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Abstract1

Inferring the strength of species interactions from demographic data is a challenging task. The2

Integrated Population Modelling (IPM) approach, bringing together population counts, capture-3

recapture, and individual-level fecundity data into a unified model framework, has been extended4

from single species to the community level. This allows to specify IPMs for multiple species with5

interactions specified as links between vital rates and stage-specific densities. However, there is no6

evaluation of such models when interactions are actually absent—while any interaction inference7

method runs the risk of producing false positives. We investigate here whether multispecies8

IPMs could output interactions where there are in fact none, building on an existing predator-9

prey IPM. We show that interspecific density-dependence estimates are centered on zero when10

simulated to be zero, and therefore their estimation is unbiased. Their coverage probability,11

quantifying how many times credible intervals include zero, is also satisfactory. We further12

confirm that adding random temporal variation to multispecies density-dependent link functions13

does not alter these results. This study therefore reaffirms the potential of multispecies IPMs14

to infer correctly how biotic interactions influence demography, although future studies should15

investigate model misspecifications.16
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density-dependence.18
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1 Introduction21

Estimating ecological interactions between and within species through models of their joint popula-22

tion dynamics is a task which requires large amounts of data. Indeed, with potentially as many as23

q2 interaction parameters for q model compartments (combination of species and age classes), the24

number of parameters to estimate can climb very rapidly. Therefore, ecological statistics searches25

for improved ways to infer such population-level interaction strengths. A recently developed tech-26

nique consists in combining data sources in multispecies Integrated Populations Models (IPMs)27

including interspecific interactions (Péron & Koons, 2012; Barraquand & Gimenez, 2019; Quéroué28

et al., 2021). Because Integrated Population Models (IPMs, Besbeas et al., 2002) combine data on29

demographic rates (e.g., capture recapture, breeding data) with data on population size (typically30

from counts), they allow: (a) estimating both demographic rates and population size (and hence31

their inter-dependencies) in a joint analysis, (b) an improved precision in parameter estimates,32

compared to separate analyses of component datasets, since the information contained in several33

datasets combine into estimated parameters (e.g., count data and capture recapture data both con-34

tain information on survival rates), and in some cases (c) to estimate parameters for which there is35

no dedicated data stream, that can only be estimated through inverse estimation of a demographic36

model (Kéry & Schaub, 2011; Abadi et al., 2010). This last property is particularly useful to esti-37

mate population-level species interactions strengths, since population-level interactions are always38

indirectly inferred. Although inverse estimation can in theory be performed using a single data39

source such as population counts, such inverse estimation is a difficult task fraught with identifia-40

bility issues. Asking whether multispecies IPMs performed better than classical inverse estimation41

from count data alone, Barraquand & Gimenez (2019) have shown that better estimates of interac-42

tion parameters could be obtained by combining data sources. Additionally, an empirical study in43

a bird predator-prey system Quéroué et al. (2021) was able to detect the expected bottom-up de-44

mographic linkages from prey to predator but not the expected top-down relationships, suggesting45

that those may be too weak to be detected.46

In these multispecies IPM studies estimating interspecific interactions, between-species linkages47

have always been considered to be present in the simulations or in the underlying reality (based on48

background knowledge). Other choices are possible: some multispecies IPMs do not assume inter-49

specific interactions to be present a priori (Lahoz-Monfort et al., 2017), but they do not estimate50

them either and focus instead on environmental effects. However, multispecies IPMs with inter-51
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specific interactions could also be used in situations where it is not clear whether population-level52

interactions between species are possible. This is all the more true that interactions are specified as53

links between vital rates and stage-specific densities, and while some of these relationships may be54

known a priori, others may not. The issue was raised but not tackled by Barraquand & Gimenez55

(2019): a natural follow-up is therefore to ask what happens whenever we try to estimate interac-56

tions that are actually absent, to make sure that multispecies IPMs do not yield false positives.57

Let us note that when estimating or predicting interspecific interactions in general—not just58

with multispecies IPMs—whether methods could output false positives is a key concern (e.g., with59

multivariate autoregressive models, Mutshinda et al. 2009; Barraquand et al. 2021; dynamic bayesian60

networks, Sander et al. 2017; or other machine learning tools, Strydom et al. 2021). The fact that61

all interaction inference methods run the risk of creating false positives of interspecific interactions62

at exaggerated rates only reinforces the need to evaluate it in multispecies IPMs.63

An additional concern is temporal stochasticity in the functions linking vital rates of a given64

stage of species i to the densities of a given stage of species j. In the simulation-based study of65

Barraquand & Gimenez (2019), it was assumed that such stochasticity was absent, while empirical66

studies (Péron & Koons, 2012; Quéroué et al., 2021) assumed its presence in order to partition67

variation in vital rates due to species densities vs other factors changing over time. We therefore68

still need to understand whether theoretical performances hold in this more empirically realistic69

context, where environmental factors can perturb demographic rates, and those are not solely70

deterministic functions of species densities.71

To sum up, we follow-up here on the multispecies IPM study of Barraquand & Gimenez (2019)72

by asking whether (1) inter-species interactions are truly estimated to be zero when species have73

in fact independent dynamics and (2) how species interaction strengths estimates can be affected74

by the absence and presence of environmental stochasticity (random year effects on demographic75

rates).76

2 Methods77

2.1 General description of the multispecies IPM78

The deterministic skeleton can be described as a density-dependent matrix population model79

nt+1 = A(nt)nt. (1)
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Eq. 1 describes in discrete-time the dynamics of abundances of two species and two stages per

species, with projection matrix

A(nt) =



0 1
2fV,t

(
nA
V,t

)
ϕJ
V,t

(
nA
P,t

)
0 0

ϕA
V,t ϕA

V,t 0 0

0 0 0 1
2fP,t

(
nJ
V,t

)
ϕJ
P,t

(
nA
P,t

)
0 0 ϕA

P,t ϕA
P,t


and abundance vector

nt =



nJ
V,t

nA
V,t

nJ
P,t

nA
P,t


where nJ

V,t, n
A
V,t, n

J
P,t and nA

P,t are respectively the abundances of juvenile prey (denoted V as ’vic-80

tim’), adult prey, juvenile predators and adult predators, at time t. The fecundities fV,t, fP,t are the81

expected number of juvenile prey and predator produced by an adult prey and predator, respec-82

tively. Survival probabilities between t and t+1 are denoted with ϕ, so that ϕJ
V,t, ϕ

A
V,t, ϕ

J
P,t and ϕA

P,t83

are the survival probabilities of the juvenile prey, adult prey, juvenile predator and adult predator.84

2.1.1 Count data85

To simulate and account for demographic stochasticity, we modelled yearly (st)age specific abun-86

dances nt using Binomial and Poisson distributions as in Barraquand & Gimenez (2019) eqs. (2)–(5).87

Regarding the observation process for count data, the 2019 model assumed a negligible obser-88

vation error (σ2 = 10−5). The reason was that in absence of replicated counts at each time unit,89

observation error variance is notoriously difficult to disentangle from process error variance (Knape,90

2008; Auger-Méthé et al., 2016). While in some cases it could be possible to remove observation error91

altogether, because total population sizes of each species (summed numbers of juveniles and adults)92

are the observed count variables (as in most IPMs), they need to appear in the model as drawn from93

some probability distribution—they need to be a stochastic node in the MCMC representation. It94

was therefore decided to keep the formulation of the model in its state-space version, but forcing it95

to observe true population size almost with certainty (negligible process error variance). However,96

we uncovered in the present work that stage-specific abundances could not be estimated properly.97
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Because correctly reproducing stage-specific abundances when fitting a stage-structured model is98

desirable, and that there is in most wildlife surveys some measure of observation error on counts,99

we assumed in the present article a non-negligible, positive observation error variance. As we do100

not have replicated counts at any given time, we do not attempt to estimate observation error vari-101

ance, and assume that it is known and classically set on the logarithmic scale (i.e., the coefficient102

of variation of observed population size is constant). For predator counts (denoted P ) we have103

yP,t|nt ∼ LN
(
log(nJ

P,t + nA
P,t), σ

2
obs

)
(2)

and similarly for prey counts104

yV,t|nt ∼ LN
(
log(nJ

V,t + nA
V,t), σ

2
obs

)
, (3)

with LN the log-Normal distribution and its associated variance on the log-scale σ2
obs = 0.1. Other105

choices of observation model are possible but this one is standard for abundance values that are not106

too small (Besbeas et al., 2002; Dennis et al., 2006).107

108

2.1.2 Survival data109

To increase computational efficiency (particularly true for the scenarios with more individuals cap-110

tured and a shorter time series), we simulated and fitted the capture-mark-recapture data in the111

m-array format, using a multinomial likelihood (Burnham, 1987). The data is in the form of two112

(T−1)×T matrices MJ and MA, one for each age class, with M(a) = (m
(a)
t,j ), with m

(a)
t,j = 0, ∀j < t,113

where T is the total number of years of capture recapture history. m
(a)
t,t is the number of individuals114

of released at age class (a) at time t that were re-sighted the following year, and the last column115

m
(a)
t,T is the number of individuals released at age class (a) at time t that were never re-sighted. We116

then have:117

m
(a)
t,• = (m

(a)
t,t ,m

(a)
t,t+1, . . . ,m

(a)
t,T ) ∼ Multinomial

(
R

(a)
t , (θ

(a)
t,t , . . . , θ

(a)
t,T )
)

(4)

with R
(a)
t =

∑T
k=tm

(a)
t,k the number of individuals of age class (a) released at time t.118

It is important to note that for the matrix of released juveniles MJ , RJ
t corresponds to the119

number of juveniles newly marked at time t. However, RA
t corresponds to the number of newly120
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marked adults (lets denote it RA
m,t), but also of all previously marked juveniles and adults that were121

released at time t. That is,122

RA
1 = RA

m,1, (5)

but123

RA
t+1 = RA

m,t +
t∑

k=1

mJ
k,t +mA

k,t. (6)

Therefore, unless individuals are not released when marked (e.g., killed, or taken to be released124

outside of the study population), one needs to provide data and model the number of released125

adults re-sighted, even if no individuals are first marked as adults. As no individuals are marked as126

adults here, RA
m,1 = 0, and so that Equations 5 and 6 can be simplified accordingly.127

Note also that in such case were no adults are newly marked, no data on RA
t is needed to128

simulate and fit MA. Since RA
1 = 0, we have:129

mA
1,• = 0, (7)

130

mA
2,• ∼ Multinomial

(
mJ

1,1 +mA
1,1, (θ

A
1,t, . . . , θ

A
1,T )

)
, (8)

131

mA
3,• ∼ Multinomial

(
2∑

k=1

mJ
k,2 +mA

k,2, (θ
A
2,t, . . . , θ

A
2,T )

)
, (9)

and so on.132

For juveniles, diagonal elements of the θJ matrix write:133

θJt,t = ϕJ
t p,

with ϕJ
t the first year (i.e. juvenile) survival probability from year t to year t + 1 (for the species134

considered), and p the recapture (or re-sighting) probability set as constant among years and age135

classes, and for t < j < T136

θJt,j = ϕJ
t

(
j∏

k=t+1

ϕA
k

)
(1− p)j−tp,

with ϕA
t the adult survival probability from year t to year t+1 (for the species considered). The137
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last element pertains to individuals never recaptured138

θJt,T = 1−
T−1∑
k=t

θJt,k.

Similarly for θA, the above mentioned equations are identical to the exception that ϕJ is replaced139

by ϕA, which leads to:140

θAt,t = ϕA
t p

for the diagonal elements of the θA matrix, and for t < j < T :141

θAt,j =

(
j∏

k=t

ϕA
k

)
(1− p)j−tp.

The last element again pertains to individuals never recaptured142

θAt,T = 1−
T−1∑
k=t

θAt,k.

2.1.3 Fecundity data143

Fecundity was modelled using a Poisson regression:144

Ft ∼ Poisson(ftRt) (10)

with Ft the total number of offspring counted, Rt the number of surveyed broods/litters, and ft the145

expected number of offspring (male + female) per adult female each year t.146

2.2 Alternative scenarios and parameter values147

2.2.1 Density dependence and random temporal variation on demographic rates148

Intra- and inter-species density dependence of survival rates ϕj
i,t (with i ∈ {V, P} and j ∈ {J,A})149

and fecundities fi,t were modelled on the logit and log scale, respectively. We initially used the150

same equations as the 2019 model, which are:151

logit(ϕJ
P,t) = α1 + α2n

A
P,t (11)
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where the number of adult predators negatively affects juvenile predator survival (negative intraspe-152

cific density dependence),153

logit(ϕJ
V,t) = α3 + α4n

A
P,t (12)

where the number of adult predators negatively affects juvenile prey survival (predation),

logit(ϕA
P,t) = αϕA

P
(13)

logit(ϕA
V,t) = αϕA

V
(14)

(no density dependence on adult survival)154

log(fP,t) = α5 + α6n
J
V,t (15)

where the number of juvenile prey positively affects predator fecundity, and155

log(fV,t) = α7 + α8n
A
V,t (16)

where the number of adult prey individuals negatively affect prey fecundity (negative intraspecific156

density dependence). Associated results can be found in Supplementary Information Table S1 and157

Figures S5 to S8.158

However, to limit posterior correlation between intercept and slope parameters and improve159

their estimation, we centered the abundances in the density dependent functions. While centering160

is typically done and most efficient on mean values, mean abundances varied here from a simulation161

to the next due to stochasticity. Therefore, intercept parameter values would have to be redefined for162

each simulation to maintain equivalent mean demographic rate values and asymptotic stage specific163

abundance equilibria for all simulation. To avoid these complications, we centered by subtracting164

the corresponding fixed point equilibria estimated in Barraquand & Gimenez (2019) as
∗
nA
P = 21,165

∗
nJ
V = 101 and

∗
nA
V = 152. The new α intercept parameters obey the following centered formulas:166
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logit(ϕJ
P,t) = α1 + α2(n

A
P,t −

∗
nA
P ) (17)

logit(ϕJ
V,t) = α3 + α4(n

A
P,t −

∗
nA
P ) (18)

logit(ϕA
P,t) = αϕA

P
(19)

logit(ϕA
V,t) = αϕA

V
(20)

log(fP,t) = α5 + α6(n
J
V,t −

∗
nJ
V ) (21)

log(fV,t) = α7 + α8(n
A
V,t −

∗
nA
V ). (22)

To maintain equivalent dynamics to parameter set 1 of the 2019 model, we calculated the167

intercepts α1, α3, α5 and α7 as their original values plus the original slope multiplied by the168

estimated fixed point equilibrium of the n responsible for density dependence. For example, we now169

use whenever simulating α3 = 0.5−0.025×21 = −0.025 and α5 = 0+0.004×101 = 0.404 (Table 1).170

In addition, we introduced scenarios with inter-annual random variation in the intercepts of171

density-dependent links, such that172

logit(ϕJ
P,t) = α1 + α2(n

A
P,t −

∗
nA
P ) + σϕJ

P
ϵϕJ

P
(23)

logit(ϕJ
V,t) = α3 + α4(n

A
P,t −

∗
nA
P ) + σϕJ

V
ϵϕJ

V
(24)

logit(ϕA
P,t) = αϕA

P
+ σϕA

P
ϵϕA

P
(25)

logit(ϕA
V,t) = αϕA

V
+ σϕA

V
ϵϕA

P
(26)

with ϵ ∼ N (0, 1) i.i.d. and

log(fP,t) ∼ N (α5 + α6(n
J
V,t −

∗
nJ
V ), σ

2
fP
) (27)

log(fV,t) ∼ N (α7 + α8(n
A
V,t −

∗
nA
V ), σ

2
fV

). (28)

Although mathematically identical, we used a parameterisation of the form µ + ϵσ, ϵ ∼ N (0, σ2)173

(sometimes called non-centered) for survival estimates and a centered parameterisation (N (µ, σ2))174

for fecundity estimates as it was found to be optimal for the mixing of the MCMC chains. As we175

were primarily interested in the ability of multispecies IPMs to estimate species interactions when176

these were in fact absent, inter species density dependence parameter values for α2 and α4 were177
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Table 1: Model parameters with their values. Values of α4 and α6 in the scenarios with true
presence of species interactions are presented in parentheses. Temporal standard deviations (SD)
are only present in the scenarios with random temporal variation. For interpretation, note that αi

and temporal SD parameters are within exponential functions. For instance, α5 = 0.404
corresponds to a mean fecundity of e0.404 ≈ 1.5.

Parameter Value Interpretation

α1 0.29 juvenile predator survival – intercept
α2 -0.01 juvenile predator survival – slope
α3 -0.025 juvenile prey survival – intercept
α4 0 (−0.025) juvenile prey survival – slope – inter species density dependence
α5 0.404 predator fecundity – intercept
α6 0 (0.004) predator fecundity – slope – inter species density dependence
α7 1.24 prey fecundity – intercept
α8 -0.005 prey fecundity – slope
p 0.7 recapture probability

αϕA
P

logit(0.7) adult predator survival – intercept

αϕA
V

logit(0.6) adult prey survival – intercept

σ2
obs 0.1 observation error

σfP 0.1 temporal SD of predator fecundity
σfV 0.1 temporal SD of prey fecundity
σϕJ

P
0.1 temporal SD of juvenile predator survival

σϕA
P

0.1 temporal SD deviation of adult predator survival

σϕJ
V

0.1 temporal SD deviation of juvenile prey survival

σϕA
V

0.1 temporal SD deviation of adult prey survival

either set to zero for the simulations, or at the same value as the 2019 model. Parameter values178

used to simulate data and their interpretation can be found in Table 1.179

2.2.2 Initial values and monitoring setup180

For all simulation scenarios in the main text, we used the initial population size vector



nJ
V,1

nA
V,1

nJ
P,1

nA
P,1


=



100

100

20

20


, a study period of T = 30 years, the yearly number of monitored prey and predator broods/litters181

respectively RV
t = 50 and RP

t = 20, and the yearly number of marked juveniles was 100 for182

both species. Results using the monitoring setups of Barraquand & Gimenez (2019) with either183

100 marked juveniles per species per year for T = 10 years, or 20 marked juveniles per species184

per year for T = 30 years(and the non centered density-dependencies) are also presented in the185
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Supplementary Information B.186

We consider two alternative situations without interspecific interactions: with or without ran-187

dom temporal noise. To compare model performances in the no-interactions setting to cases with188

interspecific interactions, we also simulated and fitted data in presence of species interactions using189

the same αi values as Barraquand & Gimenez (2019) under the four above-mentioned scenarios (i.e.,190

with/without interactions × with/without stochasticity on interactions; see Supplementary Table 2191

and Figures S1 and S3 in addition to main text results). For each of these four combinations of192

parameter sets, we simulated 100 datasets using the Nimble package (de Valpine et al., 2017, 2022,193

version 0.12.2) in R (R Core Team, 2022, version 4.2.1).194

2.3 Priors specification and model fitting195

Multispecies IPMs were implemented in a Bayesian framework, hence the need to specify priors.196

When fitting the models to simulated data, we used N (100, 10) and N (20, 10) priors for the initial197

stage-specific prey and predator population sizes (truncated to be positive). These priors also198

differed from the 2019 model where they were all set to N (25, 10−5).199

Priors for standard deviations were chosen as σ ∼ Exp(1), which corresponds to priors with max-200

imum entropy on the log and logit scales (e.g., McElreath, 2020). Prior probabilities of recapture201

were drawn as p ∼ Unif(0, 1) and vital rate/interaction parameters were given weakly informative202

priors αk ∼ N (0, 1) (k ∈ {1, ..., 8}).203

Data were both simulated and fitted using the Nimble R package (R Core Team, 2022; de204

Valpine et al., 2017, 2022, version 0.12.2). To improve their mixing and minimize their posterior205

correlations, intercepts, slopes and temporal SD were block sampled using automated factor slice206

samplers (Tibbits et al., 2014; Ponisio et al., 2020). For each simulated dataset, we fitted the same207

multispecies IPM that was used to generate the data (e.g., no random temporal noise estimated on208

data without temporal noise), except in that species interactions were estimated even in absence of209

such interactions. Two MCMC chains were run for 60200 iterations and we sampled the last 60000210

iterations every 60th iteration leading to 2000 posterior samples saved per dataset. Real parameter211

values were used as initial values to minimise time to convergence (see Appendix Section C for212

an evaluation of the influence of initial values on parameter estimation). We assess convergence213

and mixing of the chains for all αi by calculating the potential scale reduction factor (R̂, Brooks &214

Gelman 1998; Gelman & Rubin 1992) and effective sample size (neff.)using the ”gelman.diag()” and215

the ”effectiveSize()” functions of the coda package (Plummer et al., 2006, version 0.19-4). We only216
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used outputs from models for which all αi had R̂ < 1.1 and neff. > 50, that is, 100/100 models for217

the scenario without random temporal variation and 94/100 models for the scenario with random218

temporal variation. The computer code is provided at https://github.com/MatthieuPaquet/219

multi_species.220

3 Results221

Overall, estimates of density dependence curves were unbiased, regarding interspecific density de-222

pendence (either absent, Figures 1 and 3, or present, Figures S1 and S3) as well as intraspecific223

density dependence. This was true without and with temporal stochasticity (Figures 1 to 4).224

This absence of bias extends to the alternative data designs with smaller sample sizes considered225

in Barraquand & Gimenez (2019) (shown in Supplementary Information in Figures S5 to S8).226

Estimated αi parameters also did not show sign of bias in any scenario (Table 2 and Table S1).227
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Figure 1: Density-dependencies for juvenile survival rates (A for predator and B for prey) as well
as prey (C) and predator (D) fecundities in the scenario without random time variation. Purple:
simulated relationships, light green: posterior mean relationships for all 100 fitted models, dark
green: average of the posterior mean relationships. True inter species density-dependencies (right
panels) were set to be absent.
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Figure 2: Example of posterior mean (blue-green line) and 95% Credible Intervals (grey polygons)
of density-dependencies for juvenile survival rates (A for predator and B for prey) as well as prey
(C) and predator (D) fecundities estimated by one of the 100 models run in the scenario without
random time variation. Purple lines indicate the simulated (true) relationships. Points represent
estimated mean demographic parameter each year plotted against estimated yearly abundance
values and vertical and horizontal error bars their respective 95% Credible Intervals.
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Figure 3: Density-dependencies for juvenile survival rates (A for predator and B for prey) as well
as prey (C) and predator (D) fecundities in the scenario with random time variation. Purple:
simulated relationships, light green: posterior mean relationships for the 94 fitted models that
appear to converge satisfactorily, dark green: average of the posterior mean relationships. True
inter species density-dependencies (right panels) were set to be absent.
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Figure 4: Example of posterior mean (blue-green line) and 95% Credible Intervals (grey polygons)
of density-dependencies for juvenile survival rates (A for predator and B for prey) as well as prey
(C) and predator (D) fecundities estimated by one of the 100 models run in the scenario with
random time variation. Purple lines indicate the simulated (true) relationships. Points represent
estimated mean demographic parameter each year plotted against estimated yearly abundance
values and vertical and horizontal error bars their respective 95% Credible Intervals.

We did not detect more false positive species interactions than expected by chance when inves-228

tigating the coverage probability of the species interaction parameters at 95% (i.e., the proportion229

of simulations where 95% CrI of estimated parameter includes the true parameter value). In the230

scenario with 100 juveniles marked each year for 30 years and no interspecific density dependence231

nor temporal random variation, this probability was 0.95 for α4 and 0.92 for α6 (cf Table 2, see232

Figure 2 for an example of estimated mean and pointwise 95% CrI density dependent curves).233
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Coverage probabilities were also satisfactory when interspecific interactions were simulated to be234

nonzero (0.94 and 0.93). Species interactions parameters were still estimable with no noticeable235

bias in the presence of random time variation (Figures 3 and 4), in which case the coverage prob-236

abilities of the species interaction parameters α4 and α6 at 95% were 0.99 and 0.98 respectively in237

absence of interspecific interactions (Table 2). In the presence of interspecific interactions, coverage238

values were both 0.96. Moreover, the addition of random time variation did not noticeably alter the239

precision of the species interaction parameters, both in absence and presence of species interactions240

(Figure S3, Table 2).241

Table 2: Summary table of parameter estimates. Value refers to the true values used to simulate
the data and values of the interspecific density dependent parameters are highlighted in bold.
Estimate (95% quantiles) are the mean and the 95% quantiles of the posterior mean estimates.
Coverage 95% is the proportion of 95% Credible Intervals that included the true parameter values.

Scenario Param. Value Estimate (95% quantiles) Coverage 95%

30 years α1 0.29 0.304 (0.166; 0.482) 0.97
100 ind. marked/year α2 -0.01 -0.013 (-0.032; 0.005) 0.95
No temporal noise α3 -0.025 -0.033 (-0.144; 0.083) 0.99

No interspecies DD α4 0 0.001 (-0.017; 0.019) 0.95
α5 0.404 0.413 (0.199; 0.635) 0.93
α6 0 0 (-0.008; 0.007) 0.92
α7 1.24 1.243 (1.198; 1.287) 0.97
α8 -0.005 -0.005 (-0.006; -0.004) 0.96

30 years α1 0.29 0.281 (0.124; 0.428) 0.947
100 ind. marked/year α2 -0.01 -0.013 (-0.038; 0.003) 0.947

Temporal noise α3 -0.025 -0.02 (-0.173; 0.122) 0.947
No interspecies DD α4 0 0.001 (-0.012; 0.017) 0.989

α5 0.404 0.399 (0.236; 0.532) 0.968
α6 0 0 (-0.005; 0.004) 0.979
α7 1.24 1.244 (1.17; 1.319) 0.968
α8 -0.005 -0.005 (-0.007; -0.004) 0.968

30 years α1 0.29 0.282 (0.122; 0.427) 0.97
100 ind. marked/year α2 -0.01 -0.011 (-0.027; 0.004) 0.98
No temporal noise α3 -0.025 -0.019 (-0.156; 0.125) 0.99
Interspecies DD α4 -0.025 -0.026 (-0.042; -0.009) 0.94

α5 0.404 0.395 (0.264; 0.502) 0.94
α6 0.004 0.004 (-0.001; 0.01) 0.93
α7 1.24 1.241 (1.195; 1.281) 0.95
α8 -0.005 -0.005 (-0.006; -0.004) 0.96

30 years α1 0.29 0.29 (0.143; 0.459) 0.967
100 ind. marked/year α2 -0.01 -0.01 (-0.026; 0.007) 0.989

Temporal noise α3 -0.025 -0.014 (-0.176; 0.145) 0.967
Interspecies DD α4 -0.025 -0.025 (-0.041; -0.007) 0.957

α5 0.404 0.403 (0.276; 0.523) 0.957
α6 0.004 0.004 (-0.001; 0.009) 0.957
α7 1.24 1.237 (1.179; 1.311) 0.913
α8 -0.005 -0.005 (-0.008; -0.004) 0.924
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4 Discussion242

Building on the multispecies integrated predator-prey model of Barraquand & Gimenez (2019),243

we investigated here whether multispecies IPMs could output interactions where there are in fact244

none. We did so by modelling functions relating vital rates to stage-specific species densities, whose245

slope parameters are used to model species interactions. We found that when those slopes were246

simulated as zero, the estimates were centered on zero and therefore unbiased. There was also a247

good coverage probability of interaction parameters (close to 0.95 for 95% CrIs). We also found248

that adding temporal variability to these multispecies density-dependent link functions did not249

alter these results. This confirms that multispecies IPMs are a promising way to estimate species250

interactions, and in particular, that they could be used to infer whether two species interact or not251

when such information is missing.252

These results are encouraging, though some readers might find our sample sizes relatively large253

(see Appendix B for slightly lower sample sizes). In a previous version of this work, we inadvertently254

omitted the θA CMR array in the code, which transformed the model into a capture-removal model255

(i.e., individuals were re-captured only once and then removed from the population, as in hunting256

or fishing data). In this configuration, the lower amount of data on survival and detection provided257

proper estimation of all quantities for the main text data design but not those of Appendix B258

for which convergence was not always reached. With live capture-recapture data, all data designs259

(main text and Appendix B) now provide satisfactory convergence and estimation. Moreover, in260

field population studies, additional types of data available are likely to improve the estimation of261

species interactions and we give three examples below. First, when age classes can be determined262

during the count observation process, including such information explicitly in the model (see e.g.,263

Weegman et al., 2016; Paquet et al., 2019) will increase identifiability and/or precision of survival264

parameters and age specific abundances, and therefore will likely improve the estimation of density265

dependence parameters as well. This stage-specific abundance information may also allow, in some266

cases where counts are provided with little error, to remove the observation process, which we267

cannot do in our current model formulation because the observed population size sums adult and268

juvenile densities, and this sum has to arise from a probability distribution (Equations (2) and (3)).269

Second, integrating dead prey recovery data is likely to give extra information on the strength of270

predator-prey interactions. Dead recoveries are classically implemented in capture-mark-recovery271

models (Seber, 1972; North & Morgan, 1979) which in some cases can be combined with CMR272
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data (Barker, 1999) and counts (Reynolds et al., 2009). Since the probability to find a dead prey273

is likely affected by predation rates in the population (e.g., in some systems prey eaten will not be274

recovered, in others dead recoveries may present signs of predation), taking the predation process275

into account in the dead recoveries data-generation mechanism could improve the estimation of the276

strength of predator-prey interactions. Finally, the spatial structure of the data should contain277

additional information that may help to estimate parameters. The extension to spatially explicit278

IPMs (Chandler & Clark, 2014; Zhao, 2020) for interacting populations represents a promising way279

forward for the estimation of species interactions.280

We commented above on the amount of data and possible additional data types. However, the281

efficiency of multispecies IPMs in estimating species interactions may also depend on the parameter282

set, and thus on the ecological features of the populations studied. For example, the parameters283

considered here correspond well to vertebrate predator-prey systems with a stable equilibrium in284

absence of environmental perturbations. Faster life histories, different stage or age structure, and285

multiple factors contributing to altering the quantity of information encapsulated in the various286

data streams may alter the sample sizes required for efficient inferences. When applying these287

models to new systems with different life history parameters and density-dependent structures288

(e.g., predators also eating adult prey), simulated datasets with plausible ecological features for the289

empirical system considered (and similar data designs), will help confirm that parameter values can290

be recovered without bias and with sufficient precision. Tools such as JAGS (Plummer et al., 2003)291

or Nimble (de Valpine et al., 2017) make it particularly handy to both simulate and fit data with292

complex dynamic models.293

Finally, while using the same model to simulate and fit the data is a necessary first step to (i)294

assess the identifiability of model parameters (and assess the amount and type of data needed for295

practical identifiability), (ii) evaluate the coverage of parameter estimates, and (iii) check for bias296

in the estimates that can still occur, notably because of limited sample sizes (Paquet et al., 2021),297

an important next step will be to evaluate the sensitivity of multi-species IPM estimates to model298

mis-specifications (Plard et al., 2021). For example, different functions than the log and logit links299

chosen here may be used to fit or to simulate intra- and inter-specific density-dependencies. Hence,300

we encourage future work to try fitting a broader range of plausible models that differ from the301

model used to simulate the data (or conversely, to simulate from more mechanistic models) in order302

to assess such sensitivity.303
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Figure S1: Density-dependencies for juvenile survival rates (A for predator and B for prey) as
well as prey (C) and predator (D) fecundities in the scenario without random time variation in
presence of true inter species density-dependencies. Purple: simulated relationships, light green:
posterior mean relationships for the 100 fitted models that appear to converge satisfactorily, dark
green: average of the posterior mean relationships.
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Figure S2: Example of posterior mean (blue-green line) and 95% Credible Intervals (grey
polygons) of density-dependencies for juvenile survival rates (A for predator and B for prey) as
well as prey (C) and predator (D) fecundities estimated by one of the 100 models run in the
scenario without random time variation in presence of true inter species density-dependencies.
Purple lines indicate the simulated (true) relationships. Points represent estimated mean
demographic parameter each year plotted against estimated yearly abundance values and vertical
and horizontal error bars their respective 95% Credible Intervals.

25



0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Adult P abundance

Ju
ve

ni
le

 P
 s

ur
vi

va
l

INTRA−DDA

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Adult P abundance

Ju
ve

ni
le

 V
 s

ur
vi

va
l

INTER−DDB

0 50 100 150 200 250

0
2

4
6

8
10

Adult V abundance

V
 fe

cu
nd

ity

C

0 50 100 150 200

0
1

2
3

4
5

 Juv V abundance

P
 fe

cu
nd

ity

D
actual
estimated
mean estimated

With environmental stochasticity

Figure S3: Density-dependencies for juvenile survival rates (A for predator and B for prey) as
well as prey (C) and predator (D) fecundities in the scenario with random time variation in
presence of true inter species density-dependencies. Purple: simulated relationships, light green:
posterior mean relationships for the 92 fitted models that appear to converge satisfactorily, dark
green: average of the posterior mean relationships.
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Figure S4: Example of posterior mean (blue-green line) and 95% Credible Intervals (grey
polygons) of density-dependencies for juvenile survival rates (A for predator and B for prey) as
well as prey (C) and predator (D) fecundities estimated by one of the 100 models run in the
scenario with random time variation in presence of true inter species density-dependencies. Purple
lines indicate the simulated (true) relationships. Points represent estimated mean demographic
parameter each year plotted against estimated yearly abundance values and vertical and
horizontal error bars their respective 95% Credible Intervals.

B Results from the scenarios with 100 juveniles of each species marked each year404

for 10 years, and 20 juveniles of each species marked for 30 years, without405

centering abundances in the link functions406

The results presented below follow the data design of Barraquand & Gimenez (2019).407
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Table S1: Value refers to the true values used to simulate the data and values of the interspecific
density dependent parameters are highlighted in bold. Estimate (95% quantiles) are the mean and
the 95% quantiles of the posterior mean estimates. Coverage 95% is the proportion of 95%
Credible Intervals that included the true parameter values.

Scenario Param. Value Estimate (95% quantiles) Coverage 95%

10 years α1 0.5 0.458 (-0.545; 1.293) 0.98
100 ind. marked/year α2 -0.01 -0.008 (-0.041; 0.031) 0.99
No temporal noise α3 -0.025 -0.045 (-0.78; 0.563) 0.99

α4 0 0.001 (-0.026; 0.033) 0.98
α5 0.404 0.286 (-0.577; 1.098) 0.949
α6 0 0.001 (-0.005; 0.008) 0.96
α7 2 1.998 (1.773; 2.227) 0.98
α8 -0.005 -0.005 (-0.006; -0.004) 0.97

10 years α1 0.5 0.278 (-0.361; 0.874) 0.99
100 ind. marked/year α2 -0.01 -0.001 (-0.028; 0.029) 0.99

Temporal noise α3 -0.025 -0.023 (-0.594; 0.614) 1
α4 0 0 (-0.025; 0.023) 1
α5 0.404 0.323 (-0.379; 0.918) 0.99
α6 0 0.001 (-0.004; 0.006) 1
α7 2 1.911 (1.467; 2.323) 0.948
α8 -0.005 -0.004 (-0.007; -0.002) 0.927

30 years α1 0.5 0.56 (-0.155; 1.278) 0.99
20 ind. marked/year α2 -0.01 -0.013 (-0.045; 0.021) 0.99
No temporal noise α3 -0.025 -0.031 (-0.529; 0.436) 0.97

α4 0 0.001 (-0.024; 0.023) 0.97
α5 0.404 0.329 (-0.305; 1.009) 0.97
α6 0 0.001 (-0.005; 0.006) 0.98
α7 2 2.009 (1.832; 2.194) 0.96
α8 -0.005 -0.005 (-0.006; -0.004) 0.97

30 years α1 0.5 0.527 (-0.275; 1.206) 0.968
20 ind. marked/year α2 -0.01 -0.011 (-0.041; 0.019) 0.968

Temporal noise α3 -0.025 -0.007 (-0.528; 0.533) 0.979
α4 0 0 (-0.02; 0.017) 0.989
α5 0.404 0.316 (-0.191; 0.823) 0.968
α6 0 0.001 (-0.004; 0.004) 0.968
α7 2 1.954 (1.702; 2.247) 0.957
α8 -0.005 -0.005 (-0.006; -0.003) 0.957
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Figure S5: Density-dependencies for juvenile survival rates (A for predator and B for prey) as
well as prey (C) and predator (D) fecundities in the scenario with 100 juveniles per species
marked each year for 10 years without random time variation in absence of true inter species
density-dependencies. Purple: simulated relationships, light green: posterior mean relationships
for the 99 fitted models that appear to converge satisfactorily, dark green: average of the posterior
mean relationships.
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Figure S6: Density-dependencies for juvenile survival rates (A for predator and B for prey) as
well as prey (C) and predator (D) fecundities in the scenario with 100 juveniles per species
marked each year for 10 years with random time variation in absence of true inter species
density-dependencies. Purple: simulated relationships, light green: posterior mean relationships
for the 96 fitted models that appear to converge satisfactorily, dark green: average of the posterior
mean relationships.
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Figure S7: Density-dependencies for juvenile survival rates (A for predator and B for prey) as
well as prey (C) and predator (D) fecundities in the scenario with 20 juveniles per species marked
each year for 30 years without random time variation in absence of true inter species
density-dependencies. Purple: simulated relationships, light green: posterior mean relationships
for the 100 fitted models that appear to converge satisfactorily, dark green: average of the
posterior mean relationships.
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Figure S8: Density-dependencies for juvenile survival rates (A for predator and B for prey) as well
as prey (C) and predator (D) fecundities in the scenario with 20 juveniles per species marked each
year for 30 years with random time variation in absence of true inter species density-dependencies.
Purple: simulated relationships, light green: posterior mean relationships for the 94 fitted models
that appear to converge satisfactorily, dark green: average of the posterior mean relationships.

32



C Sensitivity of parameter estimation to the choice of initial values408

To assess whether the accuracy of the estimation of density dependent parameters was condi-409

tioned by the fact that we used true parameter values as initial values, we also ran the MCMC410

using values that substantially deviated from the true value and expected posterior distributions.411

For this study, we used data (and the corresponding model) without temporal random noise and412

without true interspecific interactions. We chose one simulated dataset for which the true values413

of α2, α4, α6 and α8 fell well within the 95% credible intervals of the posterior samples when414

using the true value as initial value (see script https://github.com/MatthieuPaquet/multi_415

species/blob/main/script_initial_values.R for more details on the procedure). We then416

simulated 100 sets of initial values that deviated from the true values by 4 standard deviations417

estimated from the posterior samples when the true values were used as initial values (hereafter418

SDα̂i
). For the parameters for which negative density dependence was expected, we simulated419

the 100 initial values as αinit
i ∼ N (αi − 4SDα̂i

, SDα̂i
) whereas for α8, which was a potentially420

positive prey → predator link (and would have been assumed positive in an empirical analysis),421

we used αinit
8 ∼ N (α8 + 4SDα̂8 , SDα̂8). We used true parameter values as initial values for all422

other model parameters. Preliminary runs showed that convergence was reached very quickly423

(typically after a couple of iterations) with efficient mixing. We then ran 2 chains for 1200 it-424

erations and discarded the first 200 as burn-in and did not use thinning. For comparison we425

also run 2 MCMC chains once, under the same settings, using the true values as initial val-426

ues (see script https://github.com/MatthieuPaquet/multi_species/blob/main/script_MCMC_427

simulatedinitial_values_out_of_posterior.R). The results showed no sign of influence of the428

initial value chosen on the parameter estimates (Figure S9).429
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Figure S9: Estimation of density dependent parameter values (α2 in panel A, α4 in panel B, α6 in
panel C and α8 in panel D) in relation to the initial values chosen to start the MCMC chains.
Dots show the posterior means and vertical lines the 95% credible intervals. Purple horizontal
lines highlight the value used to simulate the data. Red dots and intervals show the case where
the true values are used as initial values.
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