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Abstract
Exchange of genetic material through sexual reproduction or horizontal gene transfer is
ubiquitous in nature. Among the few outliers that rarely recombine andmainly evolve by de
novomutation are a group of deadly bacterial pathogens, including the causative agents of
leprosy, plague, typhoid, and tuberculosis. The interplay of evolutionary processes is poorly
understood in these organisms. Population genetic methods allowing to infer mutation,
recombination, genetic drift, and natural selection make strong assumptions that are
difficult to reconcile with clonal reproduction and fully linked genomes consisting mainly
of coding regions. In this review, we highlight the challenges of extreme clonality by dis-
cussing population genetic inference with the Mycobacterium tuberculosis complex, a group
of closely related obligate bacterial pathogens of mammals. We show how uncertainties
underlying quantitative models and verbal arguments affect previous conclusions about
the way these organisms evolve. A question mark remains behind various quantities of
applied and theoretical interest, including mutation rates, the interpretation of nonsynony-
mous polymorphisms, or the role of genetic bottlenecks. Looking ahead, we discuss how
new tools for evolutionary simulations, going beyond the traditional Wright-Fisher frame-
work, promise amore rigorous treatment of basic evolutionary processes in clonal bacteria.
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Introduction

Mutation, recombination, genetic drift, and natural selection are the basic evolutionary processes that drive
the evolution of life. It is the aim and "great obsession" of population genetics to infer these processes from
patterns of genetic variation observed in nature (Gillespie, 2004). Since the Modern Synthesis of evolutionary
biology in the 1930s, a variety of mathematical models have been developed for this purpose, which today
are in wide use in the analysis of genome sequencing data (Templeton, 2021).

A problem in the application of population genetic models to empirical data is that modeling assumptions
can be a far cry from the biology and life history of real organisms. Archea and bacteria reproduce clon-
ally through binary fission, frequently undergo horizontal gene transfer (HGT), and have genomes consisting
mainly of coding regions. These characteristics are difficult to reconcile with models that are tailored to ani-
mals and plants (Woese and Goldenfeld, 2009) and commonly assume random mating, linkage equilibrium,
and neutrality (Maynard Smith, 1995; Rocha, 2018). As a consequence, outside the laboratory, studies of bac-
terial population genetics have either remained descriptive, with much effort going into understanding the
extent and effects of HGT (e.g. Denamur et al., 2021); or have resorted to models whose applicability remains
an open question (discussed by Johri et al., 2022).

While the opportunistic, hardly predictable process of HGT has been highlighted as the most problematic
breach of assumptions (Maynard Smith, 1995), a different, less frequently discussed challenge arises from the
opposite extreme of the recombination spectrum: strictly clonal evolution, or the absence of any gene flow.
HGT is not a general characteristic of bacteria (Hanage, 2016). Some bacteria are "monomorphic", that is, char-
acterized by low levels of sequence diversity and an apparent absence of genetic exchange (Achtman, 2008).
The causative agents of several devastating bacterial diseases of humans and animals belong to this group,
including Bacillus anthracis (anthrax), Salmonella enterica serotype typhi (typhoid), Yersinia pestis (plague), My-
cobacterium leprae (leprosy), and the members of the Mycobacterium tuberculosis complex (tuberculosis). Our
understanding of the evolution of these bacteria is hampered not only by the low information content in their
genomes, but also because there is little theoretical and conceptual work on population genetic inference
under extreme clonality.

Here we highlight the obligate pathogens of the Mycobacterium tuberculosis complex (MTBC) as a model
to study clonal evolution. The MTBC comprises a group of closely related pathogens that cause tuberculosis
(TB) in humans and a range of wild and domestic animals (Figure 1). Human TB mainly affects the global
poor and has killed more than 1.6 million people in 2021 (World Health Organization, 2022). The evolution
of antibiotic resistance is a main challenge and focus of research in TB. The genomes of thousands of MTBC
strains from around the world have been sequenced, mainly to study epidemiological dynamics and drug
resistance evolution, but also to infer the origin and biogeographic history of the species (Gagneux, 2018).

Members of the MTBC are among the more diverse of the predominantly clonal bacteria (Achtman, 2012),
even though individual strains differ only by a maximum of ca. 2,400 SNPs across the 4.4 Mb genome (Fig-
ure 2a). At the molecular level, the MTBC is further characterized by a high GC content, a high proportion
of nonsynomyous polymorphisms, and a low proportion of homoplastic mutations (Figures 2b-d). Different
hypotheses have been put forward to explain these patterns and, more generally, what drives the evolution
of the MTBC. Besides lack of HGT, prominent and conflicting propositions are that the dominant process in
the evolution of the MTBC is genetic drift (Hershberg et al., 2008) or purifying selection (Namouchi et al., 2012;
Pepperell et al., 2013).

In this review, we discuss these and other hypotheses about the basic processes driving the evolution of the
MTBC. Given the unclear applicability of population genetics to highly clonal organisms, particular attention is
paid to models, their assumptions, and the traits of the MTBC that might conflict with the latter. Evolutionary
simulations are discussed as a way to achieve a more quantitative treatment of frequently invoked processes
such as purifying selection or periodic bottlenecks.



L2

L3

L4

L7

L1

La1

La2

M. bovis

M. caprae

M. orygis

4E-5

L6

L9

L8

L5

La3

M. microti

M. pinnipedii
aDNA Peruvian remains

M. suricattae
Dassie bacillus 
M. mungi
Chimpanzee bacillus

M. canettii

Figure 1. Rooted maximum likelihood phylogeny of the MTBC estimated from genome-wide SNPs (treeadapted from Zwyer et al. (2021); for better readability large lineages were downsampled to 30 strains). M.
canettii is the outgroup, human-adapted lineages (L1 to L9) are shown in colors, animal-adapted lineages inblack. Species names represent the historically grown nomenclature, lineage names are a more recent clas-sification based on genomic data. Lineages 1 to 4 and 7 are also referred to as M. tuberculosis sensu stricto,lineages 5 and 6 asM. africanum. Bootstrap supports for the lineages are above 0.95 and are not displayed inthe figure.

Mutation

While in some bacteria new variants aremore likely to be generated by HGT than bymutation (Vos andDidelot,
2009), under extreme clonality de novo mutations are the main source of genetic diversity and adaptation.
The speed and direction in which a clonal prokaryote evolves is thus determined by the rate and spectrum of
new mutations and by their effect on fitness. Numerous studies have investigated mutagenesis in the MTBC
(reviewed by Mcgrath et al., 2014). As discussed below, in addition to methodological issues in estimating
mutation rates, the life history of the bacteria, which can include extended periods of dormancy, poses a
main challenge in understanding the rate at which variation originates in vivo.

In the MTBC literature, as elsewhere, the mutation rate is sometimes confounded with the molecular clock
rate. While the former refers to the rate at which mutations originate in the genome, the latter stands for
an allegedly constant rate at which mutations accumulate through time (Ho et al., 2011). Both rates are sub-



sumed in the more general concept of evolutionary rates. As discussed below, the power law that describes
the slowing of evolutionary rates as one considers longer timescales is not as clear in the MTBC as in other
bacteria: in vitromutation rate estimates can be similar to clock rate estimates fromdatasets including ancient
DNA. How far methodological biases or evolutionary processes underlay this surprising finding remains to be
understood.

Plasticity of mutation rates and generation times

Fluctuation assays suggest that point mutations in the MTBC appear at a rate of about 2.1× 10−10 mutations
per site per generation and at a similar rate during active disease in macaques if a generation time of 20 h
is assumed (Ford et al., 2011, Figure 3). A later study, using the same fluctuation assay, found in vitro rates
of 6.01 × 10−10 in a lineage 4 and 2.16 × 10−9 in a lineage 2 strain, suggesting somewhat faster and vari-
able mutation rates within the MTBC (Ford et al., 2013). Comparatively fast rates were also proposed in two
additional experimental evolution studies. After serial passaging of a MTBC strain through macrophage-like
THP1 cells for 80 generations, Guerrini et al. (2016) inferred a rate of 5.7×10−9 per bp per generation. Copin
et al. (2016), passaging bacteria in mice and assuming a generation time of 20 h, estimated a mutation rate of
3.8× 10−9 in wild type mice and of 7.7× 10−10 in T cell-deficient mice, suggesting that the presence of T cells
leads to elevated mutation rates.

Overall, per-generation mutation rates estimated for the MTBC are well within the range of those in other
bacteria, which typically are in the order 10−10 (reviewed by Katju and Bergthorsson, 2019). When trying to
scalemutation rates to calendar time, however, complications due to the complex life history of these bacteria
become apparent. The bacteria of the MTBC have long generation times ranging from 18 h in nutrient rich
medium to potentially much longer time-spans in vivo (Colangeli et al., 2020). Scaled to clock time, mutation
rates are thus low in the MTBC compared to other bacteria, at least in the laboratory (Gibson et al., 2018).

In contrast to pathogens employing a "hit and run" strategy, bacteria of the MTBC can enter a state of re-
duced activity and persist for years in latent infections (Dutta and Karakousis, 2014). It is unclear whether
latency and longer generation times imply a reduced mutation rate, as expected if mutation is driven by repli-
cation, or not, as expected if environmental stress drives mutation (Weller andWu, 2015). Ford et al. (2011), in
their experimental infection ofmacaques, found similar rates in latent and active disease (Figure 3), supporting
stress-induced mutagenesis. A more complex, two-phased scenario was suggested by Colangeli et al. (2020),
who investigated 24 paired TB cases with latently infected household contacts: mutation rates remained high
up to two years, but then decreased with longer latency as the bacteria entered a quiescent state with longer
generation times (Figure 3).

In summary, mutation rates estimated for the MTBC should be interpreted with some caution. Generation
times are only known with confidence in vitro. At the same time, fluctuation assays reflect the mutation rate
of a single gene (rpoB, the main drug resistance target of rifampicin) that might not be representative for the
whole genome (Katju and Bergthorsson, 2019); and in the absence of stress, which in vivomight alter both the
rate and the spectrum of new mutations (Fitzgerald and Rosenberg, 2019).

The time (in)dependence of evolutionary rates in the MTBC

Molecular dating has led to a re-evaluation of the origin and history of theMTBC, as formany other organisms.
Earlier studies, assuming a synonymousmutation rate or a co-diversification of humans and theMTBC, located
the most recent common ancestor of the existing lineages in Africa and suggested a scenario according to
which humans and the MTBC have co-diversified across the globe (Comas et al., 2013; Kapur et al., 1994).
Recent estimates,making use of tip dating, ancientDNA (aDNA) samples, andBayesian phylogenetics, propose
a more recent common ancestor in the Neolithic ca. 6,000 years ago (Bos et al., 2014; Kay et al., 2015; Sabin
et al., 2020).

One caveat regarding these estimates is the poorly understood variability of evolutionary rates in theMTBC



Figure 2. Genetic diversity and molecular characteristics of the MTBC. a) Pairwise genetic differences be-tween the strains shown in Figure 1, based on single nucleotide polymorphisms from Zwyer et al. (2021). b) tod) showmolecular characteristics of the MTBC compared to 150 other bacterial species with diverse lifestyles(data from Bobay and Ochman, 2018). Red lines show the values for the bacteria of the MTBC (M. tuberculosis
sensu stricto, M. bovis, and M. africanum). b) GC content, c) dN/dS , the genome-wide ratio of nonsynonymousto synonymous polymorphisms, d) the ratio of homoplastic to non-homoplastic mutations, a proxy for recom-bination.

through time. For mitochondrial DNA, viruses, and bacteria, evolutionary rates usually appear faster when
estimated from recent polymorphisms (Ho et al., 2011). For bacteria, Duchêne et al. (2016) found a clear
negative association, described by an exponential decay curve, between clock rates and sampling time spans
in 16 bacterial species, with an order of magnitude difference between a 10 year and a 100 year sampling
period. The delayed effect of purifying selection is the most prominent explanation for this time dependence
of evolutionary rates, although methodological biases might also contribute (Emerson and Hickerson, 2015;
Ho et al., 2015). Time dependence can have a large effect onmolecular dating: Membrebe et al. (2019) showed
that accounting for purifying selection by using relaxed clock or epoch models can shift divergence times one
order of magnitude back in time. Could this explain the surprisingly recent time to the most recent common
ancestor (MRCA) estimated by the aDNA studies?

In the study of Duchêne et al. (2016), theMTBC does not follow the general pattern of time depence: almost
identical rates were obtained from samples spanning 15 and 895 years. Similarly, Menardo et al. (2019) found
only marginally lower rates when calibrating the clock with three samples of ancient DNA from Precolumbian
human remains and an extensive MTBC dataset covering a sampling period of 30 years. An overview of evo-
lutionary rates estimated for the MTBC illustrates the large variability and uncertainty of rate estimates, but
also suggest an overall trend of time dependence (Figure 3). As Menardo et al. (2019) showed in their exten-
sive study of the molecular clock in the MTBC, clock rates vary substantially among lineages and clades of the
MTBC and have large confidence intervals. Lineage 1, for instance, seems to have evolved faster than other
lineages, and indeed faster than the L4 strain in the fluctuation assay of Ford et al. (2011). On the slow end
of the spectrum is the long-term clock rate estimated by Sabin et al. (2020), for which all six aDNA samples
available so far were included (1.4× 10−8, 95% HPD 9.46× 10−9, 1.96× 10−8).

The low diversity of the MTBC certainly contributes to the large variability and uncertainty in clock rate
estimates. SNPs are not only few in the MTBC, but also to a large proportion singletons (Chiner-Oms et al.,
2019; O’Neill et al., 2015) and thus not informative about tree topology. In a Bayesian setting, prior-posterior
comparisons are therefore crucial to determine whether the data is informative when applying parameter-
rich models such as relaxed clocks. This does not only apply to the clock but also to the tree model, which



also biases clock rate estimates in data-limited scenarios (Menardo et al., 2021a; Möller et al., 2018). To our
knowledge, prior-posterior comparisons have not been published in aDNA studies so far, and the limitations
inherent to low-diversity MTBC genomes remain unclear.

Why are MTBC genomes so GC-rich?

In bacteria, newly arising mutations are biased towards adenines and thymines (Hershberg and Petrov, 2010;
Hildebrand et al., 2010). If mutation bias and genetic drift alone would determine the nucleotide landscape
(mutation-drift equilibrium), the expected GC content in the MTBC would be 41.5% (Hershberg and Petrov,
2010). MTBC genomes, however, consist to 65.6% of guanines and cytosines (Figure 2b; Cole et al., 1998),
with values of 80% at synonymous and 60% at nonsynonymous sites. Such a discrepancy between observed
and expected GC content is observed in many prokaryotes, whose genomes vary hugely in GC content (Figure
2b). It implies that an unknown process, unaccounted for in standard models of molecular evolution, affects
the segregation of polymorphisms through time (Rocha and Feil, 2010).

Several large-scale comparative studies have attempted to find a general explanation for the discordance
between expected and observed GC content in prokaryotes. One prominent hypothesis is that nucleotide
composition reflects adaptation to environmental conditions, for example through selection for thermal sta-
bility of DNA (e.g. Reichenberger et al., 2015). An intriguing twist to this idea was recently added by Weissman
et al. (2019), who described a correlation between GC content, environmental variables, and the presence
of Ku, the key gene in the non-homologous end-joining (NHEJ) pathway for DNA break repair. The authors
propose that high GC content could be beneficial in bacteria suffering stress-induced double strand breaks
in periods of slow or no growth, when NHEJ is required for repair because only a single copy of the genome
is present. This is an interesting scenario for the MTBC, where long periods of latency can occur (see above)
and the Ku gene is present.

An alternative explanation for GC bias that does not imply a selective advantage is GC-biased gene con-
version (gBGC). This process occurs during homologous recombination when mismatches in heteroduplex
DNA are preferentially resolved into guanines and cytosines (reviewed by Duret and Galtier, 2009). The gBGC
hypothesis predicts that GC content is higher in regions with high recombination rates, which is observed
in mammalian genomes. In bacteria, the role of gBGC is contested. Whether comparative studies find asso-
ciations between GC content and recombination depends on the method used to infer recombination, and
exceptions to general trends are common (Bobay and Ochman, 2017; Lassalle et al., 2015).

With its numerous genome sequences that can be placed in a robust phylogenetic framework, the MTBC
provides an opportunity to study the evolution of base composition in detail and thus to complement broad
comparative studies. A hypothesis to test is that the MTBC is evolving from the generally GC-rich state of my-
cobacteria (58 to 70%, Mycobacterium sp. genomes on NCBI) to a more AT-rich state characteristic of obligate
pathogens (Rocha and Danchin, 2002, Figure 2b), including Mycobacterium leprae (58%).

Recombination

How "strict" is clonality in the MTBC? In the past, bacteria were classified as "clonal" or "monomorphic" based
on a handful of housekeeping genes (Maynard Smith et al., 1993; Selander et al., 1987). With the full reso-
lution of whole genome sequences, this classification needs to be reassessed. As discussed in the following,
experimental and observational evidence agree that the MTBC is predominantly clonal, and that few to no
new genes have found their way into the MTBC since the most recent common ancestor of the currently ex-
isting lineages. In contrast to interstrain recombination, intrachromosomal recombination is common and
increasingly recognized as an important source of genetic variation.



Experimental evidence: genetic factors versus lack of opportunity

Most of the knowledge about the molecular mechanisms of HGT in mycobacteria stems from research with
Mycobacterium smegmatis, a fast-growing, non-pathogenic mycobacterium more easily amenable to cultiva-
tion and genetic engineering than the bacteria of the MTBC. Mycobacteria lack the traditional components of
HGT, possibly because transfer through the complex cell envelopes of these diderm bacteria requires other
mechanisms (Madacki et al., 2021). Investigations of gene transfer inM. smegmatis have led to the description
of a previously unknown form of bacterial conjugation: distributive conjugal transfer (DCT, reviewed by Gray
and Derbyshire, 2018).

Of particular interest regarding the evolution of the MTBC is the observation of DCT in the closely related
Mycobacterium canettii. M. canettii shares an average nucleotide identity of 97.5% with the MTBC, yet is strik-
ingly more diverse: a handful of M. canettii strains from eastern Africa harbor more genetic diversity than
the whole MTBC (Supply et al., 2013). Mating assays have shown that DCT occurs in M. canettii, while no DCT
was observed between three MTBC strains (Boritsch et al., 2016). The same assays combining M. canettii and
MTBC strains revealed that the latter can act as donors but not as receivers of DNA during DCT, as pieces of
MTBC DNA were integrated intoM. canettii genomes but not vice versa (Madacki et al., 2021). InM. smegmatis,
polymorphisms in the esxI secretion locus underlay self identity and conjugal compatibility (Clark et al., 2022).
In M. canettii and the MTBC, the molecular mechanisms underlying conjugal compatibility do not depend on
esxI and remain to be elucidated (Madacki et al., 2021).

Lack of opportunity has been proposed to explain why intracellular pathogens such as the MTBC do not
seem to recombine (Casadevall, 2008; Chiner-Oms et al., 2019). Against this scenario, it can be argued that
there is more opportunity to recombine than the label "intracellular pathogen" might suggest. The bacteria
of the MTBC are not confined to intracellular environments, but are also present in large extracellular popu-
lations after the induction of necrosis (Orme, 2014). Furthermore, mixed infections do occur (Moreno-Molina
et al., 2021; Tarashi et al., 2017), such that diverged strains might find themselves in close proximity. Rather
than a mere side effect, as implied in the lack of opportunity hypothesis, absence of HGT could be an evolu-
tionary strategy with a genetic basis. The predominance of clonality in a wide range of pathogenic organisms
could indicate that clonality is adaptive by preventing the breakup of favorable allele combinations (Tibayrenc
and Ayala, 2017). Further investigation into the genetic and environmental determinants of extreme clonality
would be worthwhile, and the M. canettii-MTBC system provides a great opportunity to elucidate the poorly
understood evolutionary transition to extreme clonality characteristic of many obligate pathogens.

Recombination between closely related strains: how strict is clonality?

Genome sequences from diverse MTBC strains are an important complement to experimental data, which
leave open the question how far the observed outcome depends on the specific conditions and strains used
in the laboratory. Various studies have investigated the extent of HGT in natural strains of the MTBC, moti-
vated by the observation how HGT accelerates resistance evolution in other bacterial pathogens (Davies and
Davis, 2010). Some have suggested that interstrain recombination does occur. Liu et al. (2006) found that mu-
tation alone cannot explain the observed haplotype diversity, and identified a mosaic region in front of a PPE
gene suggesting a recombination hotspot. They also point out the possibility that the patternmay have arisen
through recombination between homologous sequences in the same genome. Namouchi et al. (2012) inves-
tigated 24 sequenced MTBC genomes and reported that "four different approaches showed evident signs of
recombination in M. tuberculosis", with recombination typically involving small tracts of around 50 bp. On the
other hand, the most extensive investigation to date, using different methods on genome-wide SNPs in 1,591
diverse strains, found "no measurable ongoing recombination among the MTBC strains" (Chiner-Oms et al.,
2019).

Generalizing from these studies is difficult due to the diversity of datasets and methods used. It has been
suggested that the signs of recombination described by Namouchi et al. are mainly artefacts as they are



overrepresented in regions difficult to align or assemble, in particular repetitive and low-complexity regions
in insertion sequences and the expanded PE/PPE gene families (Godfroid et al., 2018). Alternatively, signs
of recombination can arise from gene conversion during intrachromosomal recombination, to which these
repetitive sequences are prone (Liu et al., 2006). Gene conversion is the non-reciprocal transfer of DNA from
one homologous sequence to another, which in the MTBCmight account for recombination signatures in ESX,
PE, PPE, PE/PGRS gene families (Karboul et al., 2008; Phelan et al., 2016; Uplekar et al., 2011).

Intrachromosomal recombination can also have more dramatic outcomes. More and more structural vari-
ants are described in MTBC genomes, ranging from insertion sequence (McEvoy et al., 2007) and gene copy
number polymorphisms (Fishbein et al., 2015) to massive inversions (Merrikh and Merrikh, 2018) and tandem
duplications (Wang et al., 2022). This is a vast topic deserving a dedicated review. It is brought up here to
emphasize that recombination is an umbrella term for diverse processes of inter- and intrachromosomal ex-
change; and that clonality does therefore not imply absence of recombination, strictly speaking, but only of
HGT. In the near future, long-read sequencing should allow more extensive studies of the repetitive "dark
matter" in the MTBC genome and how it generates genetic variation intrachromosomally.

A basic limitation of methods to infer recombination is that they cannot distinguish de novo mutations
from allelic recombination between closely related individuals, which might involve the exchange of a single
nucleotide (Martin et al., 2011). Allelic recombination does not introduce new genes, but it can affect the
nucleotide landscape through recombination-associated processes like biased gene conversion (Duret and
Galtier, 2009) or increased mutation rates around strand breaks (Fitzgerald and Rosenberg, 2019). While HGT
between close relatives would be less restricted by opportunity, genetic incompatibilities might prevent gene
transfer between close relatives, as in M. smegmatis (Clark et al., 2022).

Figure 3. Evolutionary rates in the MTBC. Only studies that report confidence intervals were considered. Forthe fluctuation assay estimates in Ford et al. (2011, 2013), a generation time g = 20hwas assumed to translaterates to calendar time. The rates of Colangeli et al. (2020) were translated back to calendar time by assuming
g = 18h, as reported by the authors. From themolecular clock study ofMenardo et al. (2019), BEAST estimatesare reported for a 1/x clock rate prior and constant population size. For the BEAST analysis of Sabin et al.(2020), results for the birth-death skyline model with an uncorrelated lognormal clock are reported.



Genetic drift and purifying selection

Once amutation appears in a genome, its fate depends on the selective advantage or disadvantage it confers –
and on chance. Genetic drift is the "chance factor" in evolution: it describes the undirected, stochastic change
of allele frequencies due to sampling effects (Plutynski, 2007). Genetic drift sets limits to natural selection
such that, by chance, deleterious alleles can increase and beneficial ones decrease in frequency (Kimura, 1983;
Lynch, 2007). Increased genetic drift thus implies reduced purifying selection, and the same genomic evidence,
discussed below, underlies claims as to the relative importance of the two processes. For this reason genetic
drift and purifying selection are treated together, while positive selection is discussed in the next section.

Genetic drift is frequently invoked as an ad hoc explanation, but actually inferring and quantifying it is dif-
ficult. In the standard Wright-Fisher (WF) model with panmixia, discrete generations, and no selection, drift
occurs when the alleles to form the next generation are randomly sampled from the parental population
(Fisher, 1930; Wright, 1931). In bacteria, population subdivision, linked selection, and demographic changes
imply that sampling effects are stronger than under panmixia (Price and Arkin, 2015), and that effective pop-
ulation sizes (Ne) are orders of magnitude smaller than census sizes (Bobay and Ochman, 2018).

As discussed in this section, arguments about the strength of drift in theMTBC are largely based on indirect
evidence in the form of low diversity and overabundant nonsynonymous polymorphisms. Estimates ofNe are
sometimes obtained in Bayesian skyline analyses, but their underlying assumptions are problematic. Finally,
we discuss transmission bottlenecks in the MTBC, a main mechanism of stochastic sampling whose mid- and
long-term consequences go beyond simple reductions in genetic diversity and remain to be understood.

Do overabundant nonsynonymous polymorphisms indicate strong genetic drift?

In the MTBC, the drift-versus-selection discussion has mainly revolved around the large proportion of nonsyn-
onymous polymorphisms observed in the species. The MTBC has a genome-wide ratio of nonsynonymous
to synonymous polymorphisms (dN/dS ) of around 0.5 when diverse strains from across the phylogeny are
considered (Figure 2c). This is one third higher than in the closely related M. canettii (Supply et al., 2013) and
more than six times higher than the median (0.076) of the 153 diverse species studied by Bobay and Ochman
(2018).

Hershberg et al. (2008) have interpreted the high dN/dS in the MTBC as evidence for "extremely reduced
purifying selection" – in other words strong genetic drift – which would allow the accumulation of deleterious
nonsynonymousmutations. The authors refute the alternative explanation that nonsynonymous changes are
due to positive selection by pointing out that dN/dS does not differ between housekeeping, surface-exposed,
and virulence genes, as might be expected if host immunity would drive adaptive diversification. This inter-
pretation of dN/dS fits well with the generalization that the intracellular niche of pathogens and symbionts
implies smaller population sizes and stronger drift. Kuo et al. (2009) inferred strong drift in human pathogens
including the MTBC and reported a strong inverse relationship between drift and genome size. A similar con-
clusion is reached by Balbi et al. (2009), who compared E. coli with the closely related pathogenic Shigella and
found signs of increased drift in the latter, including an excess of nonsynonymous mutations and of transver-
sions, which are proportionally more nonsynonymous and thus deleterious than transitions.

Different studies have challenged the view that purifying selection is "extremely reduced" in the MTBC. In
the so far only attempt to quantify the strength of purifying selection across the genome, Pepperell et al. (2013)
fitted a model including demographic expansion and a fraction of sites under selection to the site frequency
spectrum obtained from a global sample of the MTBC. They infer purifying selection at nonsynonymous sites
across 95% of the genome, with a selection coefficient s of−9.5× 10−4. This value is interpreted as "strong"
compared to values in humans and Drosophila. The authors used simulations of completely linked genomes
to evaluate their models, which assume linkage equilibrium between sites. They find that their best model
performs poorly in some scenarios; specifically, strong selection can be misinferred when complete linkage is
combined with weak purifying selection. Other model assumptions were not tested, for example the absence



of population subdivision or that the population follows a simple demographic model of exponential growth.
Bringing in a temporal perspective on dN/dS , Namouchi et al. (2012) found 25% more nonsynonymous

SNPs on terminal branches in their tree of 22 globally diverse strains. This suggests that deleterious nonsyn-
onymous mutations are purged through selection over time, such that they become scarce in deeper parts
of the phylogeny (Rocha et al., 2006). Trauner et al. (2017) present evidence that such purging might already
occur within the host, as nonsynonymous within-host diversity is lower than expected under a model of ran-
dom mutation. An implication of within-host purifying selection is that mutation rates estimated from in vivo
experiments might be too low. In a simulation study Morales-Arce et al. (2020) suggest that genome-wide
mutation rates in the MTBC might be two orders of magnitude faster, in the order 10−8/bp/generation, if one
accounts for progeny skew (Box 1) and the removal of mutations through purifying selection during within-
host evolution.

Strong genetic drift leaves other signs than an excess of nonsynonymous mutations, including pseudoge-
nization, proliferation of selfish genetic elements, or an increased proportion of transversions. With strong
drift and clonal reproduction, such signatures can accumulate through Muller’s ratchet, where lack of recom-
bination and reduced efficacy of purifying selection lead to a build-up of deleterious mutations (Felsenstein,
1974; Muller, 1964). As pointed out by Namouchi et al. (2012), these signatures are hardly evident in theMTBC.
There are 30 pseudogenes in the H37Rv reference genome (Cole et al., 1998), in line with the generally low
number of pseudogenes in bacterial genomes (Lawrence et al., 2001). Also insertion sequences do not thrive
in the MTBC: almost all IS activity is due to a single active element, IS6110, which is over-represented in inter-
genic regions, occurs at low frequencies, and thus seems to evolve under strong purifying selection (McEvoy
et al., 2007). Finally, transitions occur well in excess of transversions (Payne et al., 2019). Taken together, there
is scant evidence for genome erosion driven by Muller’s ratchet in the MTBC.

Are synonymous sites under selection?

How could the high genome-wide dN/dS in the MTBC be explained if not by strong drift? An intriguing alter-
native scenario is purifying selection at synonymous sites (Namouchi et al., 2012). High dN/dS can reflect an
overabundance of nonsynonymous mutations (numerator), but also a lower number of synonymous muta-
tions (denominator) than in other species. Fitness effects of synonymous mutations can arise when different
codons result in variation in RNA stability, protein folding, and translation efficiency and accuracy (reviewed
by Hershberg and Petrov, 2008). Already weak selection on synonymous sites can inflate dN/dS , as shown in
a recent study of codon usage in 13 bacterial genomes (Rahman et al., 2021).

In the MTBC, codon frequencies are associated with gene expression (Andersson and Sharp, 1996; Pan et
al., 1998), but also with the hydrophobicity of proteins and sequence conservation (De Miranda et al., 2000).
As suggested in the latter study, a combination of selective pressures may thus act on synonymous sites in
the MTBC, including the more efficient and accurate translation of certain codons and constraints on protein
folding. Wang and Chen (2013) assessed possible selection on synonymous sites by comparing synonymous
(ds) to intergenic (dI ) diversity across 13 MTBC genomes. Diversity varies strongly depending on the genomic
position, suggesting variation in mutation rates or selective pressures across the genome. In the majority of
windows, however, dS is higher than dI . Under the assumption that intergenic sites are free from selective
pressures, Wang & Chen conclude that synonymous sites are more diverse than expected by chance and
therefore evolve under diversifying, that is, positive selection.

Alternatively, and in line with the initial hypothesis of purifying selection at synonymous sites, higher syn-
onymous than intergenic diversity is also expected when intergenic sites are even more constrained than
synonymous sites. Intergenic regions in bacteria are packed with regulatory motives and can hardly be as-
sumed to evolve neutrally (Molina and Van Nimwegen, 2008; Rocha, 2018). Rather than comparing synony-
mous against assumed neutral sites, Thorpe et al. (2017) assessed the relative strength of purifying selection
by comparing the proportion of singleton mutations among different site categories, reflecting that a higher
proportion of singletons indicates stronger purifying selection. In five out of six species, site categories show



a clear ranking, with the proportion of singletons increasing from synonymous, intergenic, non-synonymous,
to non-sense mutations. In the MTBC, however, no differences between categories are apparent: there are
similar proportions of singletons in all four categories. This surprising observation can at least partly be ex-
plained by the dataset used by the authors, which includes many near-identical MTBC strains sampled in a
single country. Still, that even at short timescales non-sensemutations in theMTBC do not appear to be under
stronger selection than synonymous mutations asks for clarification in future studies.

Box 1: Progeny skew in prokaryotes?

Recently, progeny skew was brought up as a neglected aspect of MTBC evolution with potentially signif-
icant effects on genetic diversity (Morales-Arce et al., 2020) and population genetic inference (Menardo
et al., 2021a). Progeny skew refers to the unequal distribution of offspring among parental individuals
in a population. Frequently mentioned examples are viruses, where a single parental sequence can give
rise to numerous copies, or marine organisms reproducing through broadcast spawning. Wright-Fisher
and coalescence models assume that variation in offspring number is small (Tellier and Lemaire, 2014),
which leads to misinference when applied to such organisms (Sackman et al., 2019).

While progeny skew in viruses has a direct interpretation in the way these organisms reproduce, it
is less straightforward to apply to prokaryotes. Archea and bacteria reproduce through binary fission,
which can be thought of as each parent having two offspring and dying after division (Cury et al., 2022);
or, in an age-structured population, as each parent having one offspring and surviving. Progeny skew
can arise over multiple generations through rapid adaptation, superspreading events, or repeated bot-
tlenecks, and it is thus a meaningful parameter in population-based models with a continuous timescale
(Menardo et al., 2021a). In individual-based, discrete-generation models, it is preferable to simulate the
processes giving rise to progeny skew explicitly.

Bayesian skyline plots and the issue of storytelling

Neutral sites are in short supply in prokaryotes (Rocha, 2018). In contrast to eukaryotes, the streamlined
genomes of archea and bacteria do not contain large swaths of decaying repeats and other DNA debris which
can be assumed to be non-functional. This poses a particular challenge for the estimation effective population
sizes and the quantification of genetic drift, which traditionally relies on the availability of sites not affected
by natural selection (Charlesworth, 2009).

A popular approach to estimate effective population sizes and their change through time are Bayesian
skylines (Ho and Shapiro, 2011). These models are frequently used in Bayesian phylogenetics, where Ne is
treated as a nuisance parameter. Many studies, however, interpretNe literally as historical change in popula-
tion size and provide instructive examples of how strong assumptions are ignored for the sake of storytelling.
Bayesian skyline models assume neutrality in order to translate coalescence times into population sizes. Sev-
eral studies have shown that non-neutral processes confound demographic inference and should not simply
be assumed away. Recombination (Hedge and Wilson, 2014), population structure (Heller et al., 2013), sam-
pling design, gene conversion, and selection (Lapierre et al., 2016), as well as the skewness of reproductive
success (Menardo et al., 2021a) all create spurious signs of population size changes. As observed by Lapierre
et al., 2016, such methodological biases might explain why population size trajectories look suspiciously simi-
lar for a wide range of species.

Despite these caveats, Bayesian skyline plots continue to be used and interpreted liberally in theMTBC liter-
ature. Skyline plots were presented as evidence for a Neolithic expansion (Comas et al., 2013), expansions of
specific lineages (Merker et al., 2022; Mulholland et al., 2019; O’Neill et al., 2019), or a recent co-expansion with
humans in Tibet (Liu et al., 2021). That population size trajectories "make sense" in the historical narratives of
these articles does not add to their credibility, but rather puts into question the way results are made sense of



(Katz, 2013). Instead of literal interpretations of Bayesian skylines, an improved understanding is required of
how far the demographic past can be reconstructed from the genomes of extremely clonal bacteria without
taking into account confounding factors.

How do bottlenecks affect genetic diversity?

In the MTBC, genetic drift is often associated with transmission bottlenecks or founder events, when few or
even single strains initiate an infection or an outbreak (Pepperell et al., 2010; Smith et al., 2006). TB infections
can be initiated by single to few cells (Ryndak and Laal, 2019); each transmission is thus a massive founder
event where, from themillions of cells forming a within-host population, only a few cells are sampled to start a
new population. Similar, small-scale colonization dynamics occur during within-host dissemination, as single
to few cells "found" new granulomas in the highly structured habitat of the lung (Martin et al., 2017).

While genetic bottlenecks entail an immediate loss of genetic diversity, the mid- and long-term effects of
periodic bottlenecks on genetic diversity and differentiation in clonal pathogens, where extreme bottlenecks
alternate with clonal expansions, are less clear. Periodic bottlenecks have been investigated in the context of
experimental evolution, where studies mainly focused on the effects of bottlenecks on the rate of adaptation
(e.g. Windels et al., 2021). More general considerations can be found in the population genetics literature.
One insight of potential relevance for the evolutionary dynamics of the MTBC is that, under predominant pu-
rifying selection, rates of evolution are accelerated whenNe is small because more deleterious mutations fix
due to genetic drift (Lanfear et al., 2014). In the absence of homogenizing gene flow, founder events might
thus be expected to increase genetic differentiation and overall diversity among lineages of the MTBC. Fol-
lowing this logic, the low global diversity of the MTBC (Figure 2a) is not evidence for strong bottlenecks. The
puzzling observation rather is that there is not more diversity given the repeated bottlenecks during within-
and between-host evolution and the absence of gene flow. As further discussed below, low diversity despite
frequent bottlenecking could indicate purifying selection.

The purpose of these considerations is to show that genetic bottlenecks are more complex and interesting
than they appear in the literature, where they often serve as ad hoc explanation for low diversity. More work
on periodic bottlenecks in bacterial pathogens is needed. This work could take into account some real-world
complications such as the unclear number of cells actually transmitted, which is most likely larger than the
minimum number required to start an infection (Namouchi et al., 2012). Furthermore, infection might not oc-
cur at a single time point, but extend through time as hosts are repeatedly exposed to bacteria-laden aerosol
droplets (Ryndak and Laal, 2019). This situation resembles the source-sink dynamics of metapopulation mod-
els with repeated colonization events rather than a single bottleneck.

Positive selection

Most insights about how the MTBC has adapted to environmental challenges either regard pathoadaptation
in the distant past before theMRCA, as revealed through comparative genomics (reviewed by Pepperell, 2022),
or the recent evolution of antibiotic resistance (reviewed by Gygli et al., 2017). Much less is known about the
genetics underlying adaptation to different mammalian host species, evident in host tropism (Brites et al.,
2018; Zwyer et al., 2021), or about adaptation to different human populations, as suggested by sympatric
patient-pathogen associations observed in cosmopolitan settings (Gagneux et al., 2006).

Identifying signatures of positive selection in linked genomes is challenging since most tests rely on the
comparison of haplotypes within genomes (Shapiro et al., 2009). Two diversity-based signatures that are not
haplotype-based have been used extensively to identify positive selection in MTBC genomes: homoplasy and
excess of nonsynonymous polymorphisms. In the following, we discuss the properties and limitations of these
measures andwhether they can be used to elucidate the role of positive selection beyond the case of antibiotic
resistance.



Homoplasies: how common is convergent adaptation?

Molecular homoplasy designates the independent appearance of identical mutations in different parts of a
phylogeny through chance, recombination, or convergent selection (Stern, 2013). Chance homoplasy between
genomes showing so little overall diversity is rare (Comas et al., 2009, Figure 2d), and its probability can be
assessed through permutation tests (Farhat et al., 2013). Mutation hotspots can facilitate chance homoplasy
(Galtier et al., 2006): in the MTBC, highly mutable tandem repeats frequently cause homoplasy (Outhred et al.,
2020), while it is not known how rates of point mutations vary along the genome. Recombination has been ar-
gued against as a cause of homoplasies because homoplasies in theMTBCdonot occur in clusters, aswould be
expected when recombination involves diverged DNA (Chiner-Oms et al., 2019). Non-clustering homoplasies,
however, are also expected when recombinant genomes are similar (Bobay et al., 2015). Furthermore, in-
trachromosomal recombination can generate homoplasies, as suggested by their increased occurrence in
homologous PE/PPE genes (Tantivitayakul et al., 2020).

Clear examples of convergent selection as a cause of homoplasy have been presented for genes involved
in antimicrobial resistance (Comas et al., 2012; Farhat et al., 2013). Against a background of low diversity and
rare homoplasy, some of these genes show exceptional patterns. In 1,161 strains sampled in Russia and South
Africa, one specific mutation in the katG gene, which confers isoniazid resistance, has originated more than
70 times independently (Mortimer et al., 2017). This is an extreme pattern that arises because katG is a "tight
target" of selection, that is, only single to few mutations can cause resistance without incurring high fitness
costs. In other genes ("sloppy targets"), fewer homoplasies are observed but in more positions. The high
incidence of parallelism in resistance evolution, in combination with large datasets, allows the use of genome-
wide association approaches to identify new drug resistance loci and to elucidate the genetic architecture of
resistance phenotypes (e.g. Crook et al., 2022).

The basic limitation of homoplasies as a signature of selection is that they only reveal cases of convergent
evolution. In the case of antibiotic resistance, convergence is ubiquitous. Thousands of parallel evolutionary
experiments are conducted when people around the world are treated with the same antibiotics proposed
by the WHO. For other selective pressures, things are less clear. Recently, two cases of convergent selection
were shown in studies of experimental evolution with M. canettii and the MTBC. Selecting M. canettii strains
for in vivo persistence in mice, Allen et al. (2021) identified two parallel mutations and demonstrated their
effect on persistence through gene knock-out and complementation. Smith et al. (2022) selected for biofilm
formation in experimentally evolved MTBC strains and identified two loci that mutated independently and
are associated to biofilm-associated traits and fitness proxies. Both studies found that parallel mutations
emerged in similar strains, suggesting that the genetic background constrains evolutionary trajectories. These
studies also illustrate the rapidity with which mutations otherwise rare or absent can prevail in the presence
of new selective pressures; and the significance of structural variation, as convergent evolution involved a
large duplication (Smith et al., 2022) and a deletion of two genes (Allen et al., 2021).

Convergence might not only be favored by strong selective pressures, but also through demography and
migration. Repeated introductions of sublineages into a region, as described for Tibet (Liu et al., 2021), are nat-
ural experiments where genetically highly similar strains are repeatedly confronted with a new environment.
Liu et al. identified several genes that accumulate mutations independently after repeated introductions to
the Tibetan Plateau, including sseA, a gene involved in the detoxification of reactive oxygen species, and three
genes involved in DNA repair (dnaE2, recB, mfd). With the already large and still growing amount of data on
MTBC outbreaks, such natural experiments of parallel evolution can provide valuable insights into the dynam-
ics and genes involved in local adaptation.

Nonsynonymous polymorphisms

The second widely used statistic to infer selection and its direction is the ratio of non-synonymous to synony-
mous polymorphisms dN/dS . Above, elevated genome-wide dN/dS was discussed as evidence for reduced



purifying selection. The estimates presented there (Figure 2c) were obtained by averaging over pairs of se-
quences, yielding a coarse measure that does not take into consideration that selection might be restricted to
few sites of a locus or certain branches in the phylogeny (Yang, Ziheng, 2014). To detect positive selection, a
family of versatilemaximum likelihoodmodels have been developed that incorporate explicitmodels of codon
evolution and allow to test for increased rates of nonsynonymous changes on particular branches or in par-
ticular codons of a gene (Yang and Bielawski, 2000). These methods are computationally intensive and not
suitable for exploratory analyses on large phylogenies, while small MTBC datasets might not contain enough
diversity to estimate parameters. They can be used, however, to obtain a more detailed picture of selective
pressures in genes of interest and to formally test for selection using model comparisons (Yang, 1998).

A recent example of an exploratory selection scan followed by more rigorous statistical testing is the study
of Menardo et al. (2021b). In a first step, they identified a hypervariable epitope at the esxH locus, which codes
for a secreted effector interacting with the human immune system. Codon models were then used to test
for site- and branch-specific selection. Significant signatures were found in MTBC lineage 1 but not in other
lineages and located to the N-terminal epitope of the gene. Further dissection of these signatures showed
that they occur in strains collected in South and Southeast Asia, suggesting that this locus might be involved
in adaptation to regional human host populations.

Two recent studies have proposed methods to estimate dN/dS for large datasets while avoiding site and
branch averaging, respectively. Wilson and The CRyPTIC Consortium (2020) present a phylogeny-free (and
thus fast) method to infer selection at the codon level. Applying their method to more than 10,000 MTBC
genomes, they found a dN/dS significantly larger than 1 in 2,729 out of 3,979 genes. Chiner-Oms et al. (2022)
investigated the temporal trajectories of pN/pS in a large phylogeny of 5,000 strains (pN/pS is based on simple
counts while dN/dS includes correction through a substitution model, Yang, Ziheng, 2014, p. 47ff). Focusing
on shifts in pN/pS along the tree, they found evidence for elevated nonsynonymous changes at some point in
time in almost half the genes of theMTBC. While both studies generate long lists of candidate genes, they also
lead to the inevitable follow-up question of selection scans: what to do with these candidates. Considering
the difficulty of experimental validation in a human pathogen, further characterization of the candidates with
phylogenetically explicit codon models (as implemented in PAML; Yang, 2007) could be useful.

Overall, homoplasies and dN/dS tell us little about the frequency and strength of positive selection in the
MTBC. Recently, amethod to infer selection coefficients from dN/dS under clonal reproductionwas presented
in the context of somatic evolution (Williams et al., 2020). The model developed in the study relaxes some
assumptions of previous approaches (reviewed by Eyre-Walker and Keightley, 2007), in particular constant
population sizes and evolution over long timescales. It would be worthwhile to explore whether this approach
can be applied to bacterial within-host populations in order to better understand the contribution of positive
selection in the MTBC.

Discussion

In this review, we have discussed the inference of basic evolutionary processes from patterns of genetic vari-
ation observed in the highly clonal bacteria of the MTBC. We took up a skeptical position, pointing out implicit
or explicit assumptions underlying the inferential step from pattern to process, and why these assumptions
are often problematic. In the following, we discuss a unifying scenario, the evolutionary optimum hypothesis,
to connect the different threads laid bare above and tomake a case for background selection as a key process
in monomorphic bacterial pathogens. This speculative exercise is followed by a discussion of simulations as a
key tool to transition to a more quantitative understanding of evolutionary dynamics under extreme clonality.

The bacteria of the MTBC are an outlier in the prokaryote world (Fig. 2) – and altogether outlandish when
put aside the animal and plant models that have inspired evolutionary theory. Two patterns in particular
demand explanation: the low levels of genetic diversity (a powerful deterrent for evolutionary biologists) and
the high genome-wide dN/dS in the absence of other signs of genome erosion. Given the strong orientation



of the MTBC field towards resistance evolution, only few studies have addressed these fundamental puzzles.
Hershberg et al. (2008),Namouchi et al. (2012) and Pepperell et al. (2013) stand out and continue to be cited
when genetic drift or purifying selection are invoked to explain genetic patterns in the MTBC. As shown in this
review, however, these studies offer starting points rather than final answers. Much remains to be understood
about how basic evolutionary processes contribute to evolution under extreme clonality.

The evolutionary optimum hypothesis and a case for background selection

An intriguing working hypothesis is that the bacteria of the MTBC have reached an evolutionary optimum and
are well adapted to their hosts (Brites and Gagneux, 2015). This was initially proposed as a general scenario
for monomorphic bacterial pathogens, and as a contrast to prevalent adaptive evolution in laboratory popu-
lations (Achtman, 2012). Once the key innovations had evolved that allowed these bacteria to infect humans,
adaptation slowed or largely ceased. Using the adaptive landscape metaphor, we might envisage monomor-
phic bacterial pathogens as sitting on or close to a fitness peak. In the MTBC, host tropism (Figure 1) implies
at least some diversifying selection after the MRCA. Different lineages, or sublineages, might occupy differ-
ent peaks in the adaptive landscape, reflecting the different immune environments of different mammalian
species.

Crucially, fitness is a function of the environment: the same strain might find itself on a fitness peak when
infecting a cow and at lower altitudes when in a Petri dish or a human treated with antibiotics. As evident in
the contexts of resistance and experimental evolution, bacteria of the MTBC can climb the fitness landscape
with surprising rapidity if challenged to do so. The commonplace that low mutation rates constrain evolution
in the MTBC thus needs some qualification. The mutation rate is not some fixed species or lineage property,
but a plastic trait that varies along the genome and is responsive to environmental changes (Fitzgerald and
Rosenberg, 2019), for example the presence of T cells (Copin et al., 2016) and oxidative stress (Liu et al., 2020).

Through our focus on the empirical literature, one key aspect of clonal evolution has received little atten-
tion: linked selection. Under strict clonality, the fate of a mutation arising in any of the few thousand genes
present in a typical bacterial genome is tied to all other sites in the genome. Selection acting on this mutation
affects the fixation probability of linked variation and interferes with selection at other sites (Charlesworth,
2012; Neher, 2013). The dynamics and outcome of linked selection depend on a parameter that is usually un-
known: the distribution of fitness effects (DFE) of newmutations (Eyre-Walker and Keightley, 2007). According
to the evolutionary optimum hypothesis, beneficial mutations are rare and of small effect since populations
already are well adapted. Evolutionary dynamics would thus be driven by the neutral and deleterious compo-
nents of the DFE. Different outcomes are conceivable depending on how genetic drift interferes with purifying
selection.

Strong drift in fully linked genomes is expected to lead to a build-up of deleterious mutations through
Muller’s ratchet (Felsenstein, 1974; Muller, 1964), pushing populations down the fitness slope and eventu-
ally to extinction. The restricted niche of bacterial endosymbionts has been considered to offer particularly
favorable conditions for Muller’s ratchet. In a classical study, increased dN/dS and transversion rates in en-
dosymbionts compared to free-living relatives were interpreted as evidence for evolution under the ratchet
driven by lack of recombination and small effective population size (Moran, 1996). Monomorphic bacterial
pathogens have similarly restricted niches and share some genome characteristics with endosymbionts. My-
cobacterium leprae is notable for its large number of pseudogenes (>1000), its reduced genome size (3.3 Mb),
and its "low" GC content (58%) among the GC-rich mycobacteria (Cole et al., 2001). This peculiar genome com-
position has led to predictions that this pathogen will ultimately become extinct due toMuller’s ratchet (Young
and Robertson, 2001).

The generality of the ratchet in endosymbionts has been questioned: the old age ofmany symbionts seems
hardly compatible withmutationalmeltdown, and both selection (Allen et al., 2009; Pettersson and Berg, 2007)
and recombination (Naito and Pawlowska, 2016) might prevent such an outcome. Even clearer is the case
against Muller’s ratchet inM. leprae. Adding additionalM. leprae genomes to the picture, it becomes clear that



pseudogenization and genome reduction largely preceded the MRCA of M. leprae (Monot et al., 2009). These
are not ongoing processes reflecting strong drift in non-recombining genomes, but distant events during the
transition to a pathogenic lifestyle. Regarding evolution under extreme clonality, the intriguing pattern are
not the numerous pseudogenes, but that even functionally neutral pseudogenes show so little diversity.

A mechanism of linked selection that seems more compatible with low diversity in monomorphic bacterial
pathogens is background selection (BS). BS refers to a scenario where purifying selection is effective (large
Ne) and removes deleterious mutations and linked variants, leading to a reduction in linked neutral diversity
(Charlesworth et al., 1993). Could BS explain the low diversity in pseudogenes of M. leprae, or the low syn-
onymous diversity which might be responsible for the elevated dN/dS in the MTBC and other monomorphic
bacterial pathogens? Little work has been conducted on BS in a prokaryote context. While some insights seem
generalizable, such as its diversity-reducing effect, BS can have complex, non-intuitive outcomes (e.g. Cvijović
et al., 2018; Kaiser and Charlesworth, 2009). To conclude this review, we illustrate and discuss how simula-
tions can be used to better understand evolution under extreme clonality, including the poorly understood
consequences of background selection.

Figure 4. A metapopulation model for within-host evolution, inspired by the study of Martin et al., 2017,who used DNA barcoding and infection mapping to infer the temporal and spatial dynamics of an MTBCinfection in macaques. a) Infection begins with a single bacterium giving rise to an exponentially growingpopulation through clonal reproduction. Once this population reaches carrying capacityK = 20, 000, it canseed new populations which again grow exponentially. b) Exemplary growth dynamics of the model, the solidline showing total population size, dashed lines showing subpopulation sizes. c) Site frequency spectrum atgeneration 70. Solid boxes show the results for s = 0, dashed boxes for s = −9.5e − 4. d) Number ofindividuals with 0 to 4 SNPs at generation 70. For further details and the simulation script are available onhttps://doi.org/10.5281/zenodo.8042695.

Outlook: simulating a within-host metapopulation

With the large amount of sequencing data now available, covering evolutionary timescales from within-host
evolution to global patterns of diversity, it would be a good moment to revisit some past hypotheses. We
envisage focused studies that address specific hypotheses and pay more attention to methodological limita-
tions. New tools for evolutionary simulations, in particular the versatile forward simulation tool SLiM (Haller
and Messer, 2019), could provide a long-needed crutch to move forward.

Simulations are an invaluable tool in evolutionary genetics: they allow to test intuitions and methods, to
compare alternative scenarios, and to fit models to data (Hoban et al., 2012; Johri et al., 2022). For bacterial
population genetics, the use of simulations was so far rather limited. Most simulators are based on the coales-
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cent – the backwards-in-time variant of the Wright-Fisher model. These are fast but usually limited to neutral
scenarios of population size changes and migration. Recent advances in forward simulation, however, make
it possible to simulate ever more realistic scenarios through improved computational efficiency and more
flexible non-Wright-Fisher models (Cury et al., 2022, show some applications to bacteria).

To conclude this review, we present an exemplary simulation that captures some realistic aspects of the
within-host population dynamics of a clonal pathogen (script and detailed description on https://doi.org/10.
5281/zenodo.8042695). Such simulations could be used to better understand the patterns of genetic varia-
tion expected in an infected individual, and the bias introduced through punctual sampling of a structured
population and culturing (Morales-Arce et al., 2021).

We envisage within-host dissemination dynamics as ametapopulationmodel with unidirectional migration
from "full" to "empty" populations – as suggested by the study ofMartin et al. (2017), who used DNA barcoding
and infectionmapping to infer the spatial and temporal dynamics of anMTBC infection inmacaques. Infection
begins with a single bacterium giving rise to an exponentially growing population through clonal reproduction
and 19 "empty" populations. Once this population reaches carrying capacity K = 20, 000, it can seed new
populations (Figure 4a), which again grow and can seed new populations whenK is reached (Figure 4b). Mu-
tations are simulated at a rate µ = 5× 10−10/bp/gen in a genome of 4 Mb. Selection is either assumed to be
absent (s = 0) or purifying (s = −9.5e − 4 Pepperell et al., 2013). The simulation ends after 70 generations,
which with a generation time of 24 h corresponds to a 10 week infection.

Independently of purifying selection, the dynamics of clonal growth and dissemination over 70 bacterial
generations give rise to an extreme skew towards rare alleles (Figure 4c). A large proportion of the mutations
are in fact singletons, that is, only present in a single individual. At generation 70, the vast majority of individ-
uals have no mutation, except in few instances where a mutation arose early (Figure 4d). (Some simulations
produced outlier values because not all populations were "filled" after 70 generations.)

The purpose of this simulation is to illustrate the simulation approach. Some assumptions might seem
questionable (e.g. carrying capacity), but they are transparent and can easily be modified. Some further
potential applications of evolutionary simulations are listed in the following. Simulations are not a panacea,
but they allow to raise the debate to a more transparent, quantitative level than achieved by the so far largely
verbal arguments. If nothing else, they could allow to better understandwhat kind of inference is at all possible,
given the low levels of genetic diversity in monomorphic bacteria.

• Coupling within- and between-host evolution, periodic bottlenecking could be simulated to study how
diversity accumulates through time as a function of bottleneck size, purifying selection, or mutation
rates. This would lead to a more nuanced understanding of transmission bottlenecks, which have more
complex consequences than simple reduction of diversity.

• Synonymous and nonsynonymous mutations could be modeled, with variable distributions of fitness
effects, to explore how dN/dS is affected by the interaction of genetic drift and purifying selection in
fully linked genomes. Under what conditions, for example, would Muller’s ratchet begin to click?

• Gene conversion between closely related strains could be simulated to test different methods to infer
recombination. In general, methods should be tested on simulated data to understand their behav-
ior and make an informed choice, instead of resorting to the typical bioinformatics approach of using
multiple methods and reporting intersecting results, which leaves the door open to confirmation bias.

• Ultimately, approximate Bayesian computation could be used to fit models to data and to simultane-
ously infer demography and selection. It is difficult, however, to conceive what kind of data would be
suitable for this. At themicroevolutionary scale that is most straightforward to simulate, there is so little
diversity that it is dubious that parameter-rich models could be fitted with any confidence.
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