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Abstract

Inferring the strength of species interactions from demographic data is a challenging task. The

Integrated Population Modelling (IPM) approach, bringing together population counts, capture-

recapture, and individual-level fecundity data into a unified model framework, has been extended

from single species to the community level. This allows to specify IPMs for multiple species with

interactions specified as links between vital rates and stage-specific densities. However, there is no

evaluation of such models when interactions are actually absent—while any interaction inference

method runs the risk of producing false positives. We investigate here whether multispecies

IPMs could output interactions where there are in fact none, building on an existing predator-

prey IPM. We show that interspecific density-dependence estimates are centered on zero when

simulated to be zero, and therefore their estimation is unbiased. Their coverage probability,

quantifying how many times credible intervals include zero, is also satisfactory. We further

confirm that adding random temporal variation to multispecies density-dependent link functions

does not alter these results. This study therefore reaffirms the potential of multispecies IPMs

to infer correctly how biotic interactions influence demography, although future studies should

investigate model misspecifications.
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1 Introduction

Estimating ecological interactions between and within species through models of their joint popula-

tion dynamics is a task which requires large amounts of data. Indeed, with potentially as many as

q2 interaction parameters for q model compartments (combination of species and age classes), the

number of parameters to estimate can climb very rapidly. Therefore, ecological statistics searches for

improved ways to infer such population-level interaction strengths. A recently developed technique

consists in combining data sources in multispecies Integrated Population Models (IPMs) includ-

ing interspecific interactions (Péron & Koons, 2012; Barraquand & Gimenez, 2019; Quéroué et al.,

2021). Because Integrated Population Models (IPMs, Besbeas et al., 2002) combine data on demo-

graphic rates (e.g., capture-recapture, breeding data) with data on population size (typically from

counts), they allow: (a) estimating both demographic rates and population size (and hence their

inter-dependencies) in a joint analysis, (b) an improved precision of parameter estimates, compared

to separate analyses of component datasets, since the information contained in several datasets

combine into estimated parameters (e.g., count data and capture recapture data both contain in-

formation on survival rates), and in some cases (c) to estimate parameters for which there is no

dedicated data stream, that can only be estimated through inverse estimation of a demographic

model (Kéry & Schaub, 2011; Abadi et al., 2010). This last property is particularly useful to es-

timate population-level species interaction strengths, since population-level interactions are always

indirectly inferred. Although inverse estimation can in theory be performed using a single data

source such as population counts, such inverse estimation is a difficult task fraught with identifia-

bility issues. Asking whether multispecies IPMs performed better than classical inverse estimation

from count data alone, Barraquand & Gimenez (2019) have shown that better estimates of interac-

tion parameters could be obtained by combining data sources. Additionally, an empirical study in

a bird predator-prey system (Quéroué et al., 2021) was able to detect the expected bottom-up de-

mographic linkages from prey to predator but not the expected top-down relationships, suggesting

that those may be too weak to be detected.

In these multispecies IPM studies estimating interspecific interactions, between-species linkages

have always been considered to be present in the simulations or in the underlying reality (based on

background knowledge). Other choices are possible: some multispecies IPMs do not assume inter-

specific interactions to be present a priori (Lahoz-Monfort et al., 2017), but they do not estimate

them either and focus instead on environmental effects. However, multispecies IPMs with inter-
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specific interactions could also be used in situations where it is not clear whether population-level

interactions between species are possible. This is all the more true that interactions are specified as

links between vital rates and stage-specific densities, and while some of these relationships may be

known a priori, others may not. The issue was raised but not tackled by Barraquand & Gimenez

(2019): a natural follow-up is therefore to ask what happens whenever we try to estimate interac-

tions that are actually absent, to make sure that multispecies IPMs do not yield false positives.

Let us note that when estimating or predicting interspecific interactions in general—not just

with multispecies IPMs—whether methods could output false positives is a key concern (e.g., with

multivariate autoregressive models, Mutshinda et al. 2009; Barraquand et al. 2021; dynamic bayesian

networks, Sander et al. 2017; or other machine learning tools, Strydom et al. 2021). The fact that

all interaction inference methods run the risk of creating false positives of interspecific interactions

at exaggerated rates only reinforces the need to evaluate it in multispecies IPMs.

An additional concern is temporal stochasticity in the functions linking vital rates of a given

stage of species i to the densities of a given stage of species j. In the simulation-based study of

Barraquand & Gimenez (2019), it was assumed that such stochasticity was absent, while empirical

studies (Péron & Koons, 2012; Quéroué et al., 2021) assumed its presence in order to partition

variation in vital rates due to species densities vs other factors changing over time. We therefore

still need to understand whether theoretical performances hold in this more empirically realistic

context, where environmental factors can perturb demographic rates, and those are not solely

deterministic functions of species densities.

To sum up, we follow-up here on the multispecies IPM study of Barraquand & Gimenez (2019)

by asking whether (1) inter-species interactions are truly estimated to be zero when species have

in fact independent dynamics and (2) how species interaction strengths estimates can be affected

by the absence and presence of environmental stochasticity (random year effects on demographic

rates).

2 Methods

2.1 General description of the multispecies IPM

The deterministic skeleton can be described as a density-dependent matrix population model

nt+1 = A(nt)nt. (1)
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Eq. 1 describes in discrete-time the dynamics of abundances of two species and two stages per

species, with projection matrix

A(nt) =



0 1
2fV,t

(
nA
V,t

)
ϕJ
V,t

(
nA
P,t

)
0 0

ϕA
V,t ϕA

V,t 0 0

0 0 0 1
2fP,t

(
nJ
V,t

)
ϕJ
P,t

(
nA
P,t

)
0 0 ϕA

P,t ϕA
P,t


and abundance vector

nt =



nJ
V,t

nA
V,t

nJ
P,t

nA
P,t


where nJ

V,t, n
A
V,t, n

J
P,t and nA

P,t are respectively the abundances of juvenile prey (denoted V as ‘vic-

tim’), adult prey, juvenile predators and adult predators, at time t. The fecundities fV,t, fP,t are

the expected number of juvenile prey and predator produced by an adult female prey and predator,

respectively. Survival probabilities between t and t + 1 are denoted with ϕ, so that ϕJ
V,t, ϕ

A
V,t, ϕ

J
P,t

and ϕA
P,t are the survival probabilities of the juvenile prey, adult prey, juvenile predator and adult

predator.

2.1.1 Count data

To simulate and account for demographic stochasticity, we modelled yearly (st)age specific abun-

dances nt using Binomial and Poisson distributions as in Barraquand & Gimenez (2019) eqs. (2)–(5).

Regarding the observation process for count data, the 2019 model assumed a negligible obser-

vation error (σ2 = 10−5). The reason was that in absence of replicated counts at each time unit,

observation error variance is notoriously difficult to disentangle from process error variance (Knape,

2008; Auger-Méthé et al., 2016). While in some cases it could be possible to remove observation error

altogether, because total population sizes of each species (summed numbers of juveniles and adults)

are the observed count variables (as in most IPMs), they need to appear in the model as drawn from

some probability distribution—they need to be a stochastic node in the MCMC representation. It

was therefore decided to keep the formulation of the model in its state-space version, but forcing it

to observe true population size almost with certainty (negligible process error variance). However,
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we uncovered in the present work that stage-specific abundances could not be estimated properly.

Because correctly reproducing stage-specific abundances when fitting a stage-structured model is

desirable, and that there is in most wildlife surveys some measure of observation error on counts,

we assumed in the present article a non-negligible, positive observation error variance. As we do

not have replicated counts at any given time, we do not attempt to estimate observation error vari-

ance, and assume that it is known and classically set on the logarithmic scale (i.e., the coefficient

of variation of observed population size is constant). For predator counts (denoted P ) we have

yP,t|nt ∼ LN
(
log(nJ

P,t + nA
P,t), σ

2
obs

)
(2)

and similarly for prey counts

yV,t|nt ∼ LN
(
log(nJ

V,t + nA
V,t), σ

2
obs

)
, (3)

with LN the log-Normal distribution and its associated standard deviation on the log-scale σobs =

0.1. Because CVobs =
√
eσ

2
obs − 1, this corresponds to CVobs ≈ 10%. Other choices of observation

model are possible but this one is standard for abundance values that are not too small (Besbeas

et al., 2002; Dennis et al., 2006).

2.1.2 Survival data

To increase computational efficiency (particularly true for the scenarios with more individuals cap-

tured and a shorter time series), we simulated and fitted the capture-mark-recapture data in the

m-array format, using a multinomial likelihood (Burnham, 1987). The data is in the form of two

(T − 1) × T matrices MJ and MA, one for each age class generically denoted (a) ∈ {A, J}. We

have M(a) = (m
(a)
t,j ), where m

(a)
t,j is the number of individuals captured, marked and released in

year t that were resighted in year j + 1, with m
(a)
t,j = 0, ∀j < t. T is the total number of years of

capture-recapture history. m
(a)
t,t is the number of individuals of released at age class (a) at time t

that were re-sighted the following year, and the last column m
(a)
t,T is, by convention, the number of

individuals released at age class (a) at time t that were never re-sighted. We then have:

m
(a)
t,• = (m

(a)
t,t ,m

(a)
t,t+1, . . . ,m

(a)
t,T ) ∼ Multinomial

(
R

(a)
t , (θ

(a)
t,t , . . . , θ

(a)
t,T )
)

(4)
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with R
(a)
t =

∑T
k=tm

(a)
t,k the number of individuals of age class (a) released at time t.

It is important to note that for the matrix of released juveniles MJ , RJ
t corresponds to the

number of juveniles newly marked at time t. However, RA
t corresponds to the number of newly

marked adults (lets denote it RA
m,t), but also of all previously marked juveniles and adults that were

released at time t. That is,

RA
1 = RA

m,1, (5)

but

RA
t+1 = RA

m,t +

t∑
k=1

mJ
k,t +mA

k,t︸ ︷︷ ︸
previously marked

. (6)

Therefore, unless individuals are not released when marked (e.g., killed, or taken to be released

outside of the study population), one needs to provide data and model the number of released

adults re-sighted, even if no individuals are first marked as adults. As no individuals are marked as

adults here, RA
m,t = 0, and so that Equations 5 and 6 can be simplified accordingly.

Note also that in such case were no adults are newly marked, no data on RA
t is needed to

simulate and fit MA. Since RA
1 = 0, we have:

mA
1,• = 0, (7)

mA
2,• ∼ Multinomial

(
mJ

1,1 +mA
1,1, (θ

A
1,t, . . . , θ

A
1,T )

)
, (8)

mA
3,• ∼ Multinomial

(
2∑

k=1

mJ
k,2 +mA

k,2, (θ
A
2,t, . . . , θ

A
2,T )

)
, (9)

and so on.

For juveniles, diagonal elements of the θJ matrix write:

θJt,t = ϕJ
t p,

with ϕJ
t the first year (i.e. juvenile) survival probability from year t to year t + 1 (for the species

considered), and p the recapture (or re-sighting) probability set as constant among years and age
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classes, and for t < j < T

θJt,j = ϕJ
t

(
j∏

k=t+1

ϕA
k

)
(1− p)j−tp,

with ϕA
t the adult survival probability from year t to year t+1 (for the species considered). θJt,j

is the probability of being marked and released as juvenile in year t and recaptured in year j+1 as

an adult, if j > t. The last element pertains to individuals never recaptured

θJt,T = 1−
T−1∑
k=t

θJt,k.

Similarly for θA, the above mentioned equations are identical to the exception that ϕJ is replaced

by ϕA, which leads to:

θAt,t = ϕA
t p

for the diagonal elements of the θA matrix, and for t < j < T :

θAt,j =

(
j∏

k=t

ϕA
k

)
(1− p)j−tp.

The last element again pertains to individuals never recaptured

θAt,T = 1−
T−1∑
k=t

θAt,k.

2.1.3 Fecundity data

Fecundity was modelled using a Poisson regression:

Ft ∼ Poisson(ftRt) (10)

with Ft the total number of offspring counted, Rt the number of surveyed broods/litters, and ft the

expected number of offspring (male + female) per adult female each year t.

2.2 Alternative scenarios and parameter values

2.2.1 Density dependence and random temporal variation on demographic rates

Intra- and inter-species density dependence of survival rates ϕ
(a)
i,t (with i ∈ {V, P} and (a) ∈ {J,A})

and fecundities fi,t were modelled on the logit and log scale, respectively. We initially used the
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same equations as the 2019 model, which are:

logit(ϕJ
P,t) = α1 + α2n

A
P,t (11)

where the number of adult predators negatively affects juvenile predator survival (negative intraspe-

cific density dependence),

logit(ϕJ
V,t) = α3 + α4n

A
P,t (12)

where the number of adult predators negatively affects juvenile prey survival (predation),

logit(ϕA
P,t) = αϕA

P
(13)

logit(ϕA
V,t) = αϕA

V
(14)

(no density dependence on adult survival)

log(fP,t) = α5 + α6n
J
V,t (15)

where the number of juvenile prey individuals positively affects predator fecundity, and

log(fV,t) = α7 + α8n
A
V,t (16)

where the number of adult prey individuals negatively affect prey fecundity (negative intraspecific

density dependence). Associated results can be found in Supplementary Information Table S1 and

Figures S5 to S8.

However, to limit posterior correlation between intercept and slope parameters and improve

their estimation, we centered the abundances in the density dependent functions. While centering

is typically done and most efficient on mean values, mean abundances varied here from a simulation

to the next due to stochasticity. Therefore, intercept parameter values would have to be redefined for

each simulation to maintain equivalent mean demographic rate values and asymptotic stage specific

abundance equilibria for all simulation. To avoid these complications, we centered by subtracting

the corresponding fixed point equilibria estimated in Barraquand & Gimenez (2019) as
∗
nA
P = 21,

∗
nJ
V = 101 and

∗
nA
V = 152. The new α intercept parameters obey the following centered formulas:
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logit(ϕJ
P,t) = α1 + α2(n

A
P,t −

∗
nA
P ) (17)

logit(ϕJ
V,t) = α3 + α4(n

A
P,t −

∗
nA
P ) (18)

logit(ϕA
P,t) = αϕA

P
(19)

logit(ϕA
V,t) = αϕA

V
(20)

log(fP,t) = α5 + α6(n
J
V,t −

∗
nJ
V ) (21)

log(fV,t) = α7 + α8(n
A
V,t −

∗
nA
V ). (22)

To maintain equivalent dynamics to parameter set 1 of the 2019 model, we calculated the

intercepts α1, α3, α5 and α7 as their original values plus the original slope multiplied by the

estimated fixed point equilibrium of the n responsible for density dependence. For example, we now

use whenever simulating α3 = 0.5−0.025×21 = −0.025 and α5 = 0+0.004×101 = 0.404 (Table 1).

In addition, we introduced scenarios with inter-annual random variation in the intercepts of

density-dependent links, such that

logit(ϕJ
P,t) = α1 + α2(n

A
P,t −

∗
nA
P ) + σϕJ

P
ϵϕJ

P
(23)

logit(ϕJ
V,t) = α3 + α4(n

A
P,t −

∗
nA
P ) + σϕJ

V
ϵϕJ

V
(24)

logit(ϕA
P,t) = αϕA

P
+ σϕA

P
ϵϕA

P
(25)

logit(ϕA
V,t) = αϕA

V
+ σϕA

V
ϵϕA

P
(26)

with ϵ ∼ N (0, 1) i.i.d. and

log(fP,t) ∼ N (α5 + α6(n
J
V,t −

∗
nJ
V ), σ

2
fP
) (27)

log(fV,t) ∼ N (α7 + α8(n
A
V,t −

∗
nA
V ), σ

2
fV

). (28)

Although mathematically identical, we used a parameterisation of the form µ + ϵσ, ϵ ∼ N (0, σ2)

(sometimes called non-centered) for survival estimates and a centered parameterisation (N (µ, σ2))

for fecundity estimates as it was found to be optimal for the mixing of the MCMC chains. As we

were primarily interested in the ability of multispecies IPMs to estimate species interactions when

these were in fact absent, inter species density dependence parameter values for α2 and α4 were
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either set to zero for the simulations, or at the same value as the 2019 model. Parameter values

used to simulate data and their interpretation can be found in Table 1.

Table 1: Model parameters with their values. Values of α4 and α6 in the scenarios with true
presence of species interactions are presented in parentheses. Temporal standard deviations (SD)
are only present in the scenarios with random temporal variation. For interpretation, note that αi

and temporal SD parameters are within exponential functions. For instance, α5 = 0.404
corresponds to a mean fecundity of e0.404 ≈ 1.5.

Parameter Value Interpretation

α1 0.29 juvenile predator survival – intercept
α2 -0.01 juvenile predator survival – slope
α3 -0.025 juvenile prey survival – intercept
α4 0 (−0.025) juvenile prey survival – slope – inter species density dependence
α5 0.404 predator fecundity – intercept
α6 0 (0.004) predator fecundity – slope – inter species density dependence
α7 1.24 prey fecundity – intercept
α8 -0.005 prey fecundity – slope
p 0.7 recapture probability

αϕA
P

logit(0.7) adult predator survival – intercept

αϕA
V

logit(0.6) adult prey survival – intercept

σobs 0.1 observation error

σfP 0.1 temporal SD of predator fecundity
σfV 0.1 temporal SD of prey fecundity
σϕJ

P
0.1 temporal SD of juvenile predator survival

σϕA
P

0.1 temporal SD deviation of adult predator survival

σϕJ
V

0.1 temporal SD deviation of juvenile prey survival

σϕA
V

0.1 temporal SD deviation of adult prey survival

2.2.2 Initial values and monitoring setup

For all simulation scenarios in the main text, we used the initial population size vector



nJ
V,1

nA
V,1

nJ
P,1

nA
P,1


=



100

100

20

20


,

a study period of T = 30 years, the yearly number of monitored prey and predator broods/litters

respectively RV
t = 50 and RP

t = 20, and the yearly number of marked juveniles was 100 for

both species. Results using the monitoring setups of Barraquand & Gimenez (2019) with either

100 marked juveniles per species per year for T = 10 years, or 20 marked juveniles per species

per year for T = 30 years (and the non-centered density-dependencies) are also presented in the
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Supplementary Information B.

We consider two alternative situations without interspecific interactions: with or without ran-

dom temporal noise. To compare model performances in the no-interactions setting to cases with

interspecific interactions, we also simulated and fitted data in presence of species interactions using

the same αi values as Barraquand & Gimenez (2019) under the four above-mentioned scenarios (i.e.,

with/without interactions × with/without stochasticity on interactions; see Supplementary Table 2

and Figures S1 and S3 in addition to main text results). For each of these four combinations of

parameter sets, we simulated 100 datasets using the Nimble package (de Valpine et al., 2017, 2022,

version 0.12.2) in R (R Core Team, 2022, version 4.2.1).

2.3 Prior specification and model fitting

Multispecies IPMs were implemented in a Bayesian framework, hence the need to specify priors.

When fitting the models to simulated data, we used N (100, 10) and N (20, 10) priors for the initial

stage-specific prey and predator population sizes (truncated to be positive). These priors also

differed from the 2019 model where they were all set to N (25, 10−5).

Priors for standard deviations were chosen as σ ∼ Exp(1), which corresponds to priors with max-

imum entropy on the log and logit scales (e.g., McElreath, 2020). Prior probabilities of recapture

were drawn as p ∼ Unif(0, 1) and vital rate/interaction parameters were given weakly informative

priors αk ∼ N (0, 1) (k ∈ {1, ..., 8}).

Data were both simulated and fitted using the Nimble R package (R Core Team, 2022; de

Valpine et al., 2017, 2022, version 0.12.2). To improve their mixing and minimize their posterior

correlations, intercepts, slopes and temporal SD were block sampled using automated factor slice

samplers (Tibbits et al., 2014; Ponisio et al., 2020). For each simulated dataset, we fitted the same

multispecies IPM that was used to generate the data (e.g., no random temporal noise estimated on

data without temporal noise), except in that species interactions were estimated even in absence of

such interactions. Two MCMC chains were run for 60200 iterations and we sampled the last 60000

iterations every 60th iteration leading to 2000 posterior samples saved per dataset. Real parameter

values were used as initial values to minimise time to convergence (see Appendix Section C for

an evaluation of the influence of initial values on parameter estimation). We assess convergence

and mixing of the chains for all αi by calculating the potential scale reduction factor (R̂, Brooks &

Gelman 1998; Gelman & Rubin 1992) and effective sample size (neff.) using the ”gelman.diag()” and

the ”effectiveSize()” functions of the coda package (Plummer et al., 2006, version 0.19-4). We only
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used outputs from models for which all αi had R̂ < 1.1 and neff. > 50, that is, 100/100 models for

the scenario without random temporal variation and 94/100 models for the scenario with random

temporal variation. The computer code is provided at https://github.com/MatthieuPaquet/

multi_species.

3 Results

Overall, estimates of density dependence curves were unbiased, regarding interspecific density de-

pendence (either absent, Figures 1 and 3, or present, Figures S1 and S3) as well as intraspecific

density dependence. This was true without and with temporal stochasticity (Figures 1 to 4).

This absence of bias extends to the alternative data designs with smaller sample sizes considered

in Barraquand & Gimenez (2019) (shown in Supplementary Information in Figures S5 to S8).

Estimated αi parameters also did not show sign of bias in any scenario (Table 2 and Table S1).
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Figure 1: Density-dependencies for juvenile survival rates (A for predator and B for prey) as well
as prey (C) and predator (D) fecundities in the scenario without random time variation. Purple:
simulated relationships, light green: posterior mean relationships for all 100 fitted models, dark
green: average of the posterior mean relationships. True inter species density-dependencies (right
panels) were set to be absent.
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Figure 2: Example of posterior mean (blue-green line) and 95% Credible Intervals (grey polygons)
of density-dependencies for juvenile survival rates (A for predator and B for prey) as well as prey
(C) and predator (D) fecundities estimated by one of the 100 models run in the scenario without
random time variation. Purple lines indicate the simulated (true) relationships. Points represent
estimated mean demographic parameter each year plotted against estimated yearly abundance
values, and vertical and horizontal error bars their respective 95% Credible Intervals.
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Figure 3: Density-dependencies for juvenile survival rates (A for predator and B for prey) as well
as prey (C) and predator (D) fecundities in the scenario with random time variation. Purple:
simulated relationships, light green: posterior mean relationships for the 94 fitted models that
appear to converge satisfactorily, dark green: average of the posterior mean relationships. True
inter species density-dependencies (right panels) were set to be absent.

15



0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Adult P abundance

Ju
ve

ni
le

 P
 s

ur
vi

va
l

INTRA−DDA

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Adult P abundance

Ju
ve

ni
le

 V
 s

ur
vi

va
l

INTER−DDB

0 50 100 150 200 250

0
2

4
6

8
10

Adult V abundance

V
 fe

cu
nd

ity

C

0 50 100 150 200

0
1

2
3

4
5

 Juv V abundance

P
 fe

cu
nd

ity

D
actual
estimated
95% CrI

With environmental stochasticity

Figure 4: Example of posterior mean (blue-green line) and 95% Credible Intervals (grey polygons)
of density-dependencies for juvenile survival rates (A for predator and B for prey) as well as prey
(C) and predator (D) fecundities estimated by one of the 100 models run in the scenario with
random time variation. Purple lines indicate the simulated (true) relationships. Points represent
estimated mean demographic parameter each year plotted against estimated yearly abundance
values, and vertical and horizontal error bars their respective 95% Credible Intervals.

We did not detect more false positive species interactions than expected by chance when inves-

tigating the coverage probability of the species interaction parameters at 95% (i.e., the proportion

of simulations where 95% CrI of estimated parameter includes the true parameter value). In the

scenario with 100 juveniles marked each year for 30 years and no interspecific density dependence

nor temporal random variation, this probability was 0.95 for α4 and 0.92 for α6 (cf Table 2, see

Figure 2 for an example of estimated mean and pointwise 95% CrI density dependent curves).
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Coverage probabilities were also satisfactory when interspecific interactions were simulated to be

nonzero (0.94 and 0.93). Species interactions parameters were still estimable with no noticeable

bias in the presence of random time variation (Figures 3 and 4), in which case the coverage prob-

abilities of the species interaction parameters α4 and α6 at 95% were 0.99 and 0.98 respectively in

absence of interspecific interactions (Table 2). In the presence of interspecific interactions, coverage

values were both 0.96. Moreover, the addition of random time variation did not noticeably alter the

precision of the species interaction parameters, both in absence and presence of species interactions

(Figure S3, Table 2).

Table 2: Summary table of parameter estimates. Value refers to the true values used to simulate
the data and values of the interspecific density dependent parameters are highlighted in bold.
Estimate (95% quantiles) are the mean and the 95% quantiles of the posterior mean estimates.
Coverage 95% is the proportion of 95% Credible Intervals that included the true parameter values.

Scenario Param. Value Estimate (95% quantiles) Coverage 95%

30 years α1 0.29 0.304 (0.166; 0.482) 0.97
100 ind. marked/year α2 -0.01 -0.013 (-0.032; 0.005) 0.95
No temporal noise α3 -0.025 -0.033 (-0.144; 0.083) 0.99

No interspecies DD α4 0 0.001 (-0.017; 0.019) 0.95
α5 0.404 0.413 (0.199; 0.635) 0.93
α6 0 0 (-0.008; 0.007) 0.92
α7 1.24 1.243 (1.198; 1.287) 0.97
α8 -0.005 -0.005 (-0.006; -0.004) 0.96

30 years α1 0.29 0.281 (0.124; 0.428) 0.947
100 ind. marked/year α2 -0.01 -0.013 (-0.038; 0.003) 0.947

Temporal noise α3 -0.025 -0.02 (-0.173; 0.122) 0.947
No interspecies DD α4 0 0.001 (-0.012; 0.017) 0.989

α5 0.404 0.399 (0.236; 0.532) 0.968
α6 0 0 (-0.005; 0.004) 0.979
α7 1.24 1.244 (1.17; 1.319) 0.968
α8 -0.005 -0.005 (-0.007; -0.004) 0.968

30 years α1 0.29 0.282 (0.122; 0.427) 0.97
100 ind. marked/year α2 -0.01 -0.011 (-0.027; 0.004) 0.98
No temporal noise α3 -0.025 -0.019 (-0.156; 0.125) 0.99
Interspecies DD α4 -0.025 -0.026 (-0.042; -0.009) 0.94

α5 0.404 0.395 (0.264; 0.502) 0.94
α6 0.004 0.004 (-0.001; 0.01) 0.93
α7 1.24 1.241 (1.195; 1.281) 0.95
α8 -0.005 -0.005 (-0.006; -0.004) 0.96

30 years α1 0.29 0.29 (0.143; 0.459) 0.967
100 ind. marked/year α2 -0.01 -0.01 (-0.026; 0.007) 0.989

Temporal noise α3 -0.025 -0.014 (-0.176; 0.145) 0.967
Interspecies DD α4 -0.025 -0.025 (-0.041; -0.007) 0.957

α5 0.404 0.403 (0.276; 0.523) 0.957
α6 0.004 0.004 (-0.001; 0.009) 0.957
α7 1.24 1.237 (1.179; 1.311) 0.913
α8 -0.005 -0.005 (-0.008; -0.004) 0.924
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4 Discussion

Building on the multispecies integrated predator-prey model of Barraquand & Gimenez (2019),

we investigated here whether multispecies IPMs could output interactions where there are in fact

none. We did so by modelling functions relating vital rates to stage-specific species densities, whose

slope parameters are used to model species interactions. We found that when those slopes were

simulated as zero, the estimates were centered on zero and therefore unbiased. There was also a

good coverage probability of interaction parameters (close to 0.95 for 95% CrIs). We also found

that adding temporal variability to these multispecies density-dependent link functions did not

alter these results. This confirms that multispecies IPMs are a promising way to estimate species

interactions, and in particular, that they could be used to infer whether two species interact or not

when such information is missing.

These results are encouraging, though some readers might find our sample sizes relatively large

(see Appendix B for slightly lower sample sizes). In a previous version of this work, we inadvertently

omitted the θA CMR array in the code, which transformed the model into a capture-removal model

(i.e., individuals were re-captured only once and then removed from the population, as in hunting

or fishing data). In this configuration, the lower amount of data on survival and detection provided

proper estimation of all quantities for the main text data design but not those of Appendix B

for which convergence was not always reached. With live capture-recapture data, all data designs

(main text and Appendix B) now provide satisfactory convergence and estimation. Moreover, in

field population studies, additional types of data available are likely to improve the estimation of

species interactions and we give three examples below. First, when age classes can be determined

during the count observation process, including such information explicitly in the model (see e.g.,

Weegman et al., 2016; Paquet et al., 2019) will increase identifiability and/or precision of survival

parameters and age specific abundances, and therefore will likely improve the estimation of density

dependence parameters as well. This stage-specific abundance information may also allow, in some

cases where counts are provided with little error, to remove the observation process, which we

cannot do in our current model formulation because the observed population size sums adult and

juvenile densities, and this sum has to arise from a probability distribution (Equations (2) and (3)).

Second, integrating dead prey recovery data is likely to give extra information on the strength of

predator-prey interactions. Dead recoveries are classically implemented in capture-mark-recovery

models (Seber, 1972; North & Morgan, 1979) which in some cases can be combined with CMR
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data (Barker, 1999) and counts (Reynolds et al., 2009). Since the probability to find a dead prey

is likely affected by predation rates in the population (e.g., in some systems prey eaten will not be

recovered, in others dead recoveries may present signs of predation), taking the predation process

into account in the dead recoveries data-generation mechanism could improve the estimation of the

strength of predator-prey interactions. Finally, the spatial structure of the data should contain

additional information that may help to estimate parameters. The extension to spatially explicit

IPMs (Chandler & Clark, 2014; Zhao, 2020) for interacting populations represents a promising way

forward for the estimation of species interactions.

We commented above on the amount of data and possible additional data types. However, the

efficiency of multispecies IPMs in estimating species interactions may also depend on the parameter

set, and thus on the ecological features of the populations studied. For example, the parameters

considered here correspond well to vertebrate predator-prey systems with a stable equilibrium in

absence of environmental perturbations. Faster life histories, different stage or age structure, and

multiple factors contributing to altering the quantity of information encapsulated in the various

data streams may alter the sample sizes required for efficient inferences. When applying these

models to new systems with different life history parameters and density-dependent structures

(e.g., predators also eating adult prey), simulated datasets with plausible ecological features for

the empirical system considered (and similar data designs), will help confirm that parameter values

can be recovered without bias and with sufficient precision. Tools such as JAGS (Plummer, 2003)

or Nimble (de Valpine et al., 2017) make it particularly handy to both simulate and fit data with

complex dynamic models.

Finally, while using the same model to simulate and fit the data is a necessary first step to (i)

assess the identifiability of model parameters (and assess the amount and type of data needed for

practical identifiability), (ii) evaluate the coverage of parameter estimates, and (iii) check for bias

in the estimates that can still occur, notably because of limited sample sizes (Paquet et al., 2021),

an important next step will be to evaluate the sensitivity of multi-species IPM estimates to model

mis-specifications (Plard et al., 2021). For example, different functions than the log and logit links

chosen here may be used to fit or to simulate intra- and inter-specific density-dependencies. Hence,

we encourage future work to try fitting a broader range of plausible models that differ from the

model used to simulate the data (or conversely, to simulate from more mechanistic models) in order

to assess such sensitivity.
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Supplementary Information

A Results for the scenarios with species interactions
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Figure S1: Density-dependencies for juvenile survival rates (A for predator and B for prey) as
well as prey (C) and predator (D) fecundities in the scenario without random time variation in
presence of true inter species density-dependencies. Purple: simulated relationships, light green:
posterior mean relationships for the 100 fitted models that appear to converge satisfactorily, dark
green: average of the posterior mean relationships.
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Figure S2: Example of posterior mean (blue-green line) and 95% Credible Intervals (grey
polygons) of density-dependencies for juvenile survival rates (A for predator and B for prey) as
well as prey (C) and predator (D) fecundities estimated by one of the 100 models run in the
scenario without random time variation in presence of true inter species density-dependencies.
Purple lines indicate the simulated (true) relationships. Points represent estimated mean
demographic parameter each year plotted against estimated yearly abundance values, and vertical
and horizontal error bars their respective 95% Credible Intervals.
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Figure S3: Density-dependencies for juvenile survival rates (A for predator and B for prey) as
well as prey (C) and predator (D) fecundities in the scenario with random time variation in
presence of true inter species density-dependencies. Purple: simulated relationships, light green:
posterior mean relationships for the 92 fitted models that appear to converge satisfactorily, dark
green: average of the posterior mean relationships.
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Figure S4: Example of posterior mean (blue-green line) and 95% Credible Intervals (grey
polygons) of density-dependencies for juvenile survival rates (A for predator and B for prey) as
well as prey (C) and predator (D) fecundities estimated by one of the 100 models run in the
scenario with random time variation in presence of true inter species density-dependencies. Purple
lines indicate the simulated (true) relationships. Points represent estimated mean demographic
parameter each year plotted against estimated yearly abundance values, and vertical and
horizontal error bars their respective 95% Credible Intervals.

B Results for the scenarios with 100 juveniles of each species marked each year

for 10 years, and 20 juveniles of each species marked for 30 years, without

centering abundances in the link functions

The results presented below follow the data design of Barraquand & Gimenez (2019).
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Table S1: Value refers to the true values used to simulate the data and values of the interspecific
density dependent parameters are highlighted in bold. Estimate (95% quantiles) are the mean and
the 95% quantiles of the posterior mean estimates. Coverage 95% is the proportion of 95%
Credible Intervals that included the true parameter values.

Scenario Param. Value Estimate (95% quantiles) Coverage 95%

10 years α1 0.5 0.458 (-0.545; 1.293) 0.98
100 ind. marked/year α2 -0.01 -0.008 (-0.041; 0.031) 0.99
No temporal noise α3 -0.025 -0.045 (-0.78; 0.563) 0.99

α4 0 0.001 (-0.026; 0.033) 0.98
α5 0.404 0.286 (-0.577; 1.098) 0.949
α6 0 0.001 (-0.005; 0.008) 0.96
α7 2 1.998 (1.773; 2.227) 0.98
α8 -0.005 -0.005 (-0.006; -0.004) 0.97

10 years α1 0.5 0.278 (-0.361; 0.874) 0.99
100 ind. marked/year α2 -0.01 -0.001 (-0.028; 0.029) 0.99

Temporal noise α3 -0.025 -0.023 (-0.594; 0.614) 1
α4 0 0 (-0.025; 0.023) 1
α5 0.404 0.323 (-0.379; 0.918) 0.99
α6 0 0.001 (-0.004; 0.006) 1
α7 2 1.911 (1.467; 2.323) 0.948
α8 -0.005 -0.004 (-0.007; -0.002) 0.927

30 years α1 0.5 0.56 (-0.155; 1.278) 0.99
20 ind. marked/year α2 -0.01 -0.013 (-0.045; 0.021) 0.99
No temporal noise α3 -0.025 -0.031 (-0.529; 0.436) 0.97

α4 0 0.001 (-0.024; 0.023) 0.97
α5 0.404 0.329 (-0.305; 1.009) 0.97
α6 0 0.001 (-0.005; 0.006) 0.98
α7 2 2.009 (1.832; 2.194) 0.96
α8 -0.005 -0.005 (-0.006; -0.004) 0.97

30 years α1 0.5 0.527 (-0.275; 1.206) 0.968
20 ind. marked/year α2 -0.01 -0.011 (-0.041; 0.019) 0.968

Temporal noise α3 -0.025 -0.007 (-0.528; 0.533) 0.979
α4 0 0 (-0.02; 0.017) 0.989
α5 0.404 0.316 (-0.191; 0.823) 0.968
α6 0 0.001 (-0.004; 0.004) 0.968
α7 2 1.954 (1.702; 2.247) 0.957
α8 -0.005 -0.005 (-0.006; -0.003) 0.957
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Figure S5: Density-dependencies for juvenile survival rates (A for predator and B for prey) as
well as prey (C) and predator (D) fecundities in the scenario with 100 juveniles per species
marked each year for 10 years without random time variation in absence of true inter species
density-dependencies. Purple: simulated relationships, light green: posterior mean relationships
for the 99 fitted models that appear to converge satisfactorily, dark green: average of the posterior
mean relationships.
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Figure S6: Density-dependencies for juvenile survival rates (A for predator and B for prey) as
well as prey (C) and predator (D) fecundities in the scenario with 100 juveniles per species
marked each year for 10 years with random time variation in absence of true inter species
density-dependencies. Purple: simulated relationships, light green: posterior mean relationships
for the 96 fitted models that appear to converge satisfactorily, dark green: average of the posterior
mean relationships.
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Figure S7: Density-dependencies for juvenile survival rates (A for predator and B for prey) as
well as prey (C) and predator (D) fecundities in the scenario with 20 juveniles per species marked
each year for 30 years without random time variation in absence of true inter species
density-dependencies. Purple: simulated relationships, light green: posterior mean relationships
for the 100 fitted models that appear to converge satisfactorily, dark green: average of the
posterior mean relationships.
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Figure S8: Density-dependencies for juvenile survival rates (A for predator and B for prey) as well
as prey (C) and predator (D) fecundities in the scenario with 20 juveniles per species marked each
year for 30 years with random time variation in absence of true inter species density-dependencies.
Purple: simulated relationships, light green: posterior mean relationships for the 94 fitted models
that appear to converge satisfactorily, dark green: average of the posterior mean relationships.
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C Sensitivity of parameter estimation to the choice of initial values

To assess whether the accuracy of the estimation of density dependent parameters was condi-

tioned by the fact that we used true parameter values as initial values, we also ran the MCMC

using values that substantially deviated from the true value and expected posterior distributions.

For this study, we used data (and the corresponding model) without temporal random noise and

without true interspecific interactions. We chose one simulated dataset for which the true values

of α2, α4, α6 and α8 fell well within the 95% credible intervals of the posterior samples when

using the true value as initial value (see script https://github.com/MatthieuPaquet/multi_

species/blob/main/script_initial_values.R for more details on the procedure). We then

simulated 100 sets of initial values that deviated from the true values by 4 standard deviations

estimated from the posterior samples when the true values were used as initial values (hereafter

SDα̂i
). For the parameters for which negative density dependence was expected, we simulated

the 100 initial values as αinit
i ∼ N (αi − 4SDα̂i

, SDα̂i
) whereas for α8, which was a potentially

positive prey → predator link (and would have been assumed positive in an empirical analysis),

we used αinit
8 ∼ N (α8 + 4SDα̂8 , SDα̂8). We used true parameter values as initial values for all

other model parameters. Preliminary runs showed that convergence was reached very quickly

(typically after a couple of iterations) with efficient mixing. We then ran 2 chains for 1200 it-

erations and discarded the first 200 as burn-in and did not use thinning. For comparison we

also run 2 MCMC chains once, under the same settings, using the true values as initial val-

ues (see script https://github.com/MatthieuPaquet/multi_species/blob/main/script_MCMC_

simulatedinitial_values_out_of_posterior.R). The results showed no sign of influence of the

initial value chosen on the parameter estimates (Figure S9).
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Figure S9: Estimation of density dependent parameter values (α2 in panel A, α4 in panel B, α6 in
panel C and α8 in panel D) in relation to the initial values chosen to start the MCMC chains.
Dots show the posterior means and vertical lines the 95% credible intervals. Purple horizontal
lines highlight the value used to simulate the data. Red dots and intervals show the case where
the true values are used as initial values.

34


	Introduction
	Methods
	General description of the multispecies IPM
	Count data
	Survival data
	Fecundity data

	Alternative scenarios and parameter values
	Density dependence and random temporal variation on demographic rates
	Initial values and monitoring setup

	Prior specification and model fitting

	Results
	Discussion
	Results for the scenarios with species interactions
	Results for the scenarios with 100 juveniles of each species marked each year for 10 years, and 20 juveniles of each species marked for 30 years, without centering abundances in the link functions
	Sensitivity of parameter estimation to the choice of initial values


