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Abstract: 

Coral reefs are under threat from disease as climate change alters environmental 

conditions. Rising temperatures exacerbate coral disease, but this relationship is likely 

complex as other factors also influence coral disease prevalence. To better understand 

this relationship, we meta-analytically examined 108 studies for changes in global coral 

disease over time alongside temperature, expressed using average summer sea 

surface temperature (SST) and cumulative heat stress as weekly sea surface 

temperature anomalies (WSSTAs). We found both rising average summer SST and 

WSSTA were associated with global increases in the mean and variability in coral 

disease prevalence. We showed global coral disease prevalence reached 9.92% 

compared to 3.16% in 1992, and the effect of ‘year’ became more stable (i.e., has lower 

variance), contrasting to the effects of the two temperature stressors. Regional patterns 

diverged over time and differed in response to average summer SST. Our model 

predicted that, under the same trajectory, 76.8% of corals would be diseased globally by 

2100, even assuming moderate average summer SST and WSSTA. These results 

highlight the need for urgent action to mitigate coral disease. Mitigating the impact of 

rising ocean temperatures on coral disease alone is a complex challenge requiring 

global discussion and further study.  



Introduction: 

Host-pathogen-environment interactions over time, or “disease dynamics,” are 

now an integral part of understanding ecosystem function in the context of climate 

change (Altizer et al., 2013; Burge et al., 2014; Vega Thurber et al., 2020). Diseases 

can drastically alter the composition and resilience of communities, which has been 

documented across ecosystems (Alvarez-Filip et al., 2022; Anderson et al., 2004; 

Burdon and Zhan, 2020; Burge et al., 2014; Estrada-Saldívar et al., 2020; Harvell et al., 

2019). As increasing temperatures associated with climate change are a major driver of 

disease dynamics (Burge et al., 2014), climate change may expedite changes to 

biological communities by increasing the prevalence or severity of disease outbreaks 

(Aalto et al., 2020; Barris et al., 2018; Jones et al., 2021; Karvonen et al., 2010). For 

example, thermal extremes exert stress upon host immune systems and allow 

pathogens to emerge in new habitats, leading to higher disease rates (Burge and 

Hershberger, 2020; Byers, 2021; Harvell et al., 2007; Shields, 2019). Increasing 

temperatures may also change the timing or frequency of transmission periods, 

exposing vulnerable individuals to pathogens (Altizer et al., 2013). Furthermore, as 

temperature extremes are expected to increase in frequency, the time available for 

recovery after such events will be reduced, potentially contributing to the collapse of 

keystone species (Baker et al., 2008; Burge et al., 2014; Eakin et al., 2010). 

Alternatively, pathogens also have thermal limits which may constrain their capacity to 

survive and reproduce, potentially restricting disease emergence or prevalence (Altizer 

et al., 2013; Byers, 2021). Therefore, understanding and predicting the impact of rising 



temperatures on disease dynamics is a challenging task and requires long-term global 

data on disease prevalence. 

The sensitivity of different organisms to temperature-driven changes in disease 

dynamics can also depend on the type of ecosystem considered. Coral reefs are 

particularly sensitive to changes in sea surface temperature (SST), as shown by their 

susceptibility to bleaching (Glynn and D’Croz, 1990) and temperature-driven disease 

incidence (e.g., Walton et al., 2018; Bruno et al., 2007; Tracy et al., 2019; Randazzo-

Eisemann et al., 2022; Howells et al., 2020). However, despite predictive models 

suggesting an upward trend in coral disease prevalence (e.g., Maynard et al., 2015; 

Walton et al., 2018), pathogen thermal limits and other factors may constrain coral 

disease increases (Altizer et al., 2013; Byers, 2021). Additionally, temperature 

fluctuations, such as heatwave events, experienced throughout life (i.e., a coral’s 

“thermal life history”) contribute to increasing the range of temperatures corals can 

tolerate, thus enhancing the ability to resist disease (Palumbi et al., 2014; Randall et al., 

2014; Thomas et al., 2018; Ward et al., 2007). Therefore, thermal impacts on coral 

disease dynamics are highly complex.  

Extrinsic and intrinsic factors other than temperature can also alter coral disease 

dynamics. For example, human activity (e.g., commercial overexploitation of marine 

ecosystems), water flow, and pollution have all been shown to influence coral disease 

(Lamb et al., 2014; Page et al., 2019; van de Water et al., 2015). Reef ecosystems with 

lower coral cover have displayed lower levels of disease prevalence, which is likely 

driven by limited pathogen transfer between such disparate individuals (Bruno et al., 

2007; Caldwell et al., 2018; Dobbelaere et al., 2020; Zvuloni et al., 2015). Coral species 



with relatively slower population turnover rates exhibit higher levels of disease (Yakob 

and Mumby, 2011), hinting that species with a higher individual replacement rate may 

be less susceptible to disease. Concurrently, some coral populations appear more 

resistant to disease (Mydlarz et al., 2010), potentially due to differences in coral species 

assemblages, life histories, and environments (e.g., González‐Barrios et al., 2021; 

Williams et al., 2021; Williamson et al., 2022). Therefore, there are likely to be regional 

differences in coral populations. Finally, the assessment of thermally-driven coral 

disease dynamics becomes even more complex over long time periods as the extrinsic 

human-induced factors are likely to concurrently increase over time (e.g., Lamb et al., 

2014; Randazzo-Eisemann et al., 2022; Renzi et al., 2022; van de Water et al., 2015). 

Progressing deterioration of coral communities and their key significance to 

marine life call for an urgent assessment of the expected magnitude and spatio-

temporal trends of climate change-driven disease prevalence in corals. To do this, we 

conducted a global meta-analysis of disease prevalence over time in stony corals. We 

quantified the magnitude of the increase in coral disease prevalence over the last 40 

years to determine the extent to which increases in average sea surface temperature 

(SST) and cumulative heat stress (as Weekly Sea Surface Temperature Anomaly - 

WSSTA) correlate with coral disease prevalence. Additionally, we determined how 

prevalence is likely to change independently of local rising temperatures – i.e., if factors 

other than temperature contribute to coral disease prevalence. Finally, we examined the 

global distribution of coral diseases to identify if regional characteristics account for 

some of the variations in coral disease prevalence of each ocean basin. This study 

marks the first compilation and analysis of coral disease surveys alongside SST records 



on a global scale to better understand how climate change continues to impact coral 

reef ecosystems. While coral reefs remain complex and diverse systems, deepening our 

understanding of global projections of coral disease dynamics will assist in developing 

effective conservation efforts with the intent of slowing or preventing the rise in coral 

diseases and maintaining the health and stability of these ecological and economical 

assets. 

Methods: 

Reporting Guideline 

 We reported our study following PRISMA EcoEvo guidelines (O’Dea et al., 2021). 

Our PRISMA diagram of literature search and screening (Figure S1), as well as our 

PRISMA EcoEvo checklist, are available as Supplementary Materials. We also followed 

a systematic review method for literature search and selection, including piloting, 

benchmarking, and error checking (Foo et al., 2021). 

Literature Search and Screening 

 We conducted a literature search in Scopus and Web of Science Core Collection 

in July 2020 using the piloted search string (Table S1). Our search string contained 

terms related to stony corals, disease, and climate change-induced temperature 

change. We tested the sensitivity of our search strategy against a set of 13 benchmark 

papers (Table S2). Besides searching the databases, we used two key reviews of the 

coral disease research (Montilla et al., 2019; Sokolow, 2009) to perform additional 

backward and forward reference searches. We used Rayyan (Ouzzani et al., 2016) to 

screen all 3,689 bibliographic records. 



 We screened the literature collection in two stages: abstract screening and full-

text screening. At both stages, we used pre-piloted decision trees (Figure S2, S3) 

representing our selection criteria described below. Two reviewers (SB, PP) 

independently screened 150 randomly selected records to test the decision trees, 

yielding a 93% agreement rate between reviewers for abstract screening and 100% for 

the full-text screening stage. One reviewer (SB) then screened all remaining records. 

This process resulted in 158 papers selected for data extraction (Table S3). After 

filtering and cleaning, our final dataset encompassed 108 papers for meta-analysis. 

Papers excluded during the full-text screening stage can be found in Table S4. 

Selection Criteria 

 We included studies based on six criteria. First, studies needed to have provided 

in situ empirical benthic survey data of coral disease, as surveys are a common method 

used for identifying coral and reef conditions. Second, surveys must have been on a 

natural reef (i.e., studied reefs were subject to natural environmental conditions). Third, 

surveys must have examined stony corals. Fourth, studies must have reported coral 

disease prevalence and relevant descriptive statistics (e.g., average or median of % 

prevalence) and sample size (number of assessed sample plots) for calculating effect 

sizes. Fifth, studies must have reported the year the survey was conducted. Sixth, 

studies must have been available in English (see more on this criterion in Discussion). 

 For consistency, we excluded studies that did not use transects, quadrats, or 

circle plots as the benthic survey collection method during data extraction (i.e., we 

excluded papers that used timed swims, etc., to survey reefs). We excluded these 

survey methods as quantifying the benthic area examined was unreliable or not 



possible to decipher from the paper, and study area was necessary for weighing each 

effect size (i.e., for conducting a weighted/formal meta-analysis). 

 Our second criterion excluded papers that examined corals from nurseries, 

laboratories, or other non-wild populations. However, we included studies conducted on 

corals from restoration efforts because these reefs do not differ from wild reefs in their 

exposure to environmental stressors (Afiq-Rosli et al., 2017; Monty et al., 2006; 

Rinkevich, 2014). In contrast, nurseries or other coral-growing facilities are generally 

protected from predators and other stressors, which could influence disease prevalence 

(Casey et al., 2014). Additionally, some reefs exist solely because of restoration efforts, 

such as the Acropora cervicornis populations in the Florida Keys (Miller et al., 2014), 

and excluding these would limit data coverage.  

 For the third criterion, we classified stony corals as reef-building corals with hard, 

calcareous skeletons. We focused specifically on stony corals for their ecological 

importance as habitat builders. Stony corals are also vital to coastal communities as 

they support both local economy and shore protection (Cesar and van Beukering, 

2004). This criterion excluded papers which solely examined soft corals such as 

Alcyonacea since these corals differ from stony corals in which diseases they can 

acquire (Willis et al., 2004).  

Included studies needed to have reported disease prevalence values as a 

percentage (or proportion), as per the fourth criterion. We define disease prevalence 

following Rogers (2010). Briefly, disease is typically associated with bacterial infection, 

discoloration of the tissue, and/or tissue loss. Discoloration and/or loss of tissue are the 

main identifiable signs used as evidence of disease presence in stony corals (Aeby et 



al., 2011; Raymundo et al., 2008; Rogers, 2010; Work and Aeby, 2011) and are used 

across the literature within benthic surveys to report coral disease prevalence. Thus, we 

used visual identification of disease signs as the primary reported method for identifying 

disease prevalence. Disease prevalence is a community-level metric, usually presented 

as the percentage/proportion of the coral community that displays symptoms (Rogers, 

2010). Studies typically report overall disease prevalence across all stony coral taxa in 

the community, prevalence within the dominant taxa, and/or prevalence within the 

disease-impacted taxa on the reef. Prevalence differs from disease severity which 

measures disease progression rate within infected individuals (Rogers, 2010). While 

severity is an important metric for understanding how diseases will change with climate 

change, we did not examine it in this study and instead focus solely on prevalence as 

we found few studies consistently reporting severity during our pilot literature search. 

We also excluded measurements reported as “bleaching” to disentangle colony-wide 

coral bleaching from coral disease signs (Rogers, 2010). When corals bleach, they eject 

their symbiotic zooxanthellae which does not meet our definition of disease.  

Our fifth criterion required included papers to report the year(s) in which coral 

reef surveys were conducted. It was necessary for disease prevalence to be reported 

per year, even if the study examined a reef over many years. If multiple years were 

included in one prevalence metric, we determined that the effects of temperature would 

not be properly attributed to the prevalence observed. In cases where multiple years 

were conflated in one prevalence metric or the year was missing altogether, the paper 

was excluded. 



Data Extraction and Coding 

 We used the proportion of disease prevalence as the effect size in this study. We 

incorporated the sampling error of this effect size through the sample area size, which 

we calculated using the number of sample plots and the area of each plot. We extracted 

the disease prevalence percentage, plot sample size (number of plots), and area of 

sample plots from the main text, tables, figures, or supplementary materials of the 

included literature. When prevalence was reported in a figure, we used the R (version 

4.1.3; R Core Team, 2021; RStudio Team, 2021) package, metaDigitise (version 1.0.1; 

Pick et al., 2018), to digitally extract and estimate values from a screenshot of the 

figure. The lead author (SB) extracted all effect sizes and moderators, some of which 

were checked and assisted by the other authors (ML, PP, SD, and SN).  

In addition to our effect size statistic (% prevalence) and its weighting variable 

(sampling area), we collected data (i.e., moderators) in two different ways. Firstly, we 

directly gathered five variables from the included articles: 1) survey year (if conducted in 

the transition into a new year – e.g., the survey began in December and ended in 

January – we presented data as data collected in separate years – i.e., the prevalence 

of December and January separately - if able to do so; otherwise, we only utilized the 

year in which the survey started), 2) survey month(s), 3) the number of diseases 

identified during the survey encompassed in each effect size, 4) survey method (i.e., 

what type of transect/sample plot was used to map out a survey area), and 5) survey 

location (latitude and longitude; if not reported in the article, coordinates were estimated 

in Google Maps based on information provided in the papers such as figures/maps).  



Secondly, we obtained three more variables using three types of external 

sources. These three variables are: i) survey region (based on Hoegh-Guldberg et al., 

2017 and Kleypas et al., 2008), ii) average summertime sea surface temperature (SST) 

in the summer prior to sampling in °C, and iii) the weekly sea surface temperature 

anomaly (WSSTA) measure for the sampling period in °C-weeks. The last two were 

calculated from SST databases available online, which are detailed below.  

Survey locations were initially classified into ten regional locations (East Pacific, 

Caribbean/Atlantic, West Indian, Central Indian, Middle East, Southeast Asia, Australia, 

Melanesia, Micronesia, and Polynesia) based on Kleypas et al. (2008) and six regional 

locations (Western Pacific, Eastern Pacific, Caribbean & Gulf of Mexico, Western Indian 

Ocean, Eastern Indian Ocean, and Coral Triangle & Southeast Asia) based on Hoegh-

Guldberg et al. (2017). However, due to small sample sizes in some locations, we 

aggregated study locations during data analysis into three ocean basins: Atlantic, 

Pacific, and Indian.  

To analyze the effect of temperature on coral disease, we used two measures of 

temperature relevant to coral disease – SST and WSSTA (e.g., Bruno et al., 2007; 

Randall and Van Woesik, 2017). We used the average SST of the summer prior to 

sampling to investigate the influence of local average temperature change on disease 

prevalence. WSSTA measures the cumulative effect of anomalously high temperatures 

over a 52-week period and is thus used for identifying the influence of persisting 

anomalously high temperatures on disease prevalence (Bruno et al., 2007). While other 

metrics have been used to investigate heat stress on corals (e.g., degree heating week, 

hot snap, and cold snap – all usually reported with fine, i.e., day-to-day, resolution), 



WSSTA better corresponds to the yearly resolution of the extracted disease prevalence 

data. We also wanted to examine the global change in coral disease prevalence as a 

whole (i.e., not specific to any one disease), and metrics such as hot snap and cold 

snap require a finer geographical scale. They are also disease-specific as some 

diseases may be influenced by decreasing temperatures as opposed to increasing 

(Caldwell et al., 2016). Neither of these temperature metrics correlate significantly with 

Year, suggesting these represent the impact of local temperature stress (Figure S4) and 

that global climate warming is still closely tied within the Year metric. 

These two measures (average summer SST and WSSTA) were each obtained 

using different databases. We utilized a database from the National Oceanic and 

Atmospheric Administration Physical Sciences Laboratory online collection of gridded 

climate datasets to calculate average SST metrics during the summer months of the 

sampling year (Hirahara et al., 2014). We selected the COBE-SST2 dataset which 

included monthly SST means from January 1850 to December 2019 on a 1.0-degree 

latitude x 1.0-degree longitude global grid. Calculation of WSSTA was based on a 

database accessed through the Copernicus Climate Change Service (Lopez, 2019). We 

selected the “Sea surface temperature daily data from 1981 to present derived from 

satellite observations” dataset, compiled by The European Space Agency and Sea 

Surface Temperature Climate Change Initiative, which included daily SST 

measurements from January 1981 to the present day on a 0.05-degree latitude x 0.05-

degree longitude global grid, for its long history and high-resolution (Lopez, 2019). The 

higher resolution enabled us to more accurately calculate the cumulative heat stress 

that forms the WSSTA measure. 



Average summer SST included average temperatures from June, July, and 

August for northern hemisphere surveys and December, January, and February for 

southern hemisphere surveys. Our decision to use temperature data from the summer 

prior to the sampling period stemmed from the evidence that a time lag occurs between 

anomalously high temperatures and visual signs of disease emergence (Caldwell et al., 

2020; Heron et al., 2010; Maynard et al., 2011; Rudolf and Antonovics, 2005). If the 

year of sampling was used to calculate average SST, there would be concern that these 

temperatures would not truly correlate with the sampled disease if a time lag does 

occur. 

WSSTA was calculated as the sum of positive deviations in weekly temperature 

averages from a threshold temperature over the 52-week period prior to disease 

surveys (Bruno et al., 2007). We set this threshold as 1°C greater than the maximum 

average monthly temperature in the 1981-1992 period (this period is commonly referred 

to in thermal stress calculations as “long-term climatology;” Figure S5). 1°C warmer 

than “long-term climatology” is the temperature at which corals start to experience 

thermal stress (Glynn and D’Croz, 1990). These thermal stress temperatures above the 

threshold during a 52-week window are summed together to produce the WSSTA value 

in units of “°C-weeks” representing the accumulation of weekly heat stress in the 

previous year-to-date period (Skirving et al., 2020).  

We visually detail the data extraction and coding process in Figure S6 in 

Supplementary Materials. A list of extracted variables including additional variables, 

which we did not use in our analyses, and their descriptions are available in Table S5.  



Statistical Analysis 

We analyzed disease prevalence (proportion) weighted by the natural logarithm 

of sampling area (m2), using a Bayesian zero-inflated generalized linear mixed-effects 

model (GLMM) with the beta-distribution family and without assuming homoscedasticity 

(i.e., explicitly modeling heteroscedasticity). This model was implemented in the R 

package brms (version 2.17.0; Bürkner, 2018, 2017). The beta distribution allowed us to 

model proportion data without underlying count data, and the zero-inflated distribution 

dealt with the presence of zeros, which cannot be formally modeled under a beta-family 

GLMM. This GLMM used a logit link function for the main (beta distribution, denoted as 

“mu”) and zero-inflated (Bernoulli distribution, denoted as “zi”) parts while the log link 

function was used to model the precision (log-normal distribution, denoted as “phi”), 

which represents the degree of heteroscedasticity. 

Our GLMM included the following five fixed effects: 1) weekly sea surface 

temperature anomaly (WSSTA), 2) average summer sea surface temperature (SST), 3) 

year at the start of the survey, 4) ocean (i.e., Pacific, Atlantic, and Indian), and 5) the 

number of diseases identified. All the continuous variables were scaled for 

interpretability (Schielzeth, 2010). The model also had the following four random effects: 

i) site identity (unique locations; 199 levels), ii) paper identity (108 levels), iii) season at 

the start of the survey, adjusted for hemisphere (4 levels), and iv) method of data 

collection (i.e., belt transects, quadrats, belt and quadrat, circle plots, and line transects; 

5 levels). The first two random effects deal with non-independence among effect sizes. 

This GLMM also incorporated the correction for zero-inflation (zi) and precision (phi) 



described above which were modelled using the three key predictors: WSSTA, SST, 

and Year. This GLMM constituted our base model.  

From this model, we created seven more models by adding interactions between 

the three continuous variables (WSSTA, SST, and Year) and the categorical variable, 

Ocean (i.e., WSSTA*Ocean, SST*Ocean, and Year*Ocean; single interaction, pairs of 

interactions, or all interactions). These models were compared using elpd (expected log 

point-wise predicted density) with the loo_compare function in the loo package (version 

2.5.1; Vehtari et al., 2020; Table S6). Regional differences were compared using 

pairwise estimates with each ocean basin. All the models were run with the default prior, 

iteration = 30,000, and warm-up = 28,000 with two chains, which gave us an effective 

posterior sample size over 4,000 for all the parameters. We considered regression 

coefficients statistically significant if 95% credible intervals did not overlap with zero.  

Since magnitude cannot be identified when relationships are non-linear, we 

examined if the rates of change in disease prevalence were significantly different 

between the maxima and minima (i.e., the extreme values) for each predictor that had a 

non-linear relationship with coral disease prevalence. We conducted this comparison 

using the emtrends function of the emmeans package (version 1.7.3; Lenth, 2022). 

Predictions using our model are further complicated by the fact that the year effect will 

inevitably contain the effects of the global trend in rising temperatures. Therefore, it is 

impossible to separate the time trend from the global warming trend completely. Our 

predictions into the future should always be seen as projecting the prevalence along the 

current (a linear “business-as-usual") global warming trajectory. In this context, the 



average SST predictor should be seen as the finer and more local effect of 

temperatures captured at a smaller spatial scale. 

 

Results: 

Characteristics of Disease Surveys and Literature 

Our dataset comprised 108 papers which yielded 918 effect sizes. A visual 

summary of the literature screening is presented as a PRISMA diagram (Figure S1). 

Included papers are listed in Table S3. Excluded papers from full-text screening are 

listed in Table S4. Our data included coral surveys conducted between 1992 and 2018. 

About half of the data collected was surveyed in the Atlantic Ocean (50.5% of effect 

sizes), with fewer surveys from the Pacific Ocean (35.1%) and Indian Ocean (14.4%) 

(Figure 1A). Most surveys began during summer months: 48.1% of effect sizes in the 

northern hemisphere, and 38.7% in the southern hemisphere (Figure 1B). The most 

surveyed disease was White Syndrome (30.4%), followed closely by Black Band 

Disease (30.0%) and Yellow Band Disease (22.3%) (Table S7). Many studies reported 

disease prevalence per disease identified (78.5%), but some papers did not split 

disease prevalence into measures of a single disease and present an aggregated 

disease prevalence for all diseases identified (21.5%, Figure 1C). For information 

regarding the coral species examined and effect size distribution for each fixed factor, 

see supplementary information (Figure S7, Supplementary Materials). 

The Effect of Average Summer Sea Surface Temperature (SST) 



In our base model without interactions with Ocean (i.e., region), a rise in average 

summer SST predicted a non-linear increase in coral disease prevalence (Figure 2A-B). 

The rates of increase were significantly different between the two extreme measured 

temperatures, 25oC and 32oC (b[25oC - 32oC] = 0.03; 95% credible interval, CI =  0.009 to 

0.05; Figure 2C; Figure S8A). Our base (no interaction) model showed that this increase 

consisted of three parts: 1) a significant increase in non-zero (beta distributed – mu) 

disease prevalence observations (b[SST] = 0.28, 95% CI = 0.21 to 0.35; Figure 3A), 2) a 

significant, but weaker, increase in zero disease prevalence observations (i.e., more 

instances of coral observed without any signs of disease – zi; b = 0.13, 95% CI = 0.08 

to 0.19; Figure 3B), and 3) a significant decrease in precision for disease prevalence 

(i.e., disease prevalence became less predictable as SST increased – phi; b = -0.25, 

95% CI = -0.27 to -0.22; Figure 3C).  

The Effect of Weekly Sea Surface Temperature Anomaly (WSSTA) 

Our base model showed that increasing WSSTA predicted a non-linear increase 

in disease prevalence (Figure 2D,E) with the rates of increase significantly different 

between the two extreme WSSTA values, 0.4oC-weeks and 4.3oC-weeks (b[0.4oC-weeks - 

4.3oC-weeks] = 0.002; 95% credible interval, CI = 0.001 to 0.004; Figure 2F, Figure S8B). In 

the base model, this increase consisted of three parts: 1) a significant increase in non-

zero disease prevalence observations (b = 0.2, 95% CI = 0.16 to 0.23; Figure 3D), 2) a 

significant decrease in zero disease prevalence observations (i.e., fewer instances of 

coral observed without any signs of disease; b = -0.17, 95% CI = -0.24 to -0.11; Figure 

3E), and 3) a significant decrease in precision for disease prevalence (i.e., disease 



prevalence became less predictable as WSSTAs increased; b = -0.24, 95% CI = -0.26 

to -0.22; Figure 3F). 

Trends Over Year 

In our base model, over the period of 1992 and 2018, coral disease prevalence 

increased non-linearly (Figure 2G,H) with the rates of increase significantly different 

between 1992 and 2018 (b[1992 - 2018] = 0.02; 95% CI = 0.004 to 0.03; Figure 2I, Figure 

S8C). This increase was accompanied by: 1) a significant increase in non-zero disease 

prevalence observations (b = 0.25, 95% CI = 0.19 to 0.31; Figure 3G), 2) a non-

significant decrease in zero disease prevalence observations (b = -0.03, 95% CI = -0.08 

to 0.02; Figure 3H), and 3) a significant increase in precision for disease prevalence 

(i.e., disease prevalence became more stable or predictable over time; b = 0.31, 95% CI 

= 0.28 to 0.34; Figure 3I). When predicting future estimates of coral disease, the year 

model predicted 76.8% disease prevalence (95% CI = 53.2% – 92.9%), given average 

summer SST and WSSTA remain at their means (28.6oC and 2.08oC-weeks, 

respectively). 

Regional Differences 

To test for regional differences, we conducted model selection among models 

that included interactions between the three oceans (Ocean: Pacific, Atlantic, Indian) 

and our three key predictors (average summer sea surface temperature – SST, weekly 

sea surface temperature anomaly – WSSTA, and Year). The best fitting interaction 

model contained interactions between Ocean and average summer SST, and Ocean 

and Year (Table S6). In this model, the difference between the slopes of these three 

oceans for average summer SST were significant for Atlantic-Pacific and Indian-Pacific 



interactions (b[Atlantic-Pacific] = 0.25; 95% CI = 0.05 to 0.43; b[Indian-Pacific] = 0.3; 95% CI = 

0.02 to 0.56; Figure S9A), but differences were non-significant for the Atlantic-Indian 

interaction (b[Atlantic-Indian] = -0.05; 95% CI = -0.28 to 0.16; Figure S9A). The difference 

between slopes among these three oceans for Year were also significantly different for 

the Indian-Pacific and Atlantic-Pacific interactions (b[Indian-Pacific] = -0.62; 95% CI = -1.11 

to -0.14; b[Atlantic-Pacific] = -0.24; 95% CI = -0.49 to -0.02; Figure S9B) and were non-

significant for the Atlantic-Indian interaction (b[Atlantic-Indian] = 0.38; 95% CI = -0.06 to 0.82; 

Figure S9B). Yet, the three regions showed similar patterns in disease prevalence in 

relation to the three predictors (average summer SST, WSSTA, and year), except for 

the disease prevalence observed through time in the Indian Ocean (Figure 4).  

 

Discussion 

We conducted the first-ever global meta-analysis to quantify long-term trends in 

the magnitude of coral disease prevalence and determine the extent to which sea 

surface temperature (SST) or other factors influence coral disease prevalence. Average 

summer SST, Weekly Sea Surface Temperature Anomaly (WSSTA), and Year all 

significantly positively correlated with coral disease prevalence. We also newly 

discovered that these variables significantly influenced the predictability of disease 

prevalence (Figure 3). In addition, the Pacific Ocean significantly differed from the 

Atlantic and Indian Oceans regarding the effects of average summer SST and Year, 

although the directional patterns were consistent across different regions, with one 

exception (Indian Ocean disease prevalence showed a non-significant declining trend 



with Year; Figure 4). Below, we discuss the three key moderators (average summer 

SST, WSSTA, and Year) in turn and further elucidate the regional differences. 

Seemingly contradictory effects of average summer SST 

We found that coral disease prevalence increased with rising average summer 

SST (Figure 2, Figure 5A). Such a pattern was to be expected, as numerous studies 

have supported this trend (e.g., Bruno et al., 2007; Hazraty-Kari et al., 2021; Howells et 

al., 2020; Walton et al., 2018). In fact, when isolating the effect of these rising local 

summer temperatures, we expect coral disease to more than double by 2100 (19.6%, 

95% CI = 5.5% – 41.1%; compared to 2018: 9.92%, CI = 2.08% – 24.5%). However, the 

prevalence of apparently healthy corals (no observed disease; zero-inflated component 

of the model; Figure 3) also increased with increasing average summer SST. This rise 

in healthy corals with increased SST directly contradicts previous literature (e.g., Walton 

et al., 2018).  

There were hundreds, if not thousands, of coral species included in our global 

meta-analysis. Each species may react to changes in average summer SST differently, 

which might account for an increase in zero-disease (i.e., ‘healthy’) observations. While 

such observations do not negate the prediction of the overall increase in coral disease 

with rising summer SSTs, it is important to consider the different responses and 

resistance capacities to thermal stress among coral species (Drury, 2020; Guest et al., 

2012; McClanahan et al., 2020). For example, reefs in the Persian-Arabian Gulf 

experience high temperatures and larger temperature variability (Camp et al., 2018). As 

the reefs in the Persian-Arabian Gulf are younger, they are hypothesized to be more 

able to withstand the current extremes of their environment (Camp et al., 2018). 



Through these varied responses to thermal stress, these coral species may dominate 

the observations of zero disease prevalence in future surveys. 

We further found greater variability in disease prevalence with increasing 

average summer SST (Figure 3, Figure 5B). Such an increase in variability has never 

been formerly reported before, yet this can be explained by varying responses by 

different coral species, as with the rise in disease-free corals observed. In addition, 

coral reefs are complex habitats, and there is substantial variation in bleaching and heat 

stress responses that occur within and between reefs during bleaching events 

(Ainsworth et al., 2021; Fordyce et al., 2021; Page et al., 2019). A rise in disease 

prevalence variation with increasing average summer SST indicates that it will be more 

difficult to predict disease prevalence as average summer SST rises. As a result, we 

may underestimate the severity of rising local SST on coral disease and fail to act within 

the available timeframe to conserve coral reefs. 

The harmful effects of heat stress (WSSTA) 

Our model suggested that as WSSTA (i.e., annually accumulated heat stress) 

increases, disease prevalence increases and the fraction of corals observed without 

disease symptoms decreases (Figure 3E). Therefore, increasing WSSTA was 

associated with higher rates of disease overall, which indicates heat stress is likely 

linked with coral disease. This is consistent with a study conducted by Bruno et al., 

(2007) where they found that annually accumulated heat stress was significantly 

correlated with an increase in white syndrome. However, Bruno et. al. (2007) noted that 

high coral cover influenced disease prevalence associated with WSSTA. While we were 

unable to determine coral cover across all effect sizes, since we also found WSSTA 



correlates with high coral disease, our data was most likely collected using densely 

populated samples.  

The identified increase in coral disease prevalence with WSSTA in the current 

study is consistent with previous studies of coral disease and heat stress (Aeby et al., 

2021; Eakin et al., 2010). As coral disease appears highly correlated to accumulated 

heat stress, without mitigation, it is likely that high disease prevalence will yield greater 

coral mortality. We also found disease prevalence becomes more variable (i.e., 

precision decreased; Figure 3F, Figure 5). The increasing variability of disease 

occurrence with rising WSSTA, as with average summer SST, highlights once again the 

difficulty in predicting disease prevalence. 

Coral disease through time  

We predicted that coral disease prevalence will increase in future years (Figure 

2) with consistently most corals bearing visible symptoms of disease (Figure 3I). By 

2100, our model predicts 76.8% of corals in reefs will be infected globally (95% CI = 

53.2% – 92.9%), provided that WSSTA and average summer SST do not exceed their 

averages (2.08oC-weeks and 28.6oC, respectively). This prediction represents the IPCC 

“business as usual” RCP 8.5 climate projection (IPCC, 2022; Riahi et al., 2011). As local 

temperature stressors (i.e., WSSTA and average summer SST) increase, we expect 

even greater disease prevalence in reefs. For example, if average summer SST 

reaches 32.0oC, we predict 80.5% (95% CI = 64.4% – 92.4%) disease in 2100 (Logan 

et al., 2014). 

Our model predicted a consistent increase in coral disease occurrence even after 

accounting for the detrimental effects of rising temperatures in the form of WSSTA and 



average summer SST (Figure 3, Figure 5). In particular, predictions of later years at the 

mean temperature conditions yield a greater change in coral disease prevalence than 

predictions in the same year at higher temperature conditions. This latter prediction 

clearly reflects that additional factors, other than the two thermal conditions we 

examined, are at play in driving coral disease worldwide. Although we could not account 

for all additional factors explicitly in our models due to data gaps and the heterogenous 

nature of reporting other potentially important variables, the year effect provides a rough 

proxy of their combined effect as these factors are expected to increase with time. 

Some of the most commonly examined factors, apart from thermal factors, include 

ocean acidification (Prada et al., 2017), pollution (Redding et al., 2013), and 

anthropogenic damage due to, e.g., intrusive tourism practices (Lamb et al., 2014). Our 

synthesis clearly emphasizes a need for more disclosure of accompanying stressor 

variables and calls for the standardization of disease prevalence and stressor reporting. 

Future studies should strive to scrutinize these stressors such that specific influences 

can be identified and mitigated. 

Differences and similarities among the oceans 

Overall directional patterns of coral diseases across the three oceans were 

largely similar concerning the three variables: average summer SST, WSSTA, and Year 

(Figure 4), except for the correlation between coral disease and year in the Indian 

Ocean. This consistency is most likely because temperature rises have occurred 

globally with all oceans intaking heat-increasing radiation (Cheng et al., 2019). 

However, year and average summer SST, rather than thermal stress (WSSTA), are the 

variables that seem to be driving regional differences (Figure 4). While all oceans can 



expect an increase in disease prevalence concerning rising summer SST, the Pacific 

Ocean is predicted to experience the slowest and steadiest increase in disease 

prevalence (Figure 4C). In contrast, the Pacific Ocean is predicted to experience a more 

severe increase in disease prevalence than the Indian or Atlantic Oceans, 

independently from the two temperature-related conditions (Figure 4H,I). 

Several factors may underlie these regional differences in the effect of our three 

moderators on coral disease prevalence. Within each region, coral species are found in 

varying abundances and diversity. Coral species differ in heat tolerance ranges (e.g., 

Hoegh-Guldberg O. et al., 2007) and in symbionts that could aid in thermal tolerance 

(Santoro et al., 2021). As stress induced by factors other than temperature (e.g., 

acidification, pollutants) can lower immune response (Harvell et al., 2007), differences in 

stress resistance may contribute to observed differences in disease dynamics between 

oceans. Additionally, the stressors themselves are heterogeneous spatially, as many of 

these stressors (e.g., pollutants, overfishing, tourism) are anthropogenic (Vega Thurber 

et al., 2020). The predicted rise in coral disease in the Pacific Ocean over time 

(independently from temperature) suggests that factors unrelated to temperature, such 

as tourism and acidification, most likely heavily influence coral disease in this region. 

Limitations and recommendations 

Our analysis represents the first systematic synthesis of global coral disease 

data. Firstly, the available global datasets for coral disease are sparse, both temporally 

and geographically (i.e., the data is highly concentrated to particular reefs, especially in 

the Caribbean area of the Atlantic Ocean), potentially creating biased predictions for 

certain years and locations. Second, we focused solely on publications in English due to 



logistic limitations. While our literature sample size is large, assessing more regions 

(given coral reefs are in developing nations) and including as many languages as 

possible in future reviews would aid in accurately describing the state of knowledge and 

incorporate a more global representation of data. Other languages make up 35% of 

literature in similar fields (Amano et al., 2016) and recent reports suggest non-English 

literature does augment environmental data in a non-negligible way (Amano et al., 

2022; Pottier et al., 2022). Moreover, we also excluded grey literature, such as 

government reports. However, the inclusion of grey literature can create potential bias in 

the data from the lack of rigorous assessment of research quality (Bostrom-Einarsson et 

al., 2020). As such, this seeming limitation may have improved the quality of data 

synthesized in our study, which can be tested in future analyses. 

Our synthesis has revealed four improvements that future primary studies could 

adopt to increase the relevance, visibility, and comparability of their data. Firstly, 

comparative studies would benefit from the complete adoption of standardized 

methodologies. Belt transects are the most common collection method within the 

literature of the past four decades (Teague et al., 2022). Second, prevalence reported 

per disease will also aid in data comparison, as most diseases are visually distinct and 

known to be linked to different drivers (e.g., water pollution and black band disease, 

heat stress and white syndrome; Teague et al., 2022; Weil and Rogers, 2011; Willis et 

al., 2004). Third, reporting the abundance of corals per site alongside disease 

percentages would allow researchers to better conduct meta-analyses, as it is 

necessary to distinguish between data collected from a reef with many individuals (i.e., 

high live cover) and a reef with few individuals (i.e., poor cover; Jameson et al., 2001). 



Fourth, there is a need for more research across a greater range of locations to ensure 

a more geographically robust understanding of coral disease. The Caribbean is highly 

studied as it was impacted by disease during the past four decades and has a high 

research presence in the region (Morais et al., 2022), whereas little data exists for many 

Indian Ocean reefs. We expect these improvements to enable better comparisons for 

systematic reviews to understand global trends and drivers of coral disease. 

In conclusion, as coral disease is expected to rise in future years (76.8% of 

corals diseased by 2100), it is imperative to identify drivers of coral disease. Our study 

is the first step towards paving the way for policymakers to develop effective mitigation 

strategies specific to these risks in their respective regions. Our meta-analysis highlights 

the devastating impacts of rising temperatures on coral reefs and the dire need for swift 

action to mitigate climate change. 
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Figure 1. Data characteristics. A. Map of survey locations. Atlantic Ocean surveys in 

dark purple, Indian Ocean surveys in teal blue, and Pacific Ocean surveys in yellow-

green. Point transparency correlates with the number of effect sizes collected from that 

location. Histogram along right side of graph depicts the number of effect sizes within 

that latitude. B. Number of effect sizes from surveys started within each month. 

Northern Hemisphere (incorporates 73.9% of total effect sizes) bars are colored in 

purple. Southern Hemisphere (incorporates 26.1% of total effect sizes) bars are colored 

in gold. 

 



 

Figure 2. Changes in disease prevalence over the three factors: average summer sea 

surface temperature (SST) in °C, weekly sea surface temperature anomaly (WSSTA) in 

°C-weeks, and Year. A, D, and G: Observed values of disease prevalence. Datapoint 

size relative to sample area size (weight). Atlantic Ocean colored in dark purple, Indian 

Ocean colored in teal blue, and Pacific Ocean colored in yellow-green. Black trend line 

depicts observed change in global disease prevalence. Dotted trend lines depict 95% 

credible intervals. B, E, and H: Predicted values of disease prevalence for global 



dataset. Credible intervals shown: 50% (darkest), 80% (middle), and 95% (lightest) 

credibility. C, F, and I: Marginal effects of disease prevalence. Minimum values of each 

variable colored in maroon. Maximum values of each variable colored in orange. 

Credible intervals colored in black: thick line represents 80% credibility and thinner line 

represents 95% credibility. 

  



 

Figure 3. Global disease prevalence prediction depicted three ways. Rows distinguish 

variables: A, B, and C denote average summer sea surface temperature (SST) in °C; D, 

E, and F denote weekly sea surface temperature anomaly (WSSTA) in °C-weeks; and 

G, H, and I denote Year. Credible intervals displayed for each represent 50% (darkest), 

80% (middle), and 95% (lightest) credibility. Note that axes limits differ across all plots 

to best display the observed trends. A, D, and G: Predicted proportion of non-zero 

disease prevalence, i.e., omitting effect sizes of 0% disease prevalence (mu). Plots 

colored in red. B, E, and H: Predicted proportion of instances of 0% observed disease 



prevalence (zi). Plots colored in blue. C, F, and I: Precision of disease prevalence (phi). 

Plots colored in green. 

  



 

Figure 4. Three oceans’ predicted non-zero values (mu) of disease prevalence per 

fixed variable. Colors distinguish oceans: Atlantic Ocean in dark purple (A, D, and G), 

Indian Ocean in teal blue (B, E, and H), and Pacific Ocean in yellow-green (C, F, and I). 

Rows distinguish metrics: A, B, and C denote predicted disease prevalence as average 

summer sea surface temperature (SST) increases in °C; D, E, and F denote predicted 

disease prevalence as weekly sea surface temperature anomaly (WSSTA) increases in 

°C-weeks; G, H, and I denote predicted disease prevalence through time. Credible 



intervals displayed represent 50% (darkest), 80% (middle), and 95% (lightest) 

credibility.  



 

Figure 5. Visual representation of results. “Environmental temperature” represents 

average summer sea surface temperature (SST) in the model. “Heat stress” represents 

weekly sea surface temperature anomaly (WSSTA) in the model. “Other factors” 

represents Year in the model. Purple corals represent healthy individuals within a reef. 

Black, thinner corals represent diseased individuals. Orange arrows indicate a driver in 



favor of the process represented by the thick, grey arrow (i.e., towards disease 

prevalence or mixed healthy and diseased reefs). Blue arrows imply an inhibited effect 

on the process represented by the thick, grey arrow. A. Diagram of how factors in the 

model impact coral disease prevalence. All factors, environmental temperature, heat 

stress, and time, drive corals toward greater disease prevalence. B. Diagram of how 

factors in the model impact variability of coral disease prevalence. Time drives 

decreased variation in coral health status, whereas both environmental temperature and 

heat stress foster more variability in coral disease prevalence.  
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