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Abstract7

Exchange of genetic material through sexual reproduction or horizontal gene transfer is ubiquitous in8

nature. Among the few outliers that rarely recombine and mainly evolve by de novo mutation are a group9

of deadly bacterial pathogens, including the causative agents of leprosy, plague, typhoid, and tuberculosis.10

The interplay of evolutionary processes is poorly understood in these organisms. Population genetic11

methods allowing to infer mutation, recombination, genetic drift, and natural selection make strong12

assumptions that are difficult to reconcile with clonal reproduction and fully linked genomes consisting13

mainly of coding regions. In this review, we highlight the challenges of extreme clonality by discussing14

population genetic inference with the Mycobacterium tuberculosis complex, a group of closely related15

obligate bacterial pathogens of mammals. We show how uncertainties underlying quantitative models16

and verbal arguments affect previous conclusions about the way these organisms evolve. A question17

mark remains behind various quantities of applied and theoretical interest, including mutation rates, the18

interpretation of nonsynonymous polymorphisms, or the role of genetic bottlenecks. Looking ahead, we19

discuss how new tools for evolutionary simulations, going beyond the traditional Wright-Fisher framework,20

promise a more rigorous treatment of basic evolutionary processes in clonal bacteria.21

Introduction22

Mutation, recombination, genetic drift, and natural selection are the basic evolutionary processes23

that drive the evolution of life. It is the aim and "great obsession" of population genetics to infer24

these processes from patterns of genetic variation observed in nature (Gillespie, 2004). Since25

the Modern Synthesis of evolutionary biology in the 1930s, a variety of mathematical models26

have been developed for this purpose, which today are in wide use in the analysis of genome27

sequencing data (Templeton, 2021).28

A problem in the application of population genetic models to empirical data is that modeling29

assumptions can be a far cry from the biology and life history of real organisms. Archea and30

bacteria reproduce clonally through binary fission, frequently undergo horizontal gene transfer31

(HGT), and have genomes consisting mainly of coding regions. These characteristics are difficult32

to reconcile with models that are tailored to animals and plants (Woese and Goldenfeld, 2009) and33

commonly assume random mating, linkage equilibrium, and neutrality (Maynard Smith, 1995;34

Rocha, 2018). As a consequence, outside the laboratory, studies of bacterial population genetics35

have either remained descriptive, with much effort going into understanding the extent and effects36

of HGT (e.g. Denamur et al., 2021); or have resorted to models whose applicability remains an37

open question (discussed by Johri et al., 2022).38
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While the opportunistic, hardly predictable process of HGT has been highlighted as the most39

problematic breach of assumptions (Maynard Smith, 1995), a different, less frequently discussed40

challenge arises from the opposite extreme of the recombination spectrum: strictly clonal evolution,41

or the absence of any gene flow. HGT is not a general characteristic of bacteria (Hanage, 2016).42

Some bacteria are "monomorphic", that is, characterized by low levels of sequence diversity and an43

apparent absence of genetic exchange (Achtman, 2008). The causative agents of several devastating44

bacterial diseases of humans and animals belong to this group, including Bacillus anthracis (anthrax),45

Salmonella enterica serotype typhi (typhoid), Yersinia pestis (plague), Mycobacterium leprae (leprosy),46

and the members of the Mycobacterium tuberculosis complex (tuberculosis). Our understanding47

of the evolution of these bacteria is hampered not only by the low information content in their48

genomes, but also because there is little theoretical and conceptual work on population genetic49

inference under extreme clonality.50

It has been suggested that phylogenies are all that is needed to study non-recombining bacteria,51

bacterial population genetics thus becoming "a branch of cladistics" (Maynard Smith, 1995). In52

the absence of recombination, genetic linkage is complete and a genome is behaving as a single53

non-recombining locus. This makes for neat phylogenies, since every part of the genome has the54

same genealogical history. But it also complicates the inference of the processes underlying the55

observed tree. Under strict clonality, the fate of a mutation arising in any of the few thousand56

genes present in a typical bacterial genome is tied to all other sites in the genome. Selection57

acting on this mutation affects the fixation probability of linked variation and interferes with58

selection at other sites (Charlesworth, 2012; Neher, 2013). The dynamics and outcome of such59

linked selection depend on a parameter that is usually unknown: the distribution of fitness effects60

of new mutations (Eyre-Walker and Keightley, 2007). Periodic selection, for instance, results61

when beneficial mutations are rare enough such that selective sweeps are well separated in time.62

More complex dynamics emerge when beneficial mutations are frequent and co-occur in the same63

population or on the same chromosome (Sniegowski and Gerrish, 2010).64

Linked selection is rarely mentioned or investigated in the context of extremely clonal bacteria,65

as already observed ten years ago (Charlesworth, 2012). This is an important omission, as it is66

not all that clear how one would go about inferring evolutionary processes from fully linked67

genomes. What biases are introduced when linkage equilibrium and neutrality are assumed when68

analyzing clonal genomes? Can we meaningfully talk of "populations" when each bacterial cell is69

a genetically isolated island?70

Mycobacterium tuberculosis as a model for clonal evolution71

In this review, we highlight the obligate pathogens of the Mycobacterium tuberculosis complex72

(MTBC) as a model to study evolution under extreme clonality. The MTBC comprises a group of73

closely related obligate pathogens that cause tuberculosis (TB) in humans and a range of wild and74

domestic animals (Figure 1). Human TB mainly affects the global poor and has killed more than75

1.6 million people in 2021 (World Health Organization, 2022), while it also affected large parts of76

society in Europe and Northern America up to the early 20th century (Dubos and Dubos, 1952).77

Today, the evolution of antibiotic resistance is a main challenge and focus of research in TB. The78

genomes of thousands of MTBC strains from around the world have been sequenced, mainly to79

study epidemiological dynamics and drug resistance evolution, but also to infer the origin and80

biogeographic history of the species (Gagneux, 2018).81

Members of the MTBC are among the more diverse of the predominantly clonal bacteria82
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Figure 1: Rooted maximum likelihood phylogeny of the MTBC estimated from genome-wide SNPs (tree adapted from
Zwyer et al. 2021). M. canettii is the outgroup, human-adapted lineages (L1 to L9) are shown in colors,
animal-adapted lineages in black. Species names represent the historically grown nomenclature, lineage
names are a more recent classification based on genomic data. Lineages 1 to 4 and 7 are also referred to as M.
tuberculosis sensu stricto, lineages 5 and 6 as M. africanum. Bootstrap supports for the lineages are above
0.95 and are not displayed in the figure.

(Achtman, 2012), even though individual strains differ only by a maximum of ca. 2,400 SNPs83

across the 4.4 Mb genome (Figure 2a). At the molecular level, the MTBC is further characterized84

by a high GC content, a high proportion of nonsynomyous polymorphisms, and a low proportion85

of homoplastic mutations (Figure 2b-d). It seems that the low diversity of the MTBC has deterred86

evolutionary biologists from engaging with this bacterium. Many studies content with speculative87

invocations of genetic drift and natural selection, typically referring to the triad Hershberg et al.88

(2008), Namouchi et al. (2012) and Pepperell et al. (2013), who are among the few studies in the89
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large MTBC literature that have put basic evolutionary processes into focus.90

In this review, we present the main hypotheses about what drives the evolution of the MTBC,91

and how they have been arrived at. Particular attention is paid to models, their assumptions, and92

the traits of the MTBC that might conflict with the latter. Evolutionary simulations are discussed as93

a way to achieve a more quantitative treatment of frequently invoked processes such as purifying94

selection or periodic bottlenecks.95

Recombination96

How "strict" is clonality in the MTBC? In the past, bacteria were classified as "clonal" or "monomor-97

phic" based on a handful of housekeeping genes (Maynard Smith et al., 1993; Selander et al., 1987).98

With the full resolution of whole genome sequences, this classification needs to be reassessed.99

As discussed in the following, experimental and observational evidence agree that the MTBC is100

predominantly clonal, and that few to no new genes have found their way into the MTBC since101

the most recent common ancestor of the currently existing lineages. In contrast to interstrain102

recombination, intrachromosomal recombination is common and increasingly recognized as an103

important source of genetic variation.104

Experimental evidence: genetic factors versus lack of opportunity105

Most of the knowledge about the molecular mechanisms of HGT in mycobacteria stems from106

research with Mycobacterium smegmatis, a fast-growing, non-pathogenic mycobacterium more easily107

amenable to cultivation and genetic engineering than the bacteria of the MTBC. Mycobacteria lack108

the traditional components of HGT, possibly because transfer through the complex cell envelopes109

of these diderm bacteria requires other mechanisms (Madacki et al., 2021). Investigations of gene110

transfer in M. smegmatis have led to the description of a previously unknown form of bacterial111

conjugation: distributive conjugal transfer (DCT, reviewed by Gray and Derbyshire, 2018). DCT112

involves the transfer of chromosomal DNA and gives rise to mosaic genomes, with hundreds113

of pieces of DNA of variable sizes dispersed in the receiver genome. DCT thus challenges the114

paradigm of "localized sex" in bacteria (Smith et al., 1991) and might explain the recombinogenic115

population structure of many mycobacteria (Panda et al., 2018).116

Of particular interest regarding the evolution of the MTBC is the observation of DCT in the117

closely related Mycobacterium canettii. M. canettii shares an average nucleotide identity of 97.5%118

with the MTBC yet is strikingly more diverse: a handful of M. canettii strains from eastern Africa119

harbor more genetic diversity than the whole MTBC (Supply et al., 2013). Mating assays have120

shown that DCT occurs in M. canettii, while no DCT was observed between three MTBC strains121

(Boritsch et al., 2016). The same assays combining M. canettii and MTBC strains revealed that the122

latter can act as donors but not as receivers of DNA during DCT, as pieces of MTBC DNA were123

integrated into M. canettii genomes but not vice versa (Madacki et al., 2021). In M. smegmatis,124

polymorphisms in the esxI secretion locus underlay self identity and conjugal compatibility125

(Clark et al., 2022). In M. canettii and the MTBC, the molecular mechanisms underlying conjugal126

compatibility do not depend on esxI and remain to be elucidated (Madacki et al., 2021).127

Lack of opportunity has been proposed to explain why intracellular pathogens such as the128

MTBC do not seem to recombine (Casadevall, 2008; Chiner-Oms et al., 2019b). Alternatively,129

avoidance of HGT could be an evolutionary strategy with a genetic basis, an adaptation to130

parasitism (Tibayrenc and Ayala, 2017). Against the first scenario, it can be argued that there131
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Figure 2: Genetic diversity and molecular characteristics of the MTBC. a) Pairwise genetic differences between the
strains shown in Figure 1, based on single nucleotide polymorphisms. b) to d) show molecular characteristics
of the MTBC compared to 150 other bacterial species with diverse lifestyles (data from Bobay and Ochman,
2018). Red lines show the values for the bacteria of the MTBC (M. tuberculosis sensu stricto, M. bovis, and
M. africanum) along the distributions. b) GC content, c) dN/dS, the genome-wide ratio of nonsynonymous
to synonymous polymorphisms, d) the ratio of homoplastic to non-homoplastic mutations, a proxy for
recombination.

is indeed more opportunity to recombine than the label "intracellular pathogen" might suggest.132

The bacteria of the MTBC are not confined to intracellular environments, but are also present133

in large extracellular populations after the induction of necrosis (Orme, 2014). Furthermore,134

mixed infections do occur (Moreno-Molina et al., 2021; Tarashi et al., 2017), such that diverged135

strains might have the opportunity to recombine. Further investigation into the genetic and136

environmental determinants of extreme clonality would be worthwhile, and the M. canettii-MTBC137

system provides a great opportunity to elucidate the poorly understood evolutionary transition to138

extreme clonality characteristic of many obligate pathogens.139

Recombination between closely related strains: how strict is clonality?140

Genome sequences from diverse MTBC strains are an important complement to experimental data,141

which leave open the question how far the observed outcome depends on the specific conditions142

and strains used in the laboratory. Various studies have investigated the extent of HGT in natural143

strains of the MTBC, motivated by the observation how HGT accelerates resistance evolution144

in other bacterial pathogens (Davies and Davis, 2010). Some have suggested that interstrain145

recombination does occur. Liu et al. (2006), using datasets of 36 synonymous SNPs in 3,320 strains146

and 407 SNPs in 37 strains, found that mutation alone cannot explain the observed haplotype147

diversity, and identified a mosaic region in front of a PPE gene suggesting a recombination hotspot.148

They also point out the possibility that the pattern may have arisen through recombination149

between homologous sequences in the same genome. Namouchi et al. (2012) investigated 24150
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sequenced MTBC genomes and reported that "four different approaches showed evident signs of151

recombination in M. tuberculosis", with recombination typically involving small tracts of around152

50 bp. On the other hand, the most extensive investigation to date, using different methods on153

genome-wide SNPs in 1,591 diverse strains, found "no measurable ongoing recombination among154

the MTBC strains" (Chiner-Oms et al., 2019b).155

Generalizing from these studies is difficult due to the diversity of datasets and methods used.156

It has been suggested that the signs of recombination described by Namouchi et al. are mainly157

artefacts as they are overrepresented in regions difficult to align or assemble, in particular repetitive158

and low-complexity regions in insertion sequences and the expanded PE/PPE gene families159

(Godfroid et al., 2018). Alternatively, signs of recombination can arise from gene conversion during160

intrachromosomal recombination, to which these repetitive sequences are prone (Liu et al., 2006).161

Gene conversion is the non-reciprocal transfer of DNA from one homologous sequence to another,162

which in the MTBC might account for recombination signatures in ESX, PE, PPE, PE/PGRS163

gene families (Karboul et al., 2008; Phelan et al., 2016; Uplekar et al., 2011). Intrachromosomal164

recombination can also have more dramatic outcomes. More and more structural variants are165

described in MTBC genomes, ranging from insertion sequence (McEvoy et al., 2007) and gene copy166

number polymorphisms (Fishbein et al., 2015) to massive inversions (Merrikh and Merrikh, 2018)167

and tandem duplications (Wang et al., 2022). This is a vast topic deserving a dedicated review.168

It is brought up here to emphasize that recombination is an umbrella term for diverse processes169

of inter- and intrachromosomal exchange; and that clonality does therefore not imply absence170

of recombination, strictly speaking, but only of HGT. In the near future, long-read sequencing171

should allow more extensive studies of the repetitive "dark matter" in the MTBC genome and how172

it generates genetic variation intrachromosomally.173

A basic limitation of methods to infer recombination is that they cannot distinguish de novo174

mutations from allelic recombination between closely related individuals, which might involve the175

exchange of a single nucleotide (Martin et al., 2011). Allelic recombination does not introduce new176

genes, but it can affect the nucleotide landscape through recombination-associated processes like177

biased gene conversion (Duret and Galtier, 2009) or increased mutation rates around strand breaks178

(Fitzgerald and Rosenberg, 2019). While HGT between close relatives would be less restricted by179

opportunity, genetic incompatibilies might prevent gene transfer between close relatives, as in M.180

smegmatis (Clark et al., 2022).181

Mutation182

While in some bacteria new variants are more likely to be generated by HGT than by mutation183

(Vos and Didelot, 2009), under extreme clonality de novo mutations are the main source of genetic184

diversity and adaptation. The speed and direction in which a clonal prokaryote evolves is thus185

determined by the rate and spectrum of new mutations and by their effect on fitness. Numerous186

studies have investigated mutagenesis in the MTBC (reviewed by Mcgrath et al., 2014). As187

discussed below, in addition to methodological issues in estimating mutation rates, the life history188

of the bacteria, which can include extended periods of dormancy, poses a main challenge in189

understanding the rate at which variation originates in vivo.190

In the MTBC literature, as elsewhere, the mutation rate is sometimes confounded with the191

molecular clock rate. While the former refers to the rate at which mutations appear in the genome,192

the latter stands for an allegedly constant rate at which mutations accumulate through time (Ho et193

al., 2011). Both rates are subsumed in the more general concept of evolutionary rates. As discussed194
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below, the power law that describes the slowing of evolutionary rates as one considers longer195

timescales is not as clear in the MTBC as in other bacteria: in vitro mutation rate estimates can196

be similar to clock rate estimates from datasets including ancient DNA. How far methodological197

biases or evolutionary processes underly this surprising finding remains to be understood.198

Plasticity of mutation rates and generation times199

In the model mycobacterium M. smegmatis, a mutation rate of 5.27 × 10−10 mutations per site per200

generation was inferred in a mutation accumulation experiment (Kucukyildirim et al., 2016). For201

the MTBC itself, no such experiment has been conducted yet. Fluctuation assays suggest that point202

mutations in the MTBC appear at a rate of about 2.1 × 10−10 mutations per site per generation203

and at a similar rate during active disease in macaques if a generation time of 20 h is assumed204

(Ford et al., 2011, Figure 3). A later study, using the same fluctuation assay, found in vitro rates205

of 6.01 × 10−10 in a lineage 4 and 2.16 × 10−9 in a lineage 2 strain, suggesting somewhat faster206

and variable mutation rates within the MTBC (Ford et al., 2013). Comparatively fast rates were207

also proposed in two additional experimental evolution studies. After serial passaging of a MTBC208

strain through macrophage-like THP1 cells for 80 generations, Guerrini et al. (2016) inferred209

a rate of 5.7 × 10−9 per bp per generation. Copin et al. (2016), passaging bacteria in mice and210

assuming a generation time of 20 h, estimated a mutation rate of 3.8 × 10−9 in wild type mice211

and of 7.7 × 10−10 in T cell-deficient mice, suggesting that the presence of T cells leads to elevated212

mutation rates.213

Overall, per-generation mutation rates estimated for the MTBC are well within the range of214

those in other bacteria, which typically are in the order 10−10 (reviewed by Katju and Bergthorsson,215

2019). When trying to scale mutation rates to calendar time, however, complications due to the216

complex life history of these bacteria become apparent. The bacteria of the MTBC have long217

generation times ranging from 18 h in nutrient rich medium to potentially much longer time-spans218

in vivo (Colangeli et al., 2020). Assuming a generation time of 24 hours, a mutation rate of219

2.1 × 10−10 translates to 7.7 × 10−8 mutations per site per year, or about 0.34 per genome per year,220

which is indeed low compared to other bacteria (Duchêne et al., 2016; Lynch, 2010).221

In contrast to pathogens employing a "hit and run" strategy, bacteria of the MTBC can enter a222

state of reduced activity and persist for years in latent infections (Dutta and Karakousis, 2014). It is223

unclear whether latency and longer generation times imply a reduced mutation rate, as expected224

if mutation is driven by replication, or not, as expected if environmental stress drives mutation225

(Weller and Wu, 2015). Ford et al. (2011), in their experimental infection of macaques, found226

similar rates in latent and active disease (Figure 3), supporting stress-induced mutagenesis. A227

more complex, two-phased scenario was suggested by Colangeli et al. (2020), who investigated 24228

paired TB cases with latently infected household contacts: mutation rates remained high up to229

two years, but then decrease with longer latency as the bacteria enter a quiescent state with longer230

generation times (Figure 3).231

In summary, mutation rates estimated for the MTBC should be interpreted with some caution.232

Generation times are only known with confidence in vitro. At the same time, fluctuation assays233

reflect the mutation rate of a single gene (rpoB, the main drug resistance target of rifampicin)234

that might not be representative for the whole genome (Katju and Bergthorsson, 2019); and in235

the absence of stress, which in vivo might alter both the rate and the spectrum of new mutations236

(Fitzgerald and Rosenberg, 2019).237
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Why are MTBC genomes so GC-rich?238

In bacteria, newly arising mutations are biased towards adenines and thymines (Hershberg and239

Petrov, 2010; Hildebrand et al., 2010), which in the MTBC might reflect stress-induced mutagenesis240

in an intracellular environment rich in reactive oxgen and nitrogen species (Chiner-Oms et al.,241

2019a; Liu et al., 2020). If mutation bias and genetic drift alone would determine the nucleotide242

landscape (mutation-drift equilibrium), the expected GC content in the MTBC would be 41.5%243

(Hershberg and Petrov, 2010). MTBC genomes, however, consist to 65.6% of guanines and cytosines244

(Figure 2b; Cole et al., 1998), with values of 80% at synonymous and 60% at nonsynonymous245

sites. Such a discrepancy between observed and expected GC content is observed in many246

prokaryotes, whose genomes vary hugely in GC content (Figure 2b). It implies that an unknown247

process, unaccounted for in standard models of molecular evolution, affects the segregation of248

polymorphisms through time (Rocha and Feil, 2010).249

Several large-scale comparative studies have attempted to find a general explanation for250

the discordance between expected and observed GC content in prokaryotes. One prominent251

hypothesis is that nucleotide composition reflects adaptation to environmental conditions, for252

example through selection for thermal stability of DNA (e.g. Reichenberger et al., 2015). An253

intriguing twist to this idea was recently added by Weissman et al. (2019), who described a254

correlation between GC content, environmental variables, and the presence of Ku, the key gene in255

the non-homologous end-joining (NHEJ) pathway for DNA break repair. The authors propose256

that high GC content could be beneficial in bacteria suffering stress-induced double strand breaks257

in periods of slow or no growth, when NHEJ is required for repair because only a single copy of258

the genome is present. This is an interesting scenario for the MTBC, where long periods of latency259

can occur (see above) and the Ku gene is highly conserved.260

An alternative explanation for GC bias that does not imply a selective advantage is GC-biased261

gene conversion (gBGC). This process occurs during homologous recombination when mismatches262

in heteroduplex DNA are preferentially resolved into guanines and cytosines (reviewed by Duret263

and Galtier, 2009). The gBGC hypothesis predicts that GC content is higher in regions with high264

recombination rates, which is observed in mammalian genomes. In bacteria, the role of gBGC is265

contested. Whether comparative studies find associations between GC content and recombination266

depends on the method used to infer recombination, and exceptions to general trends are common267

(Bobay and Ochman, 2017; Lassalle et al., 2015).268

With its numerous genome sequences that can be placed in a robust phylogenetic framework,269

the MTBC provides an opportunity to study the evolution of base composition in detail and thus270

to complement comparative studies. A hypothesis to test is that the MTBC is evolving from the271

generally GC-rich state of mycobacteria (58 to 70%, Mycobacterium sp. genomes on NCBI) to a272

more AT-rich state characteristic of obligate pathogens (Rocha and Danchin, 2002, Figure 2b),273

including Mycobacterium leprae (58%).274

The time (in)dependence of evolutionary rates in the MTBC275

Molecular dating has led to a re-evaluation of the origin and history of the MTBC, as for many276

other organisms. Earlier studies, assuming a synonymous mutation rate or a co-diversification277

of humans and the MTBC, located the most recent common ancestor of the existing lineages in278

Africa and suggested a scenario according to which humans and the MTBC have co-diversified279

across the globe (Comas et al., 2013; Hughes et al., 2002; Kapur et al., 1994). Recent estimates,280
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Figure 3: Evolutionary rates in the MTBC. Only studies that report confidence intervals were considered. For the
fluctuation assay estimates in Ford et al. (2011, 2013), a generation time g = 20 was assumed to translate
rates to calendar time. The rates of Colangeli et al. (2020) were translated back to calendar time by assuming
g = 18h, as reported by the authors. From the molecular clock study of Menardo et al. (2019), BEAST
estimates are reported for a 1/x clock rate prior and constant population size. For the BEAST analysis
of Sabin et al. (2020), results for the birth-death skyline model with an uncorrelated lognormal clock are
reported.

making use of tip dating, ancient DNA (aDNA) samples, and Bayesian phylogenetics, propose a281

more recent common ancestor in the Neolithic ca. 6,000 years ago (Bos et al., 2014; Kay et al., 2015;282

Sabin et al., 2020).283

One caveat regarding these estimates is the poorly understood variability of evolutionary284

rates in the MTBC through time. For mitochondrial DNA, viruses, and bacteria, evolutionary285

rates usually appear faster when estimated from recent polymorphisms (Ho et al., 2011). For286

bacteria, Duchêne et al. (2016) found a clear negative association, described by an exponential287

decay curve, between clock rates and sampling time spans in 16 bacterial species, with an order of288

magnitude difference between a 10 year and a 100 year sampling period. The delayed effect of289

purifying selection is the most prominent explanation for this time dependence of evolutionary290

rates, although methodological biases might also contribute (Emerson and Hickerson, 2015; Ho291

et al., 2015). Time dependence can have a large effect on molecular dating: Membrebe et al. (2019)292

showed that accounting for purifying selection by using relaxed clock or epoch models can shift293

divergence times one order of magnitude back in time. Could this explain the surprisingly recent294

time to the most recent common ancestor estimated by the aDNA studies?295

In the study of Duchêne et al. (2016), the MTBC does not follow the general pattern of time296

depence: almost identical rates were obtained from samples spanning 15 and 895 years. Similarly,297

Menardo et al. (2019) found only marginally lower rates when calibrating the clock with the same298

three samples of ancient DNA from Precolumbian human remains and an extensive MTBC dataset299
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covering a sampling period of 30 years. An overview of evolutionary rates estimated for the MTBC300

illustrates the large variability and uncertainty of rate estimates, but also suggest an overall trend301

of time dependence (Figure 3). As Menardo et al. (2019) showed in their extensive study of the302

molecular clock in the MTBC, clock rates vary substantially among lineages and clades of the303

MTBC and have large confidence intervals. Lineage 1, for instance, seems to have evolved faster304

than other lineages, and indeed faster than the L4 strain accumulated mutations in the fluctuation305

assay of Ford et al. (2011). On the slow end of the spectrum is the long-term clock rate estimated306

by Sabin et al. (2020), for which all six aDNA samples available so far were included (1.4 × 10−8,307

95% HPD 9.46 × 10−9, 1.96 × 10−8).308

A possible methodological bias underlying in vivo mutation rate estimates was recently sug-309

gested in a simulation study of within-host evolution. Morales-Arce et al., 2020 suggested that the310

genome-wide mutation rate of the MTBC might be two orders of magnitude faster, in the order311

10−8/bp/generation, if one accounts for progeny skew (Box 2) and the removal of mutations312

through purifying selection during within-host evolution. The authors simulated a population313

undergoing a transmission bottleneck, followed by a recovery to a large population size and314

within-host evolution under purifying selection and with per-generation progeny skew. Com-315

paring the resulting patterns of diversity with the empirical within-host data of Trauner et al.,316

2017, they found that mutation rates in the order of 1 × 10−8 to 9 × 10−8 result in similar levels of317

variation as described by Trauner et al.318

Box 1: Simulating bacterial populations319

Simulations are an invaluable tool in evolutionary genetics: they allow to test intuitions and
methods, to compare alternative scenarios, and to fit models to data (Hoban et al., 2012; Johri
et al., 2022). For bacterial population genetics, the use of simulations was so far rather limited.
On the one hand, most simulators are based on the coalescent – the backwards-in-time
variant of the Wright-Fisher model. These are fast, but usually limited to neutral scenarios of
population size changes and migration. More flexible forward simulators, on the other hand,
are much slower because they track the fate of all individuals of the simulated population
rather than just of a sample, as in the coalescent (Hoban et al., 2012).
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327

Recent advances in forward simulation, however, make it possible to simulate ever more
realistic scenarios through improved computational efficiency (Haller et al., 2019) and more
flexible non-Wright-Fisher models (Haller and Messer, 2019). The simulation framework of
SLiM was recently used to simulate bacteria evolving in a Petri dish in the presence of an
antibiotic (Cury et al., 2021). This individual-based forward simulation was spatially explicit
and modelled clonal reproduction through binary fission, gene conversion, density-dependent
selection, and positive selection for antibiotic resistance. The scriptability of SLiM allows to
incorporate more or less aribtrarily complex genetic architectures and life histories, although
computational time still sets boundaries.
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Genetic drift and purifying selection337

Once a mutation appears in a genome, its fate depends on the selective advantage or disadvantage338

it confers – and on chance. Genetic drift is the "chance factor" in evolution: it describes the339

undirected, stochastic change of allele frequencies due to sampling effects (Plutynski, 2007). The340
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biological relevance of genetic drift is that it sets limits to natural selection (Kimura, 1983; Lynch,341

2007). The efficacy of natural selection is inversely related to the strength of drift: when genetic342

drift is strong, changes in the frequencies of alleles depend less on their effect on fitness, such343

that, by chance, deleterious alleles can increase and beneficial ones decrease in frequency (Kimura,344

1983; Ohta, 1992).345

Genetic drift is frequently invoked as an ad hoc explanation, but actually inferring and346

quantifying it is difficult. In the standard Wright-Fisher (WF) model with panmixia, discrete347

generations, and no selection, drift occurs when the alleles to form the next generation are348

randomly sampled from the parental population (Fisher, 1930; Wright, 1931). In this idealized349

lottery-like scenario, the strength of drift simply depends on the size of the sample, with less drift350

in larger samples according to the law of large numbers. Natural populations deviate from the WF351

model in numerous ways, yet population size remains a useful measure for drift when it is rescaled352

to account for these deviations (Charlesworth, 2009). The resulting effective population size Ne353

can be interpreted as the size of an idealized WF population that experiences the same amount of354

drift as the real population in question (e.g. Gillespie, 2004). In bacteria, population subdivision,355

linked selection, and demographic changes all imply that sampling effects are stronger than under356

panmixia (Price and Arkin, 2015), and that effective population sizes are orders of magnitude357

smaller than census sizes (Bobay and Ochman, 2018).358

As discussed in this section, arguments about the strength of drift in the MTBC are largely359

based on indirect evidence in the form of low diversity and overabundant nonsynonymous360

polymorphisms. Estimates of Ne are sometimes obtained in Bayesian skyline analyses, but their361

underlying assumptions are problematic. Finally, we discuss transmission bottlenecks in the362

MTBC, a main mechanism of stochastic sampling whose mid- and long-term consequences go363

beyond simple reductions in genetic diversity and remain to be understood.364

Do overabundant nonsynonymous polymorphisms indicate strong genetic drift?365

In the MTBC, the drift-versus-selection discussion has mainly revolved around the large proportion366

of nonsynonymous polymorphisms observed in the species. The MTBC has a genome-wide ratio367

of nonsynonymous to synonymous polymorphisms (dN/dS) of around 0.5 when diverse strains368

from across the phylogeny are considered (Figure 2c). This is one third higher than in the closely369

related M. canettii (Supply et al., 2013) and more than six times higher than the median (0.076) of370

the 153 diverse species studied by (Bobay and Ochman, 2018).371

Hershberg et al. (2008) have interpreted the high dN/dS in the MTBC as evidence for "extremely372

reduced purifying selection" – in other words strong genetic drift – which would allow the373

accumulation of deleterious nonsynonymous mutations. The authors refute the alternative374

explanation that nonsynonymous changes are due to positive selection by pointing out that dN/dS375

does not differ between housekeeping, surface-exposed, and virulence genes, as might be expected376

if host immunity would drive adaptive diversification. This interpretation of dN/dS fits well377

with the generalization that the intracellular niche of pathogens and symbionts implies smaller378

population sizes and stronger drift. Kuo et al. (2009) inferred strong drift in human pathogens379

including the MTBC and reported a strong inverse relationship between drift and genome size.380

A similar conclusion is reached by Balbi et al. (2009), who compared E. coli with the closely381

related pathogenic Shigella and found signs of increased drift in the latter, including an excess of382

nonsynonymous mutations and of transversions, which are proportionally more nonsynonymous383

and thus deleterious than transitions.384
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Different studies have challenged the view that purifying selection is "extremely reduced"385

in the MTBC. Bringing in a temporal perspective on dN/dS, Namouchi et al. (2012) found 25%386

more nonsynonymous SNPs on terminal branches in their tree of 22 globally diverse strains. This387

suggests that deleterious nonsynonymous mutations are purged through selection over time, such388

that they become scarce in deeper parts of the phylogeny (Rocha et al., 2006). In general, SNPs389

are strongly skewed towards rare alleles in the MTBC, be it at the global or the within-host level390

(O’Neill et al., 2015; Trauner et al., 2017). SNPs are thus not only few in the MTBC, but also to a391

large proportion singletons (Chiner-Oms et al., 2019b), that is, present in one single strain. While392

this is consistent with purifying selection preventing variants to rise in frequency, other processes393

can cause the same pattern, in particular the dynamics of clonal growth. Furthermore, it remains394

to be understood what biases are introduced by the punctual sampling of highly structured and395

dynamic within-host populations (Morales-Arce et al., 2021).396

In the so far only attempt to quantify the strength of purifying selection across the genome,397

Pepperell et al. (2013) fitted a model including demographic expansion and a fraction of sites398

under selection to the site frequency spectrum obtained from a global sample of the MTBC. They399

infer purifying selection at nonsynonymous sites across 95% of the genome, with a selection400

coefficient s of −9.5 × 10−4. This value is interpreted as "strong" compared to values in humans401

and Drosophila. The authors used simulations of completely linked genomes to evaluate their402

models, which assume linkage equilibrium between sites. They find that their best model performs403

poorly in some scenarios; specifically, strong selection can be misinferred when complete linkage404

is combined with weak purifying selection, which might thus confound their estimate of s. Other405

model assumptions were not tested, for example the absence of population subdivision or that the406

population follows a simple demographic model of exponential growth.407

Strong genetic drift leaves other signs than an excess of nonsynonymous mutations, includ-408

ing pseudogenization, proliferation of selfish genetic elements, or an increased proportion of409

transversions. With strong drift and asexual reproduction, such signatures can accumulate through410

Muller’s ratchet, where lack of recombination and reduced efficacy of purifying selection lead to a411

build-up of deleterious mutations (Muller, 1964). As pointed out by Namouchi et al. (2012), these412

signatures are hardly evident in the MTBC. There are 30 pseudogenes in the H37Rv reference413

genome (Cole et al., 1998), in line with the generally low number of pseudogenes in bacterial414

genomes (Lawrence et al., 2001) and contrasting with the more than 1,000 pseudogenes described415

in the genome of M. leprae (Gómez-Valero et al., 2007). Also insertion sequences do not thrive in416

the MTBC: almost all IS activity is due to a single active element, IS6110, which is over-represented417

in intergenic regions, occurs at low frequencies, and thus probably evolves under strong purifying418

selection (McEvoy et al., 2007). Finally, transitions occur well in excess of transversions (Payne419

et al., 2019). Taken together, there is scant evidence for genome erosion driven by Muller’s ratchet420

in the MTBC.421

Drift is expected to dominate allele frequency changes when |Ne × s| << 1 (Kimura, 1983;422

Ohta, 1992). Thus, rather than small population sizes (Ne), reduced selection coefficients (s), as423

they might arise when many genes are not required anymore after the transition to an intracellular424

niche, could explain genome erosion in obligate pathogens. Applied to the MTBC, the absence425

of genome erosion could indicate that these bacteria still require a large complement of genes,426

which thus remain under strong purifying selection. Alternatively, the MTBC might be a young427

pathogen in an early phase of genome degradation, where nonsynonymous mutations are only428

starting to accumulate (Kuo et al., 2009).429
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Are synonymous sites under selection?430

How could the high genome-wide dN/dS in the MTBC be explained if not by strong drift? An431

intriguing alternative scenario is purifying selection at synonymous sites (Namouchi et al., 2012).432

High dN/dS can reflect an overabundance of nonsynonymous mutations (numerator), but also433

a lower number of synonymous mutations (denominator) than in other species. Fitness effects434

of synonymous mutations can arise when different codons result in variation in RNA stability,435

protein folding, and translation efficiency and accuracy (reviewed by Hershberg and Petrov, 2008).436

Already weak selection on synonymous sites can inflate dN/dS, as shown in a recent study of437

codon usage in 13 bacterial genomes (Rahman et al., 2021).438

In the MTBC, codon frequencies are associated with gene expression (Andersson and Sharp,439

1996; Pan et al., 1998), but also with the hydrophobicity of proteins and sequence conservation440

(De Miranda et al., 2000). As suggested in the latter study, a combination of selective pressures may441

thus act on synonymous sites in the MTBC, including the more efficient and accurate translation442

of certain codons and constraints on protein folding. Wang and Chen (2013) assessed possible443

selection on synonymous sites by comparing synonymous (ds) to intergenic (dI) diversity across 13444

diverse MTBC genomes. Diversity varies strongly depending on the genomic position, suggesting445

variation in mutation rates or selective pressures across the genome. In the majority of windows,446

however, dS is higher than dI . Under the assumption that intergenic regions are free from selection447

pressures, these results are interpreted as evidence for positive selection on synonymous sites,448

specifically for increased translational efficiency.449

The alternative explanation, mentioned but not favored by Wang & Chen, is that purifying450

selection is stronger in intergenic regions than at synonymous sites. Intergenic regions in bacteria451

are packed with regulatory motives and can hardly be assumed to evolve neutrally (Molina452

and Van Nimwegen, 2008; Rocha, 2018). Rather than comparing synonymous against assumed453

neutral sites, Thorpe et al. (2017) assessed the relative strength of purifying selection by comparing454

the proportion of singleton mutations among different site categories, reflecting that a higher455

proportion of singletons indicates stronger purifying selection. In five out of six species, site456

categories show a clear ranking, with the proportion of singletons increasing from synonymous,457

intergenic, non-synonymous, to non-sense mutations. In the MTBC, however, no differences458

between categories are apparent: there are similar proportions of singletons in all four categories.459

This surprising observation can at least partly be explained by the dataset used by the authors,460

which includes many near-identical MTBC strains sampled in a single country. Still, that even at461

short timescales non-sense mutations in the MTBC do not appear to be under stronger selection462

than synonymous mutations asks for clarification in future studies.463

In summary, synonymous sites are frequently assumed to be neutral, but studies on codon464

frequencies and comparisons of synonymous with other sites in the genome suggest a more465

complex picture. This is a topic deserving a focused study, applying the measures developed in466

previous work to a large dataset covering different timescales.467

Bayesian skyline plots and the issue of storytelling468

Neutral sites are in short supply in prokaryotes (Rocha, 2018). In contrast to eukaryotes, the469

streamlined genomes of archea and bacteria do not contain large swaths of decaying repeats and470

other DNA debris which can be assumed to be non-functional. This poses a particular challenge for471

the estimation effective population sizes and the quantification of genetic drift, which traditionally472
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relies on the availability of sites not affected by natural selection (Charlesworth, 2009).473

A popular approach to estimate effective population sizes and their change through time474

are Bayesian skylines (Ho and Shapiro, 2011). These models are frequently used in Bayesian475

phylogenetics, where Ne is treated as a nuisance parameter. Many studies, however, interpret Ne476

literally as historical change in population size and thereby provide instructive examples of how477

strong assumptions are ignored for the sake of storytelling.478

Bayesian skyline models assume neutrality in order to translate coalescence times into popula-479

tion sizes. Several studies have shown that non-neutral processes confound demographic inference480

and should not simply be assumed away. Recombination (Hedge and Wilson, 2014), population481

structure (Heller et al., 2013), sampling design, gene conversion, and selection (Lapierre et al.,482

2016), as well as the skewness of reproductive success (Menardo et al., 2021a) all create spurious483

signs of population size changes. As observed by Lapierre et al., 2016, such methodological484

biases might explain why population size trajectories look suspiciously similar for a wide range of485

species.486

Despite these caveats, Bayesian skyline plots continue to be used and interpreted liberally in487

the MTBC literature. Skyline plots were presented as evidence for a Neolithic expansion (Comas488

et al., 2013), expansions of specific lineages (Merker et al., 2022; Mulholland et al., 2019; O’Neill489

et al., 2019), or a recent co-expansion with humans in Tibet (Liu et al., 2021). That population490

size trajectories "make sense" in the historical narratives of these articles does not add to their491

credibility, but rather puts into question the way results are made sense of (Katz, 2013). Instead of492

literal interpretations of Bayesian skylines, an improved understanding is required of how far the493

demographic past can be reconstructed from the genomes of extremely clonal bacteria without494

taking into account different confounding factors.495

496

Box 2: Progeny skew in prokaryotes?497

Recently, progeny skew was brought up as a neglected aspect of MTBC evolution with
potentially significant effects on genetic diversity (Morales-Arce et al., 2020) and population
genetic inference (Menardo et al., 2021a). Progeny skew refers to the unequal distribution
of offspring among parental individuals in a population. Frequently mentioned examples
are viruses, where a single parental sequence can give rise to numerous copies, or marine
organisms reproducing through broadcast spawning. Wright-Fisher and coalescence models
assume the variation in offspring number is small (Tellier and Lemaire, 2014), which leads
to mis-inference of population genetic statistics when applied to such organisms (Sackman
et al., 2019).
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While progeny skew in viruses or has a direct interpretation in the way these organisms
reproduce, it is less straightforward to apply to prokaryotes. Archea and bacteria reproduce
through binary fission, which can be thought of as each parent having two offspring and
dying after division (Cury et al., 2021); or, in an age-structured population, as each parent
having one offspring and surviving. Progeny skew can arise over multiple generations
through rapid adaptation, superspreading events, or repeated bottlenecks, and it is thus a
meaningful parameter in population-based models with a continuous timescale (Menardo
et al., 2021a). In individual-based, discrete-generation models, it is preferable to simulate the
processes giving rise to progeny skew explicitly.
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How do bottlenecks affect genetic diversity?516

In the MTBC, genetic drift is often associated with transmission bottlenecks or founder events,517

when few or even single strains initiate an infection or an outbreak (Pepperell et al., 2010; Smith518

et al., 2006). TB infections can be initiated by single to few cells (Ryndak and Laal, 2019); each519

transmission might thus be a massive founder event where, from the millions of cells forming a520

within-host population, only a few cells are sampled to start a new population. Similar, small-scale521

colonization dynamics occur during within-host dissemination, as single to few cells "found" new522

granulomas in the highly structured habitat of the lung (Martin et al., 2017).523

While genetic bottlenecks entail an immediate loss of genetic diversity, the mid- and long-term524

effects of periodic bottlenecks on genetic diversity and differentiation in clonal pathogens, where525

extreme bottlenecks alternate with clonal expansions, are less clear. Periodic bottlenecks have been526

investigated in the context of experimental evolution, where studies mainly focused on the effects527

of bottlenecks on the rate of adaptation (e.g. Windels et al., 2021). More general considerations528

can be found in the population genetics literature. One insight of potential relevance for the529

evolutionary dynamics of the MTBC is that, under predominant purifying selection, rates of530

evolution are accelerated when Ne is small because more deleterious mutations fix due to genetic531

drift (Lanfear et al., 2014). A classic example of this is the increased rate of sequence evolution532

in aphid endosymbionts versus free-living bacteria of the genus Buchnera (Moran, 1996). In the533

absence of homogenizing gene flow, founder events might thus be expected to increase genetic534

differentiation and overall diversity among lineages of the MTBC. Following this logic, the low535

global diversity of the MTBC (Figure 2a) is not evidence for strong bottlenecks. The puzzling536

observation rather is that there is not more diversity given the repeated bottlenecks during537

within- and between-host evolution and the absence of gene flow. Low diversity despite frequent538

bottlenecking could thus indicate purifying selection.539

The purpose of these considerations is to show that genetic bottlenecks are more complex and540

interesting than they appear in the literature, where they often serve as ad hoc explanation for low541

diversity. More work on periodic bottlenecks in bacterial pathogens is needed. This work could542

take into account some real-world complications such as the unclear number of cells actually543

transmitted, which is most likely larger than the minimum number required to start an infection544

(Namouchi et al., 2012). Furthermore, infection might not occur at a single time point, but extend545

through time as hosts are repeatedly exposed to bacteria-laden aerosol droplets (Ryndak and Laal,546

2019). This situation resembles the source-sink dynamics of metapopulation models with repeated547

colonization events rather than a single bottleneck.548

Positive selection549

As unclear as the role of genetic drift and purifying selection in the evolution of the MTBC is550

the role of positive selection. Most insights about how the MTBC has adapted to environmental551

challenges either regard pathoadaptation in the distant past before the MRCA, as revealed through552

comparative genomics (reviewed by Pepperell, 2022), or the recent evolution of antibiotic resistance553

(reviewed by Gygli et al., 2017). Much less is known about the genetics underlying adaptation554

to different mammalian host species, evident in host tropism (Brites et al., 2018; Zwyer et al.,555

2021), or about local adaptation to different human populations, as suggested by sympatric556

patient-pathogen associations observed in cosmopolitan settings (Gagneux et al., 2006).557

Identifying signatures of positive selection in linked genomes is challenging since most tests558
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rely on the comparison of haplotypes within genomes (Shapiro et al., 2009). Two diversity-based559

signatures that are not haplotype-based have been used extensively to identify positive selection560

in MTBC genomes: homoplasy and excess of nonsynonymous polymorphisms. In the following,561

we discuss the properties of these measures and whether they can be used to elucidate the role of562

positive selection beyond the case of antibiotic resistance, which so far provides the confirmed563

cases of adaptive evolution in the MTBC.564

Homoplasies: how common is convergent adaptation?565

Molecular homoplasy designates the independent appearance of identical mutations in different566

parts of a phylogeny through chance, recombination, or convergent selection (Stern, 2013). Chance567

homoplasy between genomes showing so little overall diversity is rare (Comas et al., 2009, Figure568

2d), and its probability can be assessed through permutation tests (Farhat et al., 2013). Mutation569

hotspots can facilitate chance homoplasy (Galtier et al., 2006): in the MTBC, highly mutable570

tandem repeats frequently cause homoplasy (Outhred et al., 2020), while it is not known how571

rates of point mutations vary along the genome. Recombination has been argued against as a572

cause of homoplasies because homoplasies in the MTBC do not occur in clusters, as would be573

expected when recombination involves diverged DNA (Chiner-Oms et al., 2019b). Non-clustering574

homoplasies, however, are also expected when recombinant genomes are similar (Bobay et al.,575

2015). Furthermore, intrachromosomal recombination can generate homoplasies, as suggested by576

their increased occurrence in homologous PE/PPE genes (Tantivitayakul et al., 2020).577

Clear examples of convergent selection as a cause of homoplasy have been presented for genes578

involved in antimicrobial resistance (Comas et al., 2012; Farhat et al., 2013). Against a background579

of low diversity and rare homoplasy, some of these genes show exceptional patterns. In 1,161580

strains sampled in Russia and South Africa, one specific mutation in the katG gene, which confers581

isoniazid resistance, has originated more than 70 times independently (Mortimer et al., 2017).582

This is an extreme pattern that arises because katG is a "tight target" of selection, that is, only583

single to few mutations can cause resistance without incurring high fitness costs. In other genes584

("sloppy targets"), fewer homoplasies are observed but in more positions. The high incidence of585

parallelism in resistance evolution, in combination with large datasets, allows the use of genome586

wide association approaches to identify new drug resistance loci and to elucidate the genetic587

architecture of resistance phenotypes (e.g. Crook et al., 2022).588

The basic limitation of homoplasies as a signature of selection is that they only reveal cases of589

convergent evolution. In the case of antibiotic resistance, convergence is ubiquitous. Thousands590

of parallel evolutionary experiments are conducted when people around the world are treated591

with the same antibiotics proposed by the WHO, imposing strong selective pressures with high592

rewards for resistance mutations in target genes (Walker et al., 2022). For other selective pressures,593

things are less clear. Recently, two cases of convergent selection were shown in studies of594

experimental evolution with M. canettii and the MTBC. Selecting M. canettii strains for in vivo595

persistence in mice, Allen et al. (2021) identified two parallel mutations and demonstrated their596

effect on persistence through gene knock-out and complementation. Smith et al. (2022) selected for597

biofilm formation in experimentally evolved MTBC strains and identified two loci that mutated598

independently and are associated to biofilm-associated traits and fitness proxies. Both studies599

found that parallel mutations emerged in similar strains, suggesting that the genetic background600

constrains evolutionary trajectories. These studies also illustrate the rapidity with which mutations601

otherwise rare or absent can prevail in the presence of new selective pressures; and the significance602
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of structural variation, as convergent evolution involved a large duplication (Smith et al., 2022)603

and a deletion of two genes (Allen et al., 2021).604

Convergence might not only be favored by strong selective pressures, but also through human605

demography and migration. Repeated introductions of sublineages into a region, as described606

for Tibet (Liu et al., 2021), are natural experiments where genetically highly similar strains are607

confronted with a new environment. Liu et al. identified several genes that accumulate mutations608

independently after repeated introductions to the Tibetan Plateau, including sseA, a gene involved609

in the detoxification of reactive oxygen species, and three genes involved in DNA repair (dnaE2,610

recB, mfd). With the already large and still growing amount of data on MTBC outbreaks, such611

natural experiments of parallel evolution can provide valuable insights into the dynamics and612

genes involved in local adaptation.613

Nonsynonymous polymorphisms: how frequent is positive selection?614

The second widely used statistic to infer selection and its direction is the ratio of non-synonymous615

to synonymous polymorphisms dN/dS. The intuition behind this measure is that an increased616

rate of nonsynonymous compared to synonymous changes indicates positive selection. As for617

homoplasies, genes involved in antibiotic resistance provide the clearest examples (Osório et al.,618

2013; Wilson et al., 2020), and indeed the two signatures often co-occur.619

Compared to homoplasy, which is a fairly intuitive heuristic for convergent selection, dN/dS is620

a more complicated statistic that can be estimated in different ways and whose properties and621

limitations have been explored in numerous studies (overview in Yang, Ziheng, 2014). Frequently,622

dN/dS is estimated by comparing pairs of sequences (e.g. with the method of Nei and Gojobori,623

1986). This is e.g. the case for dN/dS in Figure 2c or in the study of Hershberg et al. (2008)624

discussed above, who presented genome-wide average pairwise dN/dS as evidence for reduced625

purifying selection. Although average pairwise dN/dS is sometimes used gene-wise in selection626

sans, it is a coarse measure. The ratio averages over the sites of a locus and the branches in a627

phylogeny. It thus has low sensitivity, as only in loci with strong signals and multiple sites under628

selection will the signal not be canceled by sites under purifying selection (Yang and Bielawski,629

2000). A signal for positive selection may also be canceled if it is only present on a specific branch630

(Yang and Nielsent, 2002).631

A family of more versatile maximum likelihood models have been developed that incorporate632

explicit models of codon evolution and allow to test for increased rates of nonsynonymous633

changes on particular branches or in particular codons of a gene (implemented in PAML; Yang,634

2007). These methods are computationally intensive and not suitable for exploratory analyses on635

large phylogenies, while small MTBC datasets might not contain enough diversity to estimate636

parameters. They can be used, however, to obtain a more detailed picture of selective pressures in637

genes of interest and to formally test for selection using model comparisons (Yang, 1998). A recent638

example of an exploratory selection scan followed by more rigorous statistical testing is the study639

of Menardo et al. (2021b). In a first step, they identified a hypervariable epitope at the esxH locus,640

which codes for a secreted effector interacting with the human immune system. Codon models641

were then used to test for site- and branch-specific selection. Significant signatures were found642

in MTBC lineage 1 but not in other lineages and located to the N-terminal epitope of the gene.643

Further dissection of these signatures showed that they occur in strains collected in South and644

Southeast Asia, suggesting that this locus might be involved in adaptation to regional human host645

populations.646
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Two recent studies have proposed methods to estimate dN/dS for large datasets while avoiding647

site and branch averaging, respectively. Wilson et al. (2020) present a phylogeny-free (and thus fast)648

method to infer selection at the codon level. Applying their method to more than 10,000 MTBC649

genomes, they found a dN/dS significantly larger than 1 in 2,729 out of 3,979 genes. Chiner-Oms650

et al. (2022) investigated the temporal trajectories of pN/pS in a large phylogeny of 5,000 strains651

(pN/pS is based on simple counts while dN/dS includes correction through a substitution model,652

Yang, Ziheng, 2014, p. 47ff). Focusing on shifts in pN/pS along the tree, they found evidence653

for elevated nonsynonymous changes at some point in time in almost half the genes of the654

MTBC. While both studies generate long lists of candidate genes, they also lead to the inevitable655

follow-up question of exploratory selection scans: what to do with these candidates. Considering656

the difficulty of experimental validation in a human pathogen, further characterization of the657

candidates with the phylogenetically explicit methods of PAML could be useful.658

Overall, homoplasies and dN/dS tell us little about the big unknown of clonal evolution: the659

distribution of fitness effects (see introduction). Methods exist to infer the distribution of fitness660

effects from dN/dS using population genetic (reviewed by Eyre-Walker and Keightley, 2007)661

or phylogenetic (e.g. Tamuri et al., 2012) models. Recently, the relationship between selection662

coefficients and dN/dS under clonal reproduction were explored in the context of somatic evolution663

(Williams et al., 2020). The model developed in the study relaxes some of the strong assumptions664

of previous approaches, in particular constant population sizes and evolution over long timescales,665

by integrating dN/dS and the clone size distribution. It would be worthwile to explore whether666

this approach can be applied to bacterial within-host populations in order to learn more about the667

distribution of fitness effects in vivo.668

Discussion669

What evolutionary processes drive and have driven the evolution of the MTBC? The most robust670

insight, forming the premise of this review, is that horizontal gene transfer is negligible, al-671

though recombination more generally is not, considering the mutagenic role of intrachromosomal672

recombination. Regarding mutation, genetic drift, and natural selection, much remains unclear.673

The current understanding of evolutionary processes in the MTBC is based on a complex674

mesh of indirect evidence, intuitions, deductions from general principles, and assumption-rich675

models. Studies focusing on population genetic processes are few and far apart, their methods676

and datasets heterogeneous. Some of the hypotheses developed in these articles, for example677

that the evolution of the MTBC is driven by genetic drift (Hershberg et al., 2008) or purifying678

selection (Pepperell et al., 2013), have solidified into strong beliefs through repetition, even though679

the original studies have pointed out caveats and the subtler meanings of "is driven by" remain680

unexplored. With the large amount of sequencing data now available, covering evolutionary681

timescales from within-host evolution to global patterns of diversity, it would be a good moment682

to revisit some past hypotheses. We envisage focused studies that – in contrast to the typically683

broad scope of studies of the "early" genomics era – address specific hypotheses and pay more684

attention to methodological limitations.685

While studying methods is less interesting that studying organisms, the bottleneck in data686

analysis increasingly lies in the comprehension of complex methods rather than the availability687

of data (Johri et al., 2022). New tools for evolutionary simulations, such as the versatile forward688

simulation tool SLiM (Box 1), could provide a long-needed crutch to move forward by allowing to689

simulate ever more realistic biologies and life histories.690
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To illustrate the utility of simulations, we used SLiM to simulate the within-host dissemination691

dynamics of a clonal pathogen (script available on https://git.scicore.unibas.ch/TBRU/slim_692

simulations). The model is inspired by the study of Martin et al., 2017, who used DNA barcoding693

and infection mapping to infer the temporal and spatial dynamics of an MTBC infection in694

macaques. Populations in the simulation might be thought of as granulomas that grow and give695

rise to new granulomas – a metapopulation model with unidirectional migration from "full" to696

"emtpy" populations. Infection begins with a single bacterium giving rise to an exponentially697

growing population through clonal reproduction and 19 "empty" populations. Once this pop-698

ulation reaches carrying capacity K = 20, 000, it can seed new populations (Figure B1a), which699

again grow and can seed new populations when K is reached. More specifically, each generation a700

number of n migrants is drawn from a Poisson distribution with mean 1; n individuals are then701

drawn from a random population that has reached K and migrated to a random empty population702

until all populations are occupied. Exemplary growth dynamics of the simulation are depicted703

in Figure B1b. Mutations are simulated at a rate µ = 5 × 10−10/bp/gen in a genome of 4 Mb.704

Selection is either assumed to be absent (s = 0) or purifying (s = −9.5e − 4), as proposed by705

Pepperell et al., 2013. The simulation ends after 70 generations, which with a generation time706

of 24 h corresponds to a 10 week infection. For both selection coefficients, the simulation was707

replicated 100 times.708

Figure 4: A metapopulation model for within-host evolution. a) Infection begins with a single bacterium giving rise to
an exponentially growing population through clonal reproduction. Once this population reaches carrying
capacity K = 20, 000, it can seed new populations which again grow exponentially. b) Exemplary growth
dynamics of the model, the solid line showing total population size, dashed lines showing subpopulation sizes.
c) Site frequency spectrum at generation 70. d) Number of individuals with 0 to 4 SNPs at generation 70.

Independently of purifying selection, the dynamics of clonal growth and dissemination over709

70 bacterial generations give rise to an extreme skew towards rare alleles (Figure B1c). A large710

proportion of the mutations are in fact singletons, that is, only present in a single individual. At711

generation 70, the vast majority of individuals have no mutation, except in few instances where712
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a mutation arose early (Figure B1d). Some simulations produced outlier values because not all713

populations were "filled" after 70 generations.714

The purpose of this simulation is to illustrate the simulation approach. Some potential715

applications of evolutionary simulations for the MTBC are listed in the following.716

Simulations of structured within-host populations could be used to investigate the implications717

of sampling and culturing for our understanding of within-host diversity, and to develop new718

experimental designs and sampling strategies. How representative, for example, can sputum719

samples possibly be of within-host diversity? Coupling within- and between-host evolution,720

periodic bottlenecking could be simulated to study how diversity accumulates through time as721

a function of bottleneck size, purifying selection, or mutation rates. This would lead to a more722

nuanced understanding of transmission bottlenecks, which have more complex consequences than723

simple reduction of diversity.724

Gene conversion between closely related strains could be simulated to test different methods to725

infer recombination. More generally, methods should be tested on simulated data to understand726

their behavior and make an informed choice, instead of resorting to the typical bioinformatics727

approach of using multiple methods and reporting intersecting results, which leaves the door728

open to confirmation bias. Finally, the ultimate challenge would be to try to simultaneously infer729

demography and selection using approximate Bayesian computation (Johri et al., 2022). It is diffi-730

cult, however, to conceive what kind of data would be suitable for this. At the microevolutionary731

scale that is most straightforward to simulate, there is just so little diversity that it is dubious that732

parameter-rich models could be fitted with any confidence.733

Simulations are not a panacea, but they allow to raise the debate to a more transparent,734

quantitative level than achieved by the so far largely verbal arguments. If nothing else, they could735

allow to better understand what kind of inference is at all possible, given the lack of HGT and the736

low levels of genetic diversity in monomorphic bacteria.737
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