presenting meta-265	

analyses (or any research article, for that matter), just as they do with any statistical package. We 266	

propose that graphical packages that were used to make a figure should be listed at the end of the 267	

figure legend. This standardised reporting format will mean packages do not necessarily need to be 268	

listed in the methods, but they will still be given credit. We note, however, that an R package can 269	

have many dependencies (i.e., other required R packages other than ‘base’ packages). For example, 270	

orchaRd 2.0 is dependent on emmeans, ggplot2 and metafor. We freely admit that we do 271	

not have a satisfying answer on whether dependencies should also be credited. However, for now 272	

we think it is reasonable to suggest that researchers provide the reference (in a figure legend or 273	

main text) for the immediate R function and package they used to make their figure. 274	

5 | CONCLUSIONS 275	

As the presence and influence of meta-analyses grow in the field, it is more important than ever to 276	

visualize meta-analytic results in an information-rich manner. Here, we have introduced an 277	

expanded version of orchaRd (version 2.0), which enables researchers to readily visualize 278	

complex as well as simple meta-analytic results, a task that was previously difficult for many. New 279	

functionalities that allow for marginal and conditional means to be plotted will improve model 280	

communication by allowing for a holistic visual interpretation of the complex numerical 281	
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information generated by the analysis (see Fig 1-4). Also, we introduce functions for calculating I2 282	

and R2 for multilevel meta-analytic models, which have become standard in ecological and 283	

evolutionary meta-analyses. Finally, we hope our paper also becomes a reminder of the importance 284	

of acknowledging graphical packages. Adequate attribution of credits will create a more sustainable 285	

environment for developers and maintainers of graphical packages.  286	
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TABLE 391	

Table 1 Main functions in the orchard package, their general categorisation and a description of 392	

what they can be used for in combination with metafor meta-analytic model objects (rma.mv, 393	

rma and robust.rma) 394	

Function Category Description 
 

mod_results Table mod_results takes multi-level meta-analytic and meta-

regression models (with multiple moderators – continuous or 

categorical) of class rma.mv/rma/robust.rma and calculates 

mean or marginalised mean meta-analytic estimates across all 

levels of a given moderator or overall (i.e., intercept only). The 

mod_results table can then be used with orchard_plot, 

bubble_plot, or catepillars to plot results graphically. If 

a multivariate meta-regression model (with many moderators) is 

provided, users can specify the 'by' and/or 'at' arguments to 

marginalise over desired levels of other moderators.  
 

orchard_plot Figure Modified forest plot that plots the meta-analytic means, confidence 

intervals, prediction intervals and raw data for each level of a 

categorical moderator. Users can use a number of arguments for 
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modifying the look of plots including the legend, colour schemes, 

size and weight of points and lines and angle and naming of text 

on the axes. Sub-setting allows the users to plot a subset of the 

levels for a given moderator. Additional modifications can be 

made by adding and modifying layers of the ggplot object. Plots 

can be made using either mod_results objects directly or using 

the rma.mv/rma/robust.rma model object in combination 

with the raw data. If a multivariate meta-regression model (many 

moderators) is provided directly users can specify the 'by' and/or 

'at' arguments to marginalise over desired levels of other 

moderators.  
 

bubble_plot Figure Creates a bubble plot(s) depicting the predicted mean effect size, 

confidence and prediction interval as a function of a continuous 

moderator (slope estimate) or a series of separate plots showing 

predictions across an additional moderator (i.e., interaction plots). 

Plots can be made using either mod_results objects directly or 

using the rma.mv/rma/robust.rma model object in 

combination with the raw data. Raw data is plotted, and point size 

is adjusted according to effect size precision. 

 

catepillars Figure Creates a caterpillar plot from an intercept model or from mean 

effect size estimates for all levels of a given categorical moderator, 

their corresponding confidence and prediction intervals. Plots can 

be made using either mod_results objects directly or using the 

rma.mv/rma/robust.rma model object in combination with 

the raw data. 
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 395	

 396	

 397	

 

i2_ml Statistics Calculates heterogeneity statistics using measures of I2 for a 

multilevel meta-analytic or meta-regression models. Point 

estimates can be calculated quicky for each level of random effect 

along with an estimate of total heterogeneity. Users also have the 

option of generating 95% confidence intervals for all I2 estimates 

using the `boot` argument (percentile method). This argument 

will conduct parametric bootstrapping. 

 

r2_ml Statistics Calculates marginal and conditional R2 for multilevel meta-

analytic or meta-regression models. Point estimates can be 

calculated quicky using a couple of different methods, but users 

also have the option of generating 95% confidence intervals for R2 

using the `boot` argument (percentile method). This argument 

will conduct parametric bootstrapping.  

   


