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Abstract7

Exchange of genetic material through sexual reproduction or horizontal gene transfer is ubiquitous in8

nature. Among the few outliers that rarely recombine and mainly evolve by de novo mutation are a group9

of deadly bacterial pathogens, including the causative agents of leprosy, plague, typhoid, and tuberculosis.10

The interplay of evolutionary processes is poorly understood in these organisms. Population genetic11

methods allowing to infer mutation, recombination, genetic drift, and natural selection make strong12

assumptions that are difficult to reconcile with clonal reproduction and fully linked genomes consisting13

mainly of coding regions. In this review, we highlight the challenges of extreme clonality by discussing14

population genetic inference with the Mycobacterium tuberculosis complex, a group of closely related15

obligate bacterial pathogens of mammals. We show how uncertainties underlying quantitative models16

and verbal arguments affect previous conclusions about the way these organisms evolve. A question17

mark remains behind various quantities of applied and theoretical interest, including mutation rates, the18

interpretation of nonsynonymous polymorphisms, or the role of genetic bottlenecks. Looking ahead, we19

discuss how new tools for evolutionary simulations, going beyond the traditional Wright-Fisher framework,20

promise a more rigorous treatment of basic evolutionary processes in clonal bacteria.21

Introduction22

Mutation, recombination, genetic drift, and natural selection are the basic evolutionary processes23

that drive the evolution of life. It is the aim and "great obsession" of population genetics to infer24

these processes from patterns of genetic variation observed in nature (Gillespie, 2004). Since25

the Modern Synthesis of evolutionary biology in the 1930s, a variety of mathematical models26

have been developed for this purpose, which today are in wide use in the analysis of genome27

sequencing data (Templeton, 2021).28

A problem in the application of population genetic models to empirical data is that modeling29

assumptions can be a far cry from the biology and life history of real organisms. Archea and30

bacteria reproduce clonally through binary fission, frequently undergo horizontal gene transfer31

(HGT), and have genomes consisting mainly of coding regions. These characteristics are difficult32

to reconcile with models that are tailored to animals and plants (Woese and Goldenfeld, 2009) and33

commonly assume random mating, linkage equilibrium, and neutrality (Maynard Smith, 1995;34

Rocha, 2018). As a consequence, outside the laboratory, studies of bacterial population genetics35

have either remained descriptive, with much effort going into understanding the extent and effects36

of HGT (e.g. Denamur et al., 2021); or have resorted to models whose applicability remains an37

open question (discussed by Johri et al., 2022).38
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While the opportunistic, hardly predictable process of HGT has been highlighted as the most39

problematic breach of assumptions (Maynard Smith, 1995), a different, less frequently discussed40

challenge arises from the opposite extreme of the recombination spectrum: strictly clonal evolution,41

or the absence of any gene flow. HGT is not a general characteristic of bacteria (Hanage, 2016).42

Some bacteria are "monomorphic", that is, characterized by low levels of sequence diversity and an43

apparent absence of genetic exchange (Achtman, 2008). The causative agents of several devastating44

bacterial diseases of humans and animals belong to this group, including Bacillus anthracis (anthrax),45

Salmonella enterica serotype typhi (typhoid), Yersinia pestis (plague), Mycobacterium leprae (leprosy),46

and the members of the Mycobacterium tuberculosis complex (tuberculosis). Our understanding47

of the evolution of these bacteria is hampered not only by the low information content in their48

genomes, but also because there is little theoretical and conceptual work on population genetic49

inference under extreme clonality.50

Here we highlight the obligate pathogens of the Mycobacterium tuberculosis complex (MTBC)51

as a model to study clonal evolution. The MTBC comprises a group of closely related obligate52

pathogens that cause tuberculosis (TB) in humans and a range of wild and domestic animals53

(Figure 1). Human TB mainly affects the global poor and has killed more than 1.6 million people in54

2021 (World Health Organization, 2022). The evolution of antibiotic resistance is a main challenge55

and focus of research in TB. The genomes of thousands of MTBC strains from around the world56

have been sequenced, mainly to study epidemiological dynamics and drug resistance evolution,57

but also to infer the origin and biogeographic history of the species (Gagneux, 2018).58

Members of the MTBC are among the more diverse of the predominantly clonal bacteria59

(Achtman, 2012), even though individual strains differ only by a maximum of ca. 2,400 SNPs60

across the 4.4 Mb genome (Figure 2a). At the molecular level, the MTBC is further characterized61

by a high GC content, a high proportion of nonsynomyous polymorphisms, and a low proportion62

of homoplastic mutations (Figure 2b-d). Different hypotheses have been put forward to explain63

these patterns and, more generally, what drives the evolution of the MTBC. Besides lack of HGT,64

prominent and conflicting propositions are that the dominant process in the evolution of the MTBC65

is genetic drift (Hershberg et al., 2008) or purifying selection (Namouchi et al., 2012; Pepperell66

et al., 2013).67

In this review, we discuss these and other hypotheses about the basic processes driving the68

evolution of the MTBC. Given the unclear applicability of population genetics to highly clonal69

organisms, particular attention is paid to models, their assumptions, and the traits of the MTBC70

that might conflict with the latter. Evolutionary simulations are discussed as a way to achieve71

a more quantitative treatment of frequently invoked processes such as purifying selection or72

periodic bottlenecks.73

Mutation74

While in some bacteria new variants are more likely to be generated by HGT than by mutation75

(Vos and Didelot, 2009), under extreme clonality de novo mutations are the main source of genetic76

diversity and adaptation. The speed and direction in which a clonal prokaryote evolves is thus77

determined by the rate and spectrum of new mutations and by their effect on fitness. Numerous78

studies have investigated mutagenesis in the MTBC (reviewed by Mcgrath et al., 2014). As79

discussed below, in addition to methodological issues in estimating mutation rates, the life history80

of the bacteria, which can include extended periods of dormancy, poses a main challenge in81

understanding the rate at which variation originates in vivo.82
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Figure 1: Rooted maximum likelihood phylogeny of the MTBC estimated from genome-wide SNPs (tree adapted from
Zwyer et al. (2021), for better readability large lineages were downsampled to max. 30 strains). M. canettii
is the outgroup, human-adapted lineages (L1 to L9) are shown in colors, animal-adapted lineages in black.
Species names represent the historically grown nomenclature, lineage names are a more recent classification
based on genomic data. Lineages 1 to 4 and 7 are also referred to as M. tuberculosis sensu stricto, lineages
5 and 6 as M. africanum. Bootstrap supports for the lineages are above 0.95 and are not displayed in the
figure.

In the MTBC literature, as elsewhere, the mutation rate is sometimes confounded with the83

molecular clock rate. While the former refers to the rate at which mutations originate in the84

genome, the latter stands for an allegedly constant rate at which mutations accumulate through85

time (Ho et al., 2011). Both rates are subsumed in the more general concept of evolutionary86

rates. As discussed below, the power law that describes the slowing of evolutionary rates as one87

considers longer timescales is not as clear in the MTBC as in other bacteria: in vitro mutation rate88
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estimates can be similar to clock rate estimates from datasets including ancient DNA. How far89

methodological biases or evolutionary processes underlay this surprising finding remains to be90

understood.91

Plasticity of mutation rates and generation times92

Fluctuation assays suggest that point mutations in the MTBC appear at a rate of about 2.1 × 10−10
93

mutations per site per generation and at a similar rate during active disease in macaques if a94

generation time of 20 h is assumed (Ford et al., 2011, Figure 3). A later study, using the same95

fluctuation assay, found in vitro rates of 6.01 × 10−10 in a lineage 4 and 2.16 × 10−9 in a lineage96

2 strain, suggesting somewhat faster and variable mutation rates within the MTBC (Ford et al.,97

2013). Comparatively fast rates were also proposed in two additional experimental evolution98

studies. After serial passaging of a MTBC strain through macrophage-like THP1 cells for 8099

generations, Guerrini et al. (2016) inferred a rate of 5.7 × 10−9 per bp per generation. Copin et al.100

(2016), passaging bacteria in mice and assuming a generation time of 20 h, estimated a mutation101

rate of 3.8 × 10−9 in wild type mice and of 7.7 × 10−10 in T cell-deficient mice, suggesting that the102

presence of T cells leads to elevated mutation rates.103

Overall, per-generation mutation rates estimated for the MTBC are well within the range of104

those in other bacteria, which typically are in the order 10−10 (reviewed by Katju and Bergthorsson,105

2019). When trying to scale mutation rates to calendar time, however, complications due to the106

complex life history of these bacteria become apparent. The bacteria of the MTBC have long107

generation times ranging from 18 h in nutrient rich medium to potentially much longer time-spans108

in vivo (Colangeli et al., 2020). Scaled to clock time, mutation rates are thus indeed low in the109

MTBC compared to other bacteria, at least in the laboratory (Gibson et al., 2018).110

In contrast to pathogens employing a "hit and run" strategy, bacteria of the MTBC can enter a111

state of reduced activity and persist for years in latent infections (Dutta and Karakousis, 2014). It is112

unclear whether latency and longer generation times imply a reduced mutation rate, as expected113

if mutation is driven by replication, or not, as expected if environmental stress drives mutation114

(Weller and Wu, 2015). Ford et al. (2011), in their experimental infection of macaques, found115

similar rates in latent and active disease (Figure 3), supporting stress-induced mutagenesis. A116

more complex, two-phased scenario was suggested by Colangeli et al. (2020), who investigated 24117

paired TB cases with latently infected household contacts: mutation rates remained high up to118

two years, but then decreased with longer latency as the bacteria entered a quiescent state with119

longer generation times (Figure 3).120

In summary, mutation rates estimated for the MTBC should be interpreted with some caution.121

Generation times are only known with confidence in vitro. At the same time, fluctuation assays122

reflect the mutation rate of a single gene (rpoB, the main drug resistance target of rifampicin)123

that might not be representative for the whole genome (Katju and Bergthorsson, 2019); and in124

the absence of stress, which in vivo might alter both the rate and the spectrum of new mutations125

(Fitzgerald and Rosenberg, 2019).126

The time (in)dependence of evolutionary rates in the MTBC127

Molecular dating has led to a re-evaluation of the origin and history of the MTBC, as for many128

other organisms. Earlier studies, assuming a synonymous mutation rate or a co-diversification of129

humans and the MTBC, located the most recent common ancestor of the existing lineages in Africa130
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Figure 2: Genetic diversity and molecular characteristics of the MTBC. a) Pairwise genetic differences between the
strains shown in Figure 1, based on single nucleotide polymorphisms from Zwyer et al. (2021). b) to d) show
molecular characteristics of the MTBC compared to 150 other bacterial species with diverse lifestyles (data from
Bobay and Ochman, 2018). Red lines show the values for the bacteria of the MTBC (M. tuberculosis sensu
stricto, M. bovis, and M. africanum). b) GC content, c) dN/dS, the genome-wide ratio of nonsynonymous
to synonymous polymorphisms, d) the ratio of homoplastic to non-homoplastic mutations, a proxy for
recombination.

and suggested a scenario according to which humans and the MTBC have co-diversified across the131

globe (Comas et al., 2013; Kapur et al., 1994). Recent estimates, making use of tip dating, ancient132

DNA (aDNA) samples, and Bayesian phylogenetics, propose a more recent common ancestor in133

the Neolithic ca. 6,000 years ago (Bos et al., 2014; Kay et al., 2015; Sabin et al., 2020).134

One caveat regarding these estimates is the poorly understood variability of evolutionary135

rates in the MTBC through time. For mitochondrial DNA, viruses, and bacteria, evolutionary136

rates usually appear faster when estimated from recent polymorphisms (Ho et al., 2011). For137

bacteria, Duchêne et al. (2016) found a clear negative association, described by an exponential138

decay curve, between clock rates and sampling time spans in 16 bacterial species, with an order of139

magnitude difference between a 10 year and a 100 year sampling period. The delayed effect of140

purifying selection is the most prominent explanation for this time dependence of evolutionary141

rates, although methodological biases might also contribute (Emerson and Hickerson, 2015; Ho142

et al., 2015). Time dependence can have a large effect on molecular dating: Membrebe et al. (2019)143

showed that accounting for purifying selection by using relaxed clock or epoch models can shift144

divergence times one order of magnitude back in time. Could this explain the surprisingly recent145

time to the most recent common ancestor (MRCA) estimated by the aDNA studies?146

In the study of Duchêne et al. (2016), the MTBC does not follow the general pattern of time147

depence: almost identical rates were obtained from samples spanning 15 and 895 years. Similarly,148

Menardo et al. (2019) found only marginally lower rates when calibrating the clock with three149

samples of ancient DNA from Precolumbian human remains and an extensive MTBC dataset150

covering a sampling period of 30 years. An overview of evolutionary rates estimated for the MTBC151

5



illustrates the large variability and uncertainty of rate estimates, but also suggest an overall trend152

of time dependence (Figure 3). As Menardo et al. (2019) showed in their extensive study of the153

molecular clock in the MTBC, clock rates vary substantially among lineages and clades of the154

MTBC and have large confidence intervals. Lineage 1, for instance, seems to have evolved faster155

than other lineages, and indeed faster than the L4 strain in the fluctuation assay of Ford et al.156

(2011). On the slow end of the spectrum is the long-term clock rate estimated by Sabin et al. (2020),157

for which all six aDNA samples available so far were included (1.4 × 10−8, 95% HPD 9.46 × 10−9,158

1.96 × 10−8).159

The low diversity of the MTBC certainly contributes to the large variability and uncertainty160

in clock rate estimates. SNPs are not only few in the MTBC, but also to a large proportion161

singletons (Chiner-Oms et al., 2019; O’Neill et al., 2015) and thus not informative about tree162

topology. In a Bayesian setting, prior-posterior comparisons are therefore crucial to determine163

whether the data is informative when applying parameter-rich models such as relaxed clocks.164

This does not only apply to the clock but also to the tree model, which also biases clock rate165

estimates in data-limited scenarios (Menardo et al., 2021a; Möller et al., 2018). To our knowledge,166

prior-posterior comparisons have not been published in aDNA dating studies so far, and the167

limitations inherent to low-diversity MTBC genomes remain unclear.168

Why are MTBC genomes so GC-rich?169

In bacteria, newly arising mutations are biased towards adenines and thymines (Hershberg and170

Petrov, 2010; Hildebrand et al., 2010). If mutation bias and genetic drift alone would determine171

the nucleotide landscape (mutation-drift equilibrium), the expected GC content in the MTBC172

would be 41.5% (Hershberg and Petrov, 2010). MTBC genomes, however, consist to 65.6% of173

guanines and cytosines (Figure 2b; Cole et al., 1998), with values of 80% at synonymous and174

60% at nonsynonymous sites. Such a discrepancy between observed and expected GC content is175

observed in many prokaryotes, whose genomes vary hugely in GC content (Figure 2b). It implies176

that an unknown process, unaccounted for in standard models of molecular evolution, affects the177

segregation of polymorphisms through time (Rocha and Feil, 2010).178

Several large-scale comparative studies have attempted to find a general explanation for179

the discordance between expected and observed GC content in prokaryotes. One prominent180

hypothesis is that nucleotide composition reflects adaptation to environmental conditions, for181

example through selection for thermal stability of DNA (e.g. Reichenberger et al., 2015). An182

intriguing twist to this idea was recently added by Weissman et al. (2019), who described a183

correlation between GC content, environmental variables, and the presence of Ku, the key gene in184

the non-homologous end-joining (NHEJ) pathway for DNA break repair. The authors propose185

that high GC content could be beneficial in bacteria suffering stress-induced double strand breaks186

in periods of slow or no growth, when NHEJ is required for repair because only a single copy of187

the genome is present. This is an interesting scenario for the MTBC, where long periods of latency188

can occur (see above) and the Ku gene is present.189

An alternative explanation for GC bias that does not imply a selective advantage is GC-biased190

gene conversion (gBGC). This process occurs during homologous recombination when mismatches191

in heteroduplex DNA are preferentially resolved into guanines and cytosines (reviewed by Duret192

and Galtier, 2009). The gBGC hypothesis predicts that GC content is higher in regions with high193

recombination rates, which is observed in mammalian genomes. In bacteria, the role of gBGC is194

contested. Whether comparative studies find associations between GC content and recombination195
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depends on the method used to infer recombination, and exceptions to general trends are common196

(Bobay and Ochman, 2017; Lassalle et al., 2015).197

With its numerous genome sequences that can be placed in a robust phylogenetic framework,198

the MTBC provides an opportunity to study the evolution of base composition in detail and thus199

to complement broad comparative studies. A hypothesis to test is that the MTBC is evolving from200

the generally GC-rich state of mycobacteria (58 to 70%, Mycobacterium sp. genomes on NCBI) to201

a more AT-rich state characteristic of obligate pathogens (Rocha and Danchin, 2002, Figure 2b),202

including Mycobacterium leprae (58%).203

Recombination204

How "strict" is clonality in the MTBC? In the past, bacteria were classified as "clonal" or "monomor-205

phic" based on a handful of housekeeping genes (Maynard Smith et al., 1993; Selander et al., 1987).206

With the full resolution of whole genome sequences, this classification needs to be reassessed.207

As discussed in the following, experimental and observational evidence agree that the MTBC is208

predominantly clonal, and that few to no new genes have found their way into the MTBC since209

the most recent common ancestor of the currently existing lineages. In contrast to interstrain210

recombination, intrachromosomal recombination is common and increasingly recognized as an211

important source of genetic variation.212

Experimental evidence: genetic factors versus lack of opportunity213

Most of the knowledge about the molecular mechanisms of HGT in mycobacteria stems from214

research with Mycobacterium smegmatis, a fast-growing, non-pathogenic mycobacterium more easily215

amenable to cultivation and genetic engineering than the bacteria of the MTBC. Mycobacteria lack216

the traditional components of HGT, possibly because transfer through the complex cell envelopes217

of these diderm bacteria requires other mechanisms (Madacki et al., 2021). Investigations of gene218

transfer in M. smegmatis have led to the description of a previously unknown form of bacterial219

conjugation: distributive conjugal transfer (DCT, reviewed by Gray and Derbyshire, 2018).220

Of particular interest regarding the evolution of the MTBC is the observation of DCT in the221

closely related Mycobacterium canettii. M. canettii shares an average nucleotide identity of 97.5%222

with the MTBC, yet is strikingly more diverse: a handful of M. canettii strains from eastern Africa223

harbor more genetic diversity than the whole MTBC (Supply et al., 2013). Mating assays have224

shown that DCT occurs in M. canettii, while no DCT was observed between three MTBC strains225

(Boritsch et al., 2016). The same assays combining M. canettii and MTBC strains revealed that the226

latter can act as donors but not as receivers of DNA during DCT, as pieces of MTBC DNA were227

integrated into M. canettii genomes but not vice versa (Madacki et al., 2021). In M. smegmatis,228

polymorphisms in the esxI secretion locus underlay self identity and conjugal compatibility229

(Clark et al., 2022). In M. canettii and the MTBC, the molecular mechanisms underlying conjugal230

compatibility do not depend on esxI and remain to be elucidated (Madacki et al., 2021).231

Lack of opportunity has been proposed to explain why intracellular pathogens such as the232

MTBC do not seem to recombine (Casadevall, 2008; Chiner-Oms et al., 2019). Against this scenario,233

it can be argued that there is more opportunity to recombine than the label "intracellular pathogen"234

might suggest. The bacteria of the MTBC are not confined to intracellular environments, but235

are also present in large extracellular populations after the induction of necrosis (Orme, 2014).236

Furthermore, mixed infections do occur (Moreno-Molina et al., 2021; Tarashi et al., 2017), such237
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that diverged strains might find themselves in close proximity. Rather than a mere side effect, as238

implied in the lack of opportunity hypothesis, absence of HGT could be an evolutionary strategy239

with a genetic basis. The predominance of clonality in a wide range of pathogenic organisms240

could indicate that clonality is adaptive by preventing the breakup of favorable allele combinations241

(Tibayrenc and Ayala, 2017). Further investigation into the genetic and environmental determinants242

of extreme clonality would be worthwhile, and the M. canettii-MTBC system provides a great243

opportunity to elucidate the poorly understood evolutionary transition to extreme clonality244

characteristic of many obligate pathogens.245

Recombination between closely related strains: how strict is clonality?246

Genome sequences from diverse MTBC strains are an important complement to experimental247

data, which leave open the question how far the observed outcome depends on the specific248

conditions and strains used in the laboratory. Various studies have investigated the extent of HGT249

in natural strains of the MTBC, motivated by the observation how HGT accelerates resistance250

evolution in other bacterial pathogens (Davies and Davis, 2010). Some have suggested that251

interstrain recombination does occur. Liu et al. (2006) found that mutation alone cannot explain252

the observed haplotype diversity, and identified a mosaic region in front of a PPE gene suggesting253

a recombination hotspot. They also point out the possibility that the pattern may have arisen254

through recombination between homologous sequences in the same genome. Namouchi et al.255

(2012) investigated 24 sequenced MTBC genomes and reported that "four different approaches256

showed evident signs of recombination in M. tuberculosis", with recombination typically involving257

small tracts of around 50 bp. On the other hand, the most extensive investigation to date, using258

different methods on genome-wide SNPs in 1,591 diverse strains, found "no measurable ongoing259

recombination among the MTBC strains" (Chiner-Oms et al., 2019).260

Generalizing from these studies is difficult due to the diversity of datasets and methods261

used. It has been suggested that the signs of recombination described by Namouchi et al.262

are mainly artefacts as they are overrepresented in regions difficult to align or assemble, in263

particular repetitive and low-complexity regions in insertion sequences and the expanded PE/PPE264

gene families (Godfroid et al., 2018). Alternatively, signs of recombination can arise from gene265

conversion during intrachromosomal recombination, to which these repetitive sequences are prone266

(Liu et al., 2006). Gene conversion is the non-reciprocal transfer of DNA from one homologous267

sequence to another, which in the MTBC might account for recombination signatures in ESX, PE,268

PPE, PE/PGRS gene families (Karboul et al., 2008; Phelan et al., 2016; Uplekar et al., 2011).269

Intrachromosomal recombination can also have more dramatic outcomes. More and more270

structural variants are described in MTBC genomes, ranging from insertion sequence (McEvoy271

et al., 2007) and gene copy number polymorphisms (Fishbein et al., 2015) to massive inversions272

(Merrikh and Merrikh, 2018) and tandem duplications (Wang et al., 2022). This is a vast topic273

deserving a dedicated review. It is brought up here to emphasize that recombination is an274

umbrella term for diverse processes of inter- and intrachromosomal exchange; and that clonality275

does therefore not imply absence of recombination, strictly speaking, but only of HGT. In the near276

future, long-read sequencing should allow more extensive studies of the repetitive "dark matter"277

in the MTBC genome and how it generates genetic variation intrachromosomally.278

A basic limitation of methods to infer recombination is that they cannot distinguish de novo279

mutations from allelic recombination between closely related individuals, which might involve the280

exchange of a single nucleotide (Martin et al., 2011). Allelic recombination does not introduce new281
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genes, but it can affect the nucleotide landscape through recombination-associated processes like282

biased gene conversion (Duret and Galtier, 2009) or increased mutation rates around strand breaks283

(Fitzgerald and Rosenberg, 2019). While HGT between close relatives would be less restricted by284

opportunity, genetic incompatibilities might prevent gene transfer between close relatives, as in M.285

smegmatis (Clark et al., 2022).286

Figure 3: Evolutionary rates in the MTBC. Only studies that report confidence intervals were considered. For the
fluctuation assay estimates in Ford et al. (2011, 2013), a generation time g = 20h was assumed to translate
rates to calendar time. The rates of Colangeli et al. (2020) were translated back to calendar time by assuming
g = 18h, as reported by the authors. From the molecular clock study of Menardo et al. (2019), BEAST
estimates are reported for a 1/x clock rate prior and constant population size. For the BEAST analysis
of Sabin et al. (2020), results for the birth-death skyline model with an uncorrelated lognormal clock are
reported.

Genetic drift and purifying selection287

Once a mutation appears in a genome, its fate depends on the selective advantage or disadvantage288

it confers – and on chance. Genetic drift is the "chance factor" in evolution: it describes the289

undirected, stochastic change of allele frequencies due to sampling effects (Plutynski, 2007).290

Genetic drift sets limits to natural selection such that, by chance, deleterious alleles can increase291

and beneficial ones decrease in frequency (Kimura, 1983; Lynch, 2007). Increased genetic drift thus292

implies reduced purifying selection, and the same genomic evidence, discussed below, underlies293

claims as to the relative importance of the two processes. For this reason genetic drift and purifying294

selection are treated together, while positive selection is discussed in the next section.295

Genetic drift is frequently invoked as an ad hoc explanation, but actually inferring and quanti-296

fying it is difficult. In the standard Wright-Fisher (WF) model with panmixia, discrete generations,297
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and no selection, drift occurs when the alleles to form the next generation are randomly sampled298

from the parental population (Fisher, 1930; Wright, 1931). In bacteria, population subdivision,299

linked selection, and demographic changes imply that sampling effects are stronger than under300

panmixia (Price and Arkin, 2015), and that effective population sizes (Ne) are orders of magnitude301

smaller than census sizes (Bobay and Ochman, 2018).302

As discussed in this section, arguments about the strength of drift in the MTBC are largely303

based on indirect evidence in the form of low diversity and overabundant nonsynonymous304

polymorphisms. Estimates of Ne are sometimes obtained in Bayesian skyline analyses, but their305

underlying assumptions are problematic. Finally, we discuss transmission bottlenecks in the306

MTBC, a main mechanism of stochastic sampling whose mid- and long-term consequences go307

beyond simple reductions in genetic diversity and remain to be understood.308

Do overabundant nonsynonymous polymorphisms indicate strong genetic drift?309

In the MTBC, the drift-versus-selection discussion has mainly revolved around the large proportion310

of nonsynonymous polymorphisms observed in the species. The MTBC has a genome-wide ratio311

of nonsynonymous to synonymous polymorphisms (dN/dS) of around 0.5 when diverse strains312

from across the phylogeny are considered (Figure 2c). This is one third higher than in the closely313

related M. canettii (Supply et al., 2013) and more than six times higher than the median (0.076) of314

the 153 diverse species studied by Bobay and Ochman (2018).315

Hershberg et al. (2008) have interpreted the high dN/dS in the MTBC as evidence for "extremely316

reduced purifying selection" – in other words strong genetic drift – which would allow the317

accumulation of deleterious nonsynonymous mutations. The authors refute the alternative318

explanation that nonsynonymous changes are due to positive selection by pointing out that dN/dS319

does not differ between housekeeping, surface-exposed, and virulence genes, as might be expected320

if host immunity would drive adaptive diversification. This interpretation of dN/dS fits well321

with the generalization that the intracellular niche of pathogens and symbionts implies smaller322

population sizes and stronger drift. Kuo et al. (2009) inferred strong drift in human pathogens323

including the MTBC and reported a strong inverse relationship between drift and genome size.324

A similar conclusion is reached by Balbi et al. (2009), who compared E. coli with the closely325

related pathogenic Shigella and found signs of increased drift in the latter, including an excess of326

nonsynonymous mutations and of transversions, which are proportionally more nonsynonymous327

and thus deleterious than transitions.328

Different studies have challenged the view that purifying selection is "extremely reduced" in329

the MTBC. In the so far only attempt to quantify the strength of purifying selection across the330

genome, Pepperell et al. (2013) fitted a model including demographic expansion and a fraction of331

sites under selection to the site frequency spectrum obtained from a global sample of the MTBC.332

They infer purifying selection at nonsynonymous sites across 95% of the genome, with a selection333

coefficient s of −9.5 × 10−4. This value is interpreted as "strong" compared to values in humans334

and Drosophila. The authors used simulations of completely linked genomes to evaluate their335

models, which assume linkage equilibrium between sites. They find that their best model performs336

poorly in some scenarios; specifically, strong selection can be misinferred when complete linkage337

is combined with weak purifying selection. Other model assumptions were not tested, for example338

the absence of population subdivision or that the population follows a simple demographic model339

of exponential growth.340

Bringing in a temporal perspective on dN/dS, Namouchi et al. (2012) found 25% more non-341
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synonymous SNPs on terminal branches in their tree of 22 globally diverse strains. This suggests342

that deleterious nonsynonymous mutations are purged through selection over time, such that343

they become scarce in deeper parts of the phylogeny (Rocha et al., 2006). Trauner et al. (2017)344

present evidence that such purging might already occur within the host, as nonsynonymous345

within-host diversity is lower than expected under a model of random mutation. An implication346

of within-host purifying selection is that mutation rates estimated from in vivo experiments might347

be too low. In a simulation study Morales-Arce et al. (2020) suggest that genome-wide mutation348

rates in the MTBC might be two orders of magnitude faster, in the order 10−8/bp/generation, if349

one accounts for progeny skew (Box 1) and the removal of mutations through purifying selection350

during within-host evolution.351

Strong genetic drift leaves other signs than an excess of nonsynonymous mutations, including352

pseudogenization, proliferation of selfish genetic elements, or an increased proportion of transver-353

sions. With strong drift and clonal reproduction, such signatures can accumulate through Muller’s354

ratchet, where lack of recombination and reduced efficacy of purifying selection lead to a build-up355

of deleterious mutations (Felsenstein, 1974; Muller, 1964). As pointed out by Namouchi et al.356

(2012), these signatures are hardly evident in the MTBC. There are 30 pseudogenes in the H37Rv357

reference genome (Cole et al., 1998), in line with the generally low number of pseudogenes in bac-358

terial genomes (Lawrence et al., 2001). Also insertion sequences do not thrive in the MTBC: almost359

all IS activity is due to a single active element, IS6110, which is over-represented in intergenic360

regions, occurs at low frequencies, and thus seems to evolve under strong purifying selection361

(McEvoy et al., 2007). Finally, transitions occur well in excess of transversions (Payne et al., 2019).362

Taken together, there is scant evidence for genome erosion driven by Muller’s ratchet in the MTBC.363

Are synonymous sites under selection?364

How could the high genome-wide dN/dS in the MTBC be explained if not by strong drift? An365

intriguing alternative scenario is purifying selection at synonymous sites (Namouchi et al., 2012).366

High dN/dS can reflect an overabundance of nonsynonymous mutations (numerator), but also367

a lower number of synonymous mutations (denominator) than in other species. Fitness effects368

of synonymous mutations can arise when different codons result in variation in RNA stability,369

protein folding, and translation efficiency and accuracy (reviewed by Hershberg and Petrov, 2008).370

Already weak selection on synonymous sites can inflate dN/dS, as shown in a recent study of371

codon usage in 13 bacterial genomes (Rahman et al., 2021).372

In the MTBC, codon frequencies are associated with gene expression (Andersson and Sharp,373

1996; Pan et al., 1998), but also with the hydrophobicity of proteins and sequence conservation374

(De Miranda et al., 2000). As suggested in the latter study, a combination of selective pressures may375

thus act on synonymous sites in the MTBC, including the more efficient and accurate translation376

of certain codons and constraints on protein folding. Wang and Chen (2013) assessed possible377

selection on synonymous sites by comparing synonymous (ds) to intergenic (dI) diversity across378

13 MTBC genomes. Diversity varies strongly depending on the genomic position, suggesting379

variation in mutation rates or selective pressures across the genome. In the majority of windows,380

however, dS is higher than dI . Under the assumption that intergenic sites are free from selective381

pressures, Wang & Chen conclude that synonymous sites are more diverse than expected by382

chance and therefore evolve under diversifying, that is, positive selection.383

Alternatively, and in line with the initial hypothesis of purifying selection at synonymous384

sites, higher synonymous than intergenic diversity is also expected when intergenic sites are385
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even more constrained than synonymous sites. Intergenic regions in bacteria are packed with386

regulatory motives and can hardly be assumed to evolve neutrally (Molina and Van Nimwegen,387

2008; Rocha, 2018). Rather than comparing synonymous against assumed neutral sites, Thorpe388

et al. (2017) assessed the relative strength of purifying selection by comparing the proportion389

of singleton mutations among different site categories, reflecting that a higher proportion of390

singletons indicates stronger purifying selection. In five out of six species, site categories show391

a clear ranking, with the proportion of singletons increasing from synonymous, intergenic, non-392

synonymous, to non-sense mutations. In the MTBC, however, no differences between categories393

are apparent: there are similar proportions of singletons in all four categories. This surprising394

observation can at least partly be explained by the dataset used by the authors, which includes395

many near-identical MTBC strains sampled in a single country. Still, that even at short timescales396

non-sense mutations in the MTBC do not appear to be under stronger selection than synonymous397

mutations asks for clarification in future studies.398

Bayesian skyline plots and the issue of storytelling399

Neutral sites are in short supply in prokaryotes (Rocha, 2018). In contrast to eukaryotes, the400

streamlined genomes of archea and bacteria do not contain large swaths of decaying repeats and401

other DNA debris which can be assumed to be non-functional. This poses a particular challenge for402

the estimation effective population sizes and the quantification of genetic drift, which traditionally403

relies on the availability of sites not affected by natural selection (Charlesworth, 2009).404

A popular approach to estimate effective population sizes and their change through time405

are Bayesian skylines (Ho and Shapiro, 2011). These models are frequently used in Bayesian406

phylogenetics, where Ne is treated as a nuisance parameter. Many studies, however, interpret407

Ne literally as historical change in population size and provide instructive examples of how408

strong assumptions are ignored for the sake of storytelling. Bayesian skyline models assume409

neutrality in order to translate coalescence times into population sizes. Several studies have410

shown that non-neutral processes confound demographic inference and should not simply be411

assumed away. Recombination (Hedge and Wilson, 2014), population structure (Heller et al., 2013),412

sampling design, gene conversion, and selection (Lapierre et al., 2016), as well as the skewness of413

reproductive success (Menardo et al., 2021a) all create spurious signs of population size changes.414

As observed by Lapierre et al., 2016, such methodological biases might explain why population415

size trajectories look suspiciously similar for a wide range of species.416

Despite these caveats, Bayesian skyline plots continue to be used and interpreted liberally in417

the MTBC literature. Skyline plots were presented as evidence for a Neolithic expansion (Comas418

et al., 2013), expansions of specific lineages (Merker et al., 2022; Mulholland et al., 2019; O’Neill419

et al., 2019), or a recent co-expansion with humans in Tibet (Liu et al., 2021). That population420

size trajectories "make sense" in the historical narratives of these articles does not add to their421

credibility, but rather puts into question the way results are made sense of (Katz, 2013). Instead of422

literal interpretations of Bayesian skylines, an improved understanding is required of how far the423

demographic past can be reconstructed from the genomes of extremely clonal bacteria without424

taking into account confounding factors.425
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Box 1: Progeny skew in prokaryotes?426

Recently, progeny skew was brought up as a neglected aspect of MTBC evolution with
potentially significant effects on genetic diversity (Morales-Arce et al., 2020) and population
genetic inference (Menardo et al., 2021a). Progeny skew refers to the unequal distribution
of offspring among parental individuals in a population. Frequently mentioned examples
are viruses, where a single parental sequence can give rise to numerous copies, or marine
organisms reproducing through broadcast spawning. Wright-Fisher and coalescence models
assume that variation in offspring number is small (Tellier and Lemaire, 2014), which leads to
misinference when applied to such organisms (Sackman et al., 2019).

427
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While progeny skew in viruses has a direct interpretation in the way these organisms
reproduce, it is less straightforward to apply to prokaryotes. Archea and bacteria reproduce
through binary fission, which can be thought of as each parent having two offspring and
dying after division (Cury et al., 2021); or, in an age-structured population, as each parent
having one offspring and surviving. Progeny skew can arise over multiple generations
through rapid adaptation, superspreading events, or repeated bottlenecks, and it is thus a
meaningful parameter in population-based models with a continuous timescale (Menardo
et al., 2021a). In individual-based, discrete-generation models, it is preferable to simulate the
processes giving rise to progeny skew explicitly.
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How do bottlenecks affect genetic diversity?444

In the MTBC, genetic drift is often associated with transmission bottlenecks or founder events,445

when few or even single strains initiate an infection or an outbreak (Pepperell et al., 2010; Smith446

et al., 2006). TB infections can be initiated by single to few cells (Ryndak and Laal, 2019); each447

transmission is thus a massive founder event where, from the millions of cells forming a within-448

host population, only a few cells are sampled to start a new population. Similar, small-scale449

colonization dynamics occur during within-host dissemination, as single to few cells "found" new450

granulomas in the highly structured habitat of the lung (Martin et al., 2017).451

While genetic bottlenecks entail an immediate loss of genetic diversity, the mid- and long-term452

effects of periodic bottlenecks on genetic diversity and differentiation in clonal pathogens, where453

extreme bottlenecks alternate with clonal expansions, are less clear. Periodic bottlenecks have been454

investigated in the context of experimental evolution, where studies mainly focused on the effects455

of bottlenecks on the rate of adaptation (e.g. Windels et al., 2021). More general considerations456

can be found in the population genetics literature. One insight of potential relevance for the457

evolutionary dynamics of the MTBC is that, under predominant purifying selection, rates of458

evolution are accelerated when Ne is small because more deleterious mutations fix due to genetic459

drift (Lanfear et al., 2014). In the absence of homogenizing gene flow, founder events might thus460

be expected to increase genetic differentiation and overall diversity among lineages of the MTBC.461

Following this logic, the low global diversity of the MTBC (Figure 2a) is not evidence for strong462

bottlenecks. The puzzling observation rather is that there is not more diversity given the repeated463

bottlenecks during within- and between-host evolution and the absence of gene flow. As further464

discussed below, low diversity despite frequent bottlenecking could indicate purifying selection.465

The purpose of these considerations is to show that genetic bottlenecks are more complex and466

interesting than they appear in the literature, where they often serve as ad hoc explanation for low467
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diversity. More work on periodic bottlenecks in bacterial pathogens is needed. This work could468

take into account some real-world complications such as the unclear number of cells actually469

transmitted, which is most likely larger than the minimum number required to start an infection470

(Namouchi et al., 2012). Furthermore, infection might not occur at a single time point, but extend471

through time as hosts are repeatedly exposed to bacteria-laden aerosol droplets (Ryndak and Laal,472

2019). This situation resembles the source-sink dynamics of metapopulation models with repeated473

colonization events rather than a single bottleneck.474

Positive selection475

Most insights about how the MTBC has adapted to environmental challenges either regard476

pathoadaptation in the distant past before the MRCA, as revealed through comparative genomics477

(reviewed by Pepperell, 2022), or the recent evolution of antibiotic resistance (reviewed by Gygli478

et al., 2017). Much less is known about the genetics underlying adaptation to different mammalian479

host species, evident in host tropism (Brites et al., 2018; Zwyer et al., 2021), or about adaptation to480

different human populations, as suggested by sympatric patient-pathogen associations observed481

in cosmopolitan settings (Gagneux et al., 2006).482

Identifying signatures of positive selection in linked genomes is challenging since most tests483

rely on the comparison of haplotypes within genomes (Shapiro et al., 2009). Two diversity-based484

signatures that are not haplotype-based have been used extensively to identify positive selection485

in MTBC genomes: homoplasy and excess of nonsynonymous polymorphisms. In the following,486

we discuss the properties and limitations of these measures and whether they can be used to487

elucidate the role of positive selection beyond the case of antibiotic resistance.488

Homoplasies: how common is convergent adaptation?489

Molecular homoplasy designates the independent appearance of identical mutations in different490

parts of a phylogeny through chance, recombination, or convergent selection (Stern, 2013). Chance491

homoplasy between genomes showing so little overall diversity is rare (Comas et al., 2009, Figure492

2d), and its probability can be assessed through permutation tests (Farhat et al., 2013). Mutation493

hotspots can facilitate chance homoplasy (Galtier et al., 2006): in the MTBC, highly mutable494

tandem repeats frequently cause homoplasy (Outhred et al., 2020), while it is not known how495

rates of point mutations vary along the genome. Recombination has been argued against as a496

cause of homoplasies because homoplasies in the MTBC do not occur in clusters, as would be497

expected when recombination involves diverged DNA (Chiner-Oms et al., 2019). Non-clustering498

homoplasies, however, are also expected when recombinant genomes are similar (Bobay et al.,499

2015). Furthermore, intrachromosomal recombination can generate homoplasies, as suggested by500

their increased occurrence in homologous PE/PPE genes (Tantivitayakul et al., 2020).501

Clear examples of convergent selection as a cause of homoplasy have been presented for502

genes involved in antimicrobial resistance (Comas et al., 2012; Farhat et al., 2013). Against a503

background of low diversity and rare homoplasy, some of these genes show exceptional patterns.504

In 1,161 strains sampled in Russia and South Africa, one specific mutation in the katG gene, which505

confers isoniazid resistance, has originated more than 70 times independently (Mortimer et al.,506

2017). This is an extreme pattern that arises because katG is a "tight target" of selection, that507

is, only single to few mutations can cause resistance without incurring high fitness costs. In508

other genes ("sloppy targets"), fewer homoplasies are observed but in more positions. The high509
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incidence of parallelism in resistance evolution, in combination with large datasets, allows the use510

of genome-wide association approaches to identify new drug resistance loci and to elucidate the511

genetic architecture of resistance phenotypes (e.g. Crook et al., 2022).512

The basic limitation of homoplasies as a signature of selection is that they only reveal cases of513

convergent evolution. In the case of antibiotic resistance, convergence is ubiquitous. Thousands of514

parallel evolutionary experiments are conducted when people around the world are treated with515

the same antibiotics proposed by the WHO. For other selective pressures, things are less clear.516

Recently, two cases of convergent selection were shown in studies of experimental evolution with M.517

canettii and the MTBC. Selecting M. canettii strains for in vivo persistence in mice, Allen et al. (2021)518

identified two parallel mutations and demonstrated their effect on persistence through gene knock-519

out and complementation. Smith et al. (2022) selected for biofilm formation in experimentally520

evolved MTBC strains and identified two loci that mutated independently and are associated to521

biofilm-associated traits and fitness proxies. Both studies found that parallel mutations emerged in522

similar strains, suggesting that the genetic background constrains evolutionary trajectories. These523

studies also illustrate the rapidity with which mutations otherwise rare or absent can prevail in524

the presence of new selective pressures; and the significance of structural variation, as convergent525

evolution involved a large duplication (Smith et al., 2022) and a deletion of two genes (Allen et al.,526

2021).527

Convergence might not only be favored by strong selective pressures, but also through demog-528

raphy and migration. Repeated introductions of sublineages into a region, as described for Tibet529

(Liu et al., 2021), are natural experiments where genetically highly similar strains are repeatedly530

confronted with a new environment. Liu et al. identified several genes that accumulate mutations531

independently after repeated introductions to the Tibetan Plateau, including sseA, a gene involved532

in the detoxification of reactive oxygen species, and three genes involved in DNA repair (dnaE2,533

recB, mfd). With the already large and still growing amount of data on MTBC outbreaks, such534

natural experiments of parallel evolution can provide valuable insights into the dynamics and535

genes involved in local adaptation.536

Nonsynonymous polymorphisms: how frequent is positive selection?537

The second widely used statistic to infer selection and its direction is the ratio of non-synonymous538

to synonymous polymorphisms dN/dS. Above, elevated genome-wide dN/dS was discussed539

as evidence for reduced purifying selection. The estimates presented there (Figure 2c) were540

obtained by averaging over pairs of sequences, yielding a coarse measure that does not take into541

consideration that selection might be restricted to few sites of a locus or certain branches in the542

phylogeny (Yang, Ziheng, 2014). To detect positive selection, a family of versatile maximum543

likelihood models have been developed that incorporate explicit models of codon evolution and544

allow to test for increased rates of nonsynonymous changes on particular branches or in particular545

codons of a gene (Yang and Bielawski, 2000). These methods are computationally intensive and546

not suitable for exploratory analyses on large phylogenies, while small MTBC datasets might not547

contain enough diversity to estimate parameters. They can be used, however, to obtain a more548

detailed picture of selective pressures in genes of interest and to formally test for selection using549

model comparisons (Yang, 1998).550

A recent example of an exploratory selection scan followed by more rigorous statistical testing551

is the study of Menardo et al. (2021b). In a first step, they identified a hypervariable epitope at552

the esxH locus, which codes for a secreted effector interacting with the human immune system.553
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Codon models were then used to test for site- and branch-specific selection. Significant signatures554

were found in MTBC lineage 1 but not in other lineages and located to the N-terminal epitope555

of the gene. Further dissection of these signatures showed that they occur in strains collected in556

South and Southeast Asia, suggesting that this locus might be involved in adaptation to regional557

human host populations.558

Two recent studies have proposed methods to estimate dN/dS for large datasets while avoiding559

site and branch averaging, respectively. Wilson et al. (2020) present a phylogeny-free (and thus fast)560

method to infer selection at the codon level. Applying their method to more than 10,000 MTBC561

genomes, they found a dN/dS significantly larger than 1 in 2,729 out of 3,979 genes. Chiner-Oms562

et al. (2022) investigated the temporal trajectories of pN/pS in a large phylogeny of 5,000 strains563

(pN/pS is based on simple counts while dN/dS includes correction through a substitution model,564

Yang, Ziheng, 2014, p. 47ff). Focusing on shifts in pN/pS along the tree, they found evidence for565

elevated nonsynonymous changes at some point in time in almost half the genes of the MTBC.566

While both studies generate long lists of candidate genes, they also lead to the inevitable follow-up567

question of selection scans: what to do with these candidates. Considering the difficulty of568

experimental validation in a human pathogen, further characterization of the candidates with569

phylogenetically explicit codon models (as implemented in PAML; Yang, 2007) could be useful.570

Overall, homoplasies and dN/dS tell us little about the frequency and strength of positive571

selection in the MTBC. Recently, a method to infer selection coefficients from dN/dS under clonal572

reproduction was presented in the context of somatic evolution (Williams et al., 2020). The573

model developed in the study relaxes some assumptions of previous approaches (reviewed by574

Eyre-Walker and Keightley, 2007), in particular constant population sizes and evolution over long575

timescales. It would be worthwhile to explore whether this approach can be applied to bacterial576

within-host populations in order to better understand the contribution of positive selection in the577

MTBC.578

Discussion579

In this review, we have discussed the inference of basic evolutionary processes from patterns580

of genetic variation observed in the highly clonal bacteria of the MTBC. We took up a skeptical581

position, pointing out implicit or explicit assumptions underlying the inferential step from pattern582

to process, and why these assumptions are often problematic. In the following, we discuss a583

unifying scenario, the evolutionary optimum hypothesis, to connect the different threads laid bare584

above and to make a case for background selection as a key process in monomorphic bacterial585

pathogens. This speculative exercise is followed by a discussion of simulations as a key tool to586

transition to a more quantitative understanding of evolutionary dynamics under extreme clonality.587

The bacteria of the MTBC are an outlier in the prokaryote world (Fig. 2) – and altogether out-588

landish when put aside the animal and plant models that have inspired evolutionary theory. Two589

patterns in particular demand explanation: the low levels of genetic diversity (a powerful deterrent590

for evolutionary biologists) and the high genome-wide dN/dS in the absence of other signs of591

genome erosion. Given the strong orientation of the MTBC field towards resistance evolution, only592

few studies have addressed these fundamental puzzles. Hershberg et al. (2008),Namouchi et al.593

(2012) and Pepperell et al. (2013) stand out and continue to be cited when genetic drift or purifying594

selection are invoked to explain genetic patterns in the MTBC. As shown in this review, however,595

these studies offer starting points rather than final answers. Much remains to be understood about596

how basic evolutionary processes contribute to evolution under extreme clonality.597
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The evolutionary optimum hypothesis and a case for background selection598

An intriguing working hypothesis is that the bacteria of the MTBC have reached an evolutionary599

optimum and are well adapted to their hosts (Brites and Gagneux, 2015). This was initially600

proposed as a general scenario for monomorphic bacterial pathogens, and as a contrast to prevalent601

adaptive evolution in laboratory populations (Achtman, 2012). Once the key innovations had602

evolved that allowed these bacteria to infect humans, adaptation slowed or largely ceased. Using603

the adaptive landscape metaphor, we might envisage monomorphic bacterial pathogens as sitting604

on or close to a fitness peak. In the MTBC, host tropism (Fig. 1) implies at least some diversifying605

selection after the MRCA. Different lineages, or sublineages, might occupy different peaks in the606

adaptive landscape, reflecting the different immune environments of different mammalian species.607

Crucially, fitness is a function of the environment: the same strain might find itself on a608

fitness peak when infecting a cow and at lower altitudes when in a Petri dish or a human treated609

with antibiotics. As evident in the contexts of resistance and experimental evolution, bacteria610

of the MTBC can climb the fitness landscape with surprising rapidity if challenged to do so.611

The commonplace that low mutation rates constrain evolution in the MTBC thus needs some612

qualification. The mutation rate is not some fixed species or lineage property, but a plastic trait that613

varies along the genome and is responsive to environmental changes (Fitzgerald and Rosenberg,614

2019), for example the presence of T cells (Copin et al., 2016) and oxidative stress (Liu et al., 2020).615

Through our focus on the empirical literature, one key aspect of clonal evolution has received616

little attention: linked selection. Under strict clonality, the fate of a mutation arising in any of the617

few thousand genes present in a typical bacterial genome is tied to all other sites in the genome.618

Selection acting on this mutation affects the fixation probability of linked variation and interferes619

with selection at other sites (Charlesworth, 2012; Neher, 2013). The dynamics and outcome of620

linked selection depend on a parameter that is usually unknown: the distribution of fitness621

effects (DFE) of new mutations (Eyre-Walker and Keightley, 2007). According to the evolutionary622

optimum hypothesis, beneficial mutations are rare and of small effect since populations already623

are well adapted. Evolutionary dynamics would thus be driven by the neutral and deleterious624

components of the DFE. Different outcomes are conceivable depending on how genetic drift625

interferes with purifying selection.626

Strong drift in fully linked genomes is expected to lead to a build-up of deleterious mutations627

through Muller’s ratchet (Felsenstein, 1974; Muller, 1964), pushing populations down the fitness628

slope and eventually to extinction. The restricted niche of bacterial endosymbionts has been629

considered to offer particularly favorable conditions for Muller’s ratchet. In a classical study,630

increased dN/dS and transversion rates in endosymbionts compared to free-living relatives were631

interpreted as evidence for evolution under the ratchet driven by lack of recombination and632

small effective population size (Moran, 1996). Monomorphic bacterial pathogens have similarly633

restricted niches and share some genome characteristics with endosymbionts. Mycobacterium leprae634

is notable for its large number of pseudogenes (>1000), its reduced genome size (3.3 Mb), and635

its "low" GC content (58%) among the GC-rich mycobacteria (Cole et al., 2001). This peculiar636

genome composition has led to predictions that this pathogen will ultimately become extinct due637

to Muller’s ratchet (Young and Robertson, 2001).638

The generality of the ratchet in endosymbionts has been questioned: the old age of many639

symbionts seems hardly compatible with mutational meltdown, and both selection (Allen et al.,640

2009; Pettersson and Berg, 2007) and recombination (Naito and Pawlowska, 2016) might prevent641

such an outcome. Even clearer is the case against Muller’s ratchet in M. leprae. Adding additional642
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M. leprae genomes to the picture, it becomes clear that pseudogenization and genome reduction643

largely preceded the MRCA of M. leprae (Monot et al., 2009). These are not ongoing processes644

reflecting strong drift in non-recombining genomes, but distant events during the transition to645

a pathogenic lifestyle. Regarding evolution under extreme clonality, the intriguing pattern are646

not the numerous pseudogenes, but that even functionally neutral pseudogenes show so little647

diversity.648

A mechanism of linked selection that seems more compatible with low diversity in monomor-649

phic bacterial pathogens is background selection (BS). BS refers to a scenario where purifying650

selection is effective (large Ne) and removes deleterious mutations and linked variants, leading to a651

reduction in linked neutral diversity (Charlesworth et al., 1993). Could BS explain the low diversity652

in pseudogenes of M. leprae, or the low synonymous diversity which might be responsible for653

the elevated dN/dS in the MTBC and other monomorphic bacterial pathogens? Little work has654

been conducted on BS in a prokaryote context. While some insights seem generalizable, such655

as its diversity-reducing effect, BS can have complex, non-intuitive outcomes (e.g. Cvijović et al.,656

2018; Kaiser and Charlesworth, 2009). To conclude this review, we illustrate and discuss how657

simulations can be used to better understand evolution under extreme clonality, including the658

poorly understood consequences of background selection.659

Figure 4: A metapopulation model for within-host evolution, inspired by the study of Martin et al., 2017, who used
DNA barcoding and infection mapping to infer the temporal and spatial dynamics of an MTBC infection in
macaques. a) Infection begins with a single bacterium giving rise to an exponentially growing population
through clonal reproduction. Once this population reaches carrying capacity K = 20, 000, it can seed new
populations which again grow exponentially. b) Exemplary growth dynamics of the model, the solid line
showing total population size, dashed lines showing subpopulation sizes. c) Site frequency spectrum at
generation 70. d) Number of individuals with 0 to 4 SNPs at generation 70. For further details and the
simulation script are available on https://doi.org/10.5281/zenodo.8042695.
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Outlook: simulating a within-host metapopulation660

With the large amount of sequencing data now available, covering evolutionary timescales from661

within-host evolution to global patterns of diversity, it would be a good moment to revisit some662

past hypotheses. We envisage focused studies that address specific hypotheses and pay more663

attention to methodological limitations. New tools for evolutionary simulations, in particular the664

versatile forward simulation tool SLiM (Haller and Messer, 2019), could provide a long-needed665

crutch to move forward.666

Simulations are an invaluable tool in evolutionary genetics: they allow to test intuitions and667

methods, to compare alternative scenarios, and to fit models to data (Hoban et al., 2012; Johri et al.,668

2022). For bacterial population genetics, the use of simulations was so far rather limited. Most669

simulators are based on the coalescent – the backwards-in-time variant of the Wright-Fisher model.670

These are fast but usually limited to neutral scenarios of population size changes and migration.671

Recent advances in forward simulation, however, make it possible to simulate ever more realistic672

scenarios through improved computational efficiency and more flexible non-Wright-Fisher models673

(Cury et al., 2021, show some applications to bacteria).674

To conclude this review, we present an exemplary simulation that captures some realistic675

aspects of the within-host population dynamics of a clonal pathogen (script and detailed de-676

scription on https://doi.org/10.5281/zenodo.8042695). Such simulations could be used to better677

understand the patterns of genetic variation expected in an infected individual, and the bias678

introduced through punctual sampling of a structured population and culturing (Morales-Arce679

et al., 2021).680

We envisage within-host dissemination dynamics as a metapopulation model with unidi-681

rectional migration from "full" to "empty" populations – as suggested by the study of Martin682

et al. (2017), who used DNA barcoding and infection mapping to infer the spatial and temporal683

dynamics of an MTBC infection in macaques. Infection begins with a single bacterium giving rise684

to an exponentially growing population through clonal reproduction and 19 "empty" populations.685

Once this population reaches carrying capacity K = 20, 000, it can seed new populations (Figure686

4a), which again grow and can seed new populations when K is reached (Figure 4b). Mutations687

are simulated at a rate µ = 5 × 10−10/bp/gen in a genome of 4 Mb. Selection is either assumed to688

be absent (s = 0) or purifying (s = −9.5e − 4 Pepperell et al., 2013). The simulation ends after 70689

generations, which with a generation time of 24 h corresponds to a 10 week infection.690

Independently of purifying selection, the dynamics of clonal growth and dissemination over691

70 bacterial generations give rise to an extreme skew towards rare alleles (Figure 4c). A large692

proportion of the mutations are in fact singletons, that is, only present in a single individual. At693

generation 70, the vast majority of individuals have no mutation, except in few instances where694

a mutation arose early (Figure 4d). (Some simulations produced outlier values because not all695

populations were "filled" after 70 generations.)696

The purpose of this simulation is to illustrate the simulation approach. Some assumptions697

might seem questionable (e.g. carrying capacity), but they are transparent and can easily be698

modified. Some further potential applications of evolutionary simulations are listed in the699

following. Simulations are not a panacea, but they allow to raise the debate to a more transparent,700

quantitative level than achieved by the so far largely verbal arguments. If nothing else, they could701

allow to better understand what kind of inference is at all possible, given the low levels of genetic702

diversity in monomorphic bacteria.703

• Coupling within- and between-host evolution, periodic bottlenecking could be simulated to704
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study how diversity accumulates through time as a function of bottleneck size, purifying se-705

lection, or mutation rates. This would lead to a more nuanced understanding of transmission706

bottlenecks, which have more complex consequences than simple reduction of diversity.707

• Synonymous and nonsynonymous mutations could be modeled, with variable distributions708

of fitness effects, to explore how dN/dS is affected by the interaction of genetic drift and709

purifying selection in fully linked genomes. Under what conditions, for example, would710

Muller’s ratchet begin to click?711

• Gene conversion between closely related strains could be simulated to test different methods712

to infer recombination. In general, methods should be tested on simulated data to understand713

their behavior and make an informed choice, instead of resorting to the typical bioinformatics714

approach of using multiple methods and reporting intersecting results, which leaves the715

door open to confirmation bias.716

• Ultimately, approximate Bayesian computation could be used to fit models to data and717

to simultaneously infer demography and selection. It is difficult, however, to conceive718

what kind of data would be suitable for this. At the microevolutionary scale that is most719

straightforward to simulate, there is so little diversity that it is dubious that parameter-rich720

models could be fitted with any confidence.721
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