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ABSTRACT 1 

In wild bird populations, the structure of vegetation around nest-sites can influence the risk of predation 2 

of dependent young offspring, generating selection for breeding birds to choose nest-sites with 3 

vegetation characteristics associated with lower predation rates. However, for researchers, vegetation 4 

structure can be difficult to quantify objectively in the field, which might explain why there remains a 5 

general lack of understanding of which characteristics are most important in determining rates of 6 

predation. Airborne Laser Scanning (ALS) offers a powerful means of measuring vegetation structure 7 

at unprecedented resolution across different spatial scales. Here, we combined ALS with 11 years of 8 

breeding data from a wild population of superb fairy-wrens Malurus cyaneus in south-east Australia, a 9 

species which nests relatively close to the ground and has high rates of nest and fledgling predation. We 10 

derived structural measurements of understorey (0-8 m) vegetation from a contiguous grid of 30 x 30 11 

m resolution cells across our c. 65 hectare study area. We tested whether: (i) cells with nests differed in 12 

their understorey vegetation structure characteristics compared to those without nests; and (ii) the 13 

selection of these sites for nesting was adaptive, by assessing the effects of vegetation characteristics on 14 

rates of nest success and fledgling survival, and the subsequent probability of a breeding female having 15 

any reproductive success. We found that nest-cells differed from unused cells primarily in having denser 16 

vegetation in the lowest layer of the understorey (0-2 m; the ‘groundstorey’ layer). Understorey 17 

vegetation was also on average lower in height in nest-cells. However, relationships between 18 

understorey vegetation structure characteristics and breeding performance were mixed. Nest success 19 

rates decreased with higher volumes of groundstorey vegetation; as did fledgling survival rates, though 20 

only in nest-cells with lower height vegetation. Reproductive success was not influenced by any of the 21 
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understorey vegetation structure characteristics considered. Our results therefore indicate that ALS 22 

data can identify understorey vegetation structure characteristics relevant for superb fairy-wren nest-23 

site selection, but that nesting preferences are not beneficial under current predation pressures. Overall, 24 

our study illustrates the potential of using ALS to investigate how ecological processes affect behaviour 25 

and life-histories in wild animal populations.  26 

 27 

Keywords: “Active Remote Sensing”, “Airborne Laser Scanning”, “LiDAR”, “Nest-Site Selection”, 28 

“Vegetation Structure”, “Avian Breeding Performance”, “Nest Predation”, “Malurus cyaneus” 29 

 30 

INTRODUCTION 31 

Dependent young offspring of many wild animal populations are frequently vulnerable to predation. 32 

The importance of predation of dependent young offspring on the evolution and plasticity of breeding 33 

behaviours is increasingly recognised in evolutionary and behavioural ecology (Ibáñez-Álamo et al., 34 

2015; Lima, 2009; Lima & Dill, 1990). Studies of birds provide an excellent system to explore the 35 

determinants and consequences of predation of dependent young offspring. The loss to predation of 36 

eggs and nestlings in nests (i.e., nest predation) is often the primary determinant of breeding failure 37 

(Martin, 1993; Ricklefs, 1969), and evidence suggests that, globally, rates of nest predation have 38 

increased in recent decades (Kubelka et al., 2018; Matysioková & Remeš, 2022; Remeš et al., 2012a, 39 

2012b). Even after leaving the nest, fledglings can in some cases suffer 5 – 10% mortality per day, due 40 

mostly to predation (Naef-Daenzer & Grüebler, 2016; Naef-Daenzer et al., 2001). Understanding the 41 

determinants of nest and fledgling predation is therefore central to understanding the ecological 42 

pressures that shape the breeding behaviours and life-histories of birds, including for informing 43 

appropriate conservation and management strategies for imperilled species.  44 

  45 

The structure of the vegetation surrounding the nest-site can play an important role in determining nest 46 

predation and may also similarly affect rates of fledgling predation in species where young are relatively 47 

sedentary even after leaving the nest. Two structural vegetation characteristics generally considered to 48 

influence nest and fledgling predation, and hence site selection, are vegetation density and vegetation 49 

complexity, with denser and more complex vegetation thought to reduce nest and fledgling predation 50 

by reducing the transmission of sensory cues (particularly visual and auditory cues) to potential 51 

predators (Filliater et al., 1994; Magrath et al., 2010; Martin, 1993; Mouton & Martin, 2019). Denser 52 
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and more complex vegetation might also impede predators physically by creating a barrier that reduces 53 

their ability to access nests or fledglings or reduce their searching efficiency (Bowman & Harris, 1980; 54 

Martin, 1993; Martin & Roper, 1988). Natural selection is therefore expected to favour the selection of 55 

sites by breeding individuals, that have more dense and more complex vegetation, especially in systems 56 

where the primary predators are visually or auditorily-oriented. However, whilst some studies do show 57 

some evidence of reduced rates of nest and fledgling predation in sites with more dense and more 58 

complex vegetation, such findings are uncommon (Borgmann & Conway, 2015; Lahti, 2009).  59 

 60 

Underlying these findings is the premise that structural vegetation data were measured accurately and 61 

precisely. However, manually collecting structural vegetation data in the field is costly and labour 62 

intensive, meaning that there is often a trade-off between the level of detail of observation and the size 63 

of area that can be surveyed. Most often, studies have based their analyses on structural vegetation data 64 

that were visually estimated and taken only within a subset of locations (Borgmann & Conway, 2015), 65 

which may be researcher biased and may not provide a realistic representation of the vegetation 66 

structure across the broader spatial landscape (Block et al. 1987; Gotfryd & Hansell 1985). For example, 67 

a study by Block et al. (1987) found that structural vegetation data estimated visually differed 68 

significantly among researchers for 31 of 49 structural vegetation characteristics that they measured, 69 

including for 5 of 8 measurements of aspects of vegetation density.  70 

 71 

Active remote sensing technology such as Light Detection and Ranging (LiDAR) provides a method for 72 

collecting detailed, high-resolution structural vegetation data in a standardised, comparable, and 73 

spatially contiguous way (Lefsky et al., 2002; Vierling et al., 2008). LiDAR therefore offers immense 74 

potential for overcoming many of the difficulties associated with traditional methods of assessing 75 

vegetation structure. A common platform for collecting LiDAR data is Airborne Laser Scanning (ALS), 76 

which uses short-range laser pulses to measure the spatial (x, y, z) coordinates of reflective surface 77 

objects, from a sensor mounted to a low-flying aircraft. As the exact timing and position of the sensor 78 

on the aircraft are known, the distance to each point location of an object can be calculated precisely 79 

and a three-dimensional “point cloud” can be derived (Lefsky et al., 2002; Vierling et al., 2008). 80 

Additional attributes can be specified for each point during processing (such as point classification, 81 

which defines the type of object that reflected the laser pulse), from which many structural vegetation 82 
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characteristics can be calculated at either fine (e.g., a grid cell or a radius around a focal observation 83 

point) or broader spatial landscapes (Bakx et al., 2019; Davies & Asner, 2014).  84 

 85 

Whilst there is growing availability across different countries and regions of high-resolution ALS 86 

datasets, few studies have so far used ALS in evolutionary and behavioural ecology, and such studies 87 

have most often focused on using ALS-derived measures of vegetation structure to assess differences in 88 

species’ distributions, richness, and abundances (Ciuti et al., 2017; Davies & Asner, 2014; de Vries et al., 89 

2021; Shokirov et al., 2023). Nevertheless, some recent studies have illustrated the promising potential 90 

of combining ALS data with behavioural and life-history data of wild animal populations (e.g., in African 91 

wild dogs Lycaon pictus, Davies et al., 2016; Bornean orangutans Pongo pygmaeus, Davies et al., 2019; 92 

great tits Parus major, Hill et al., 2004 and Hill & Hinsley, 2015; Siberian jays Perisoreus infaustus, 93 

Klein et al., 2020). For example, Klein et al. (2020) used structural vegetation characteristics derived 94 

from ALS data spanning an area of 8300 hectares to demonstrate that reproductive success of Siberian 95 

jays was positively associated with an increased understorey vegetation density in territories close to 96 

human settlements, which are an indicator of the occurrence of their main nest predator, the visually-97 

oriented Eurasian jay Garrulus glandarius. Their study revealed relationships between structural 98 

vegetation characteristics and reproductive success that were likely only possible to discover due to the 99 

high-resolution and broad spatial coverage of the ALS data.  100 

 101 

Here, we used ALS data in combination with 11 years of breeding data from a long-term study of a wild 102 

population of superb fairy-wrens Malurus cyaneus in the Australian Capital Territory, Australia. 103 

Superb fairy-wrens are facultative cooperative breeders: a territory held by a dominant socially 104 

monogamous pair may also contain as many as five additional males (Cockburn et al., 2008; Hajduk et 105 

al., 2021). Female superb fairy-wrens are solely responsible for nest-building and incubation, but all 106 

group members help defend and provision the brood (Cockburn et al., 2016; Rowley & Russell, 1997). 107 

Nests are built close to the ground (typically <2 m, Figure S1) in dense grass tussocks or small shrubs 108 

(Figure S2). The species are multi-brooded: the breeding season usually begins in September, at the 109 

start of the austral spring, and can last until March of the subsequent calendar year (Lv et al., 2019). 110 

High rates of nest (Figure S3) and fledgling (Figure S4) predation mean a female may initiate as many 111 

as nine or ten clutches per breeding season, but often only one brood (if any) successfully reaches 112 
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independence. Clutch sizes can range from one to five eggs, but clutches with three eggs are most 113 

common (Cockburn et al., 2016; Rowley & Russell, 1997).  114 

 115 

Superb fairy-wrens have many nest and fledgling predators (Rowley & Russell, 1997). In our study area, 116 

known predators include red foxes Vulpes vulpes, black rats Rattus rattus, common brush-tail possums 117 

Trichosurus vulpecula, and eastern brown snakes Pseudonaja textilis (Turner et al., unpublished data). 118 

However, previous studies indicate that the dominant predator in our study area is the pied currawong 119 

Strepera graculina, a large avian passerine, with the colour bands of superb fairy-wren nestlings and 120 

fledglings commonly found in their regurgitated pellets (Prawiradilaga, 1996). Indeed, pied currawongs 121 

have been implicated as the dominant predator of most small passerines throughout eastern Australia 122 

(Bayly & Blumstein, 2001; Fulton & Ford, 2001; Fulton, 2019).  123 

 124 

Pied currawongs use visual and auditory cues to detect and observe their potential prey. If they detect 125 

any activity, they then search the location carefully by walking slowly, frequently stopping, and listening 126 

intently with their head lowered towards the ground (Wood, 2000; Yasukawa & Cockburn, 2009). Given 127 

this searching method, superb fairy-wrens should be expected to have evolved to favour sites with more 128 

dense and more complex vegetation, if these structural vegetation characteristics reduce the 129 

detectability and accessibility of nests and fledglings to pied currawongs, as is expected. However, 130 

counter to this expectation, a recent study of our population found increased rates of nest predation and 131 

decreased numbers of fledglings in territories with increased percentages of midstorey cover, measured 132 

visually as the percentage of sky occluded by vegetation at a height ranging from 0.7 – 2.5 m above the 133 

ground (Backhouse et al., unpublished data). Similar findings have been documented elsewhere. For 134 

example, in a population of superb fairy-wrens in South Australia, rates of nest predation increased 135 

with the percentage of nest concealment, measured visually as the percentage of vegetation immediately 136 

surrounding the nest (Colombelli-Négrel & Kleindorfer, 2009). However, in a population of superb 137 

fairy-wrens in New South Wales, Nias (1986) found that nest success rates increased with concealment; 138 

although, in this study, nests that were considered more concealed were mostly built in non-native 139 

Rubus vulgaris brambles that contain protective thorns, which might have deterred predators. Of these 140 

three studies, none found evidence of any other structural vegetation characteristics influencing rates 141 

of nest or fledgling predation. However, in each study, structural vegetation data were estimated 142 

visually, from within a subset of locations, and measures were summarised into relatively course and 143 
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arbitrary categories. Moreover, neither study tested whether the same characteristics were also 144 

important for nest-site selection – for example, by comparing whether sites containing nests differed in 145 

their structural vegetation characteristics versus sites without nests.  146 

 147 

In this study, we used high-resolution ALS data to derive three key vegetation structure characteristics 148 

related to the vegetation height, complexity, and density (defined in Table 1) from a contiguous grid of 149 

30 x 30 m resolution cells spanning the extent of our study area. We focused on quantifying aspects of 150 

the vegetation structure in only the understorey (0 – 8 m; details below) because superb fairy-wrens 151 

generally nest relatively close to the ground (Figure S1; Cockburn et al., 2016; Rowley & Russell, 1997), 152 

and as such we expected that the structure of the understorey vegetation would be most important in 153 

determining site selection and breeding performance for this species. We tested: (i) whether our three 154 

understorey vegetation structure characteristics influenced site selection; and (ii) whether site selection 155 

was adaptive in relation to predation, by assessing the effects of these characteristics on seasonal rates 156 

of nest success and fledgling survival, and the subsequent probability of reproductive success (defined 157 

in Table 2). 158 

 159 

2 | MATERIALS AND METHODS 160 

2.1 | Study area  161 

The study area is located in Canberra, Australian Capital Territory, Australia (Figure 1) and 162 

encompasses an area of c. 65 hectares that includes a managed area (c. 43 hectares) in the Australian 163 

National Botanic Gardens (ANBG) and an unmanaged area (c. 22 hectares), which is part of the 164 

adjacent Black Mountain Nature Reserve. The study area is broadly characterised as mature open 165 

sclerophyll forest, with the primary tree species including evergreen Eucalyptus macrorhyncha and 166 

Eucalyptus rossii. Shrubs and grasses including Acacia spp., Callistemon spp., Notodanthonia spp., 167 

Rytidosperma palladium, Triodia scariosa, and Lomandra longifolia are dominant through the 168 

understorey. The managed area further consists of a diverse collection of native vegetation established 169 

within dense plantings, and three semi-artificial habitats (specifically, a ‘rainforest’ area, a ‘desert’ area, 170 

and a grass lawn). Along a small patch of the eastern perimeter of the unmanaged area, a collection of 171 

gullies has formed, which sometimes flood with rainwater. Much of this patch is dominated by Bursaria 172 

spinosa and other swamp specialists, and non-native species including Rubus fruticosus spp (Fraser & 173 

Purdie, 2020).  174 
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 175 

Two large hailstorms damaged much of the study area on 27 February 2007 and 19 January 2020. In 176 

this study, we therefore constrained our analyses to observations from 11 breeding seasons (from 177 

2009/10–2019/20; up until the hailstorm on 19 January 2020), centred around 2015/2016 when the 178 

ALS data were collected (details below). Hereafter, we refer to a given breeding season by the calendar 179 

year in which it commenced. The weather conditions were relatively constant across this time (Figure 180 

S5) and the general structure of the vegetation remained largely unchanged. As a result, we did not 181 

expect any time difference between the superb fairy-wren breeding data and the ALS survey to affect 182 

our ability to detect any relationships (Hill & Hinsley, 2015; Vierling et al., 2014). For completeness, we 183 

also repeated all analyses using data from 1994 – 2019 (which is the duration for which comprehensive 184 

superb fairy-wren breeding data have been collected across the full extent of our study area) and found 185 

effectively identical results, which we present separately in Table S1. 186 

 187 

2.2 | Superb fairy-wren breeding data collection and processing 188 

Between 2009 – 2019, the study area supported between 34 – 79 superb fairy-wren territories each 189 

year, with an average territory size of 1.09 ± 0.71 hectares (mean ± SD, n = 686 territory-years). 190 

Individuals in the study population were uniquely colour-banded, allowing for individual recognition.  191 

 192 

During the breeding season, we located nests by observing the breeding female during nest-building or 193 

by following them to the nest during incubation. The location of each nest was recorded using Global 194 

Positioning System (GPS) with ± 3 m resolution. The progress of each nest was monitored every second 195 

day for the duration of the nesting period (typically 24 days from the onset of incubation) to determine 196 

nest fate. Nests that fledged at least one offspring were considered successful. Predation of the nest was 197 

assumed when all eggs or nestlings disappeared prior to their expected fledging date. Because our 198 

interest was in whether site selection influenced breeding performance via predation risk, we excluded 199 

172 nests (9.35% of the total) that failed due to reasons other than predation (Figure S3). In cases where 200 

nests were successful, we closely monitored individual fledglings to determine their survival to 201 

independence, defined as four weeks (28 days) post-fledging. Although most offspring are still being 202 

provisioned at this age, five-weeks post-fledging is the earliest known age of dispersal in our study area; 203 

our four-week cut-off point therefore avoids any chance of dispersal being confused with mortality 204 

(Hajduk et al., 2018, 2020). Causes of fledgling mortality are generally unknown, but the recovery of 205 
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colour bands of fledglings from pellets of pied currawongs suggests that predation is an important 206 

source of mortality (Prawiradilaga, 1996). In this study, we used all fledgling mortality as a measure of 207 

fledgling predation. 208 

 209 

Following Backhouse et al. (unpublished data), we derived measurements of understorey vegetation 210 

structure from a contiguous grid of 30 x 30 m resolution cells (n = 768 cells) spanning the extent of our 211 

study area (details below). Because superb fairy-wren territories were on average 1.09 hectares in size, 212 

each 30 x 30 m resolution cell encompassed c. 10% of the average territory. To match superb fairy-wren 213 

breeding data to the same spatial scale as the understorey vegetation structure data, we assigned each 214 

nest to a cell based on their GPS coordinates. At this point of data processing, we excluded breeding 215 

data from 25 cells (3.3% of the total) that encompassed the three semi-artificial habitats in the study. 216 

We have shown previously that superb fairy-wrens do not inhabit these regions of our study area 217 

because they contain vegetation that is very different from their native range (Backhouse et al., 218 

unpublished data). Breeding data from a further two cells were later excluded as they contained no 219 

understorey vegetation structure data (details below).  220 

 221 

The final superb fairy-wren breeding dataset used in this study comprised of observations from a total 222 

of 1431 nests (from 318 breeding females), encompassing 741 cells over 11 years (n = 8151 cell-years). 223 

For analysis of nest-site selection, cell-years were subsequently further designated as nest-cell-years 224 

(i.e., cell-years with a nest, n = 1094 cell-years) or unused cell-years (i.e., cell-years without a nest, 7057 225 

cell-years). For each nest-cell-year we considered the following three measures of breeding 226 

performance: nest success rate, fledgling survival rate, and reproductive success (defined in Table 2). 227 

Note that in rare cases, it is possible for more than one breeding female to occupy a given nest-cell-year 228 

– for example, in cases where cells overlapped territory boundaries, or the death of a breeding female 229 

resulted in her being replaced. In these cases, observations were treated as independent for each 230 

breeding female (i.e., female-nest-cell-year).   231 

 232 

The number of cells with a nest declined significantly over the course of the study (Figure S6a), a finding 233 

that is consistent with the observation of a 72.16% population decline of breeding females during the 234 

period considered here (Figure S6b), and with a general decline across the entire study period 235 

(Backhouse et al, unpublished data).  The decline in population size may be linked to increased rates of 236 
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adult winter mortality associated with climate change (Lv et al, in press). For the purpose of this study, 237 

we do not focus on this decline in detail. 238 

 239 

2.2 | Airborne Laser Scanning data collection and processing 240 

ALS data were collected between 21 May 2015 and 5 April 2016 and were obtained from the Australian 241 

Capital Territory Government’s Environment, Planning and Sustainable Development Directorate 242 

(www.planning.act.gov.au, obtained 23 June 2021). The data were recorded as part of a regional survey, 243 

using an AX60 scanner mounted to an aircraft (with a Riegl LMS-Q780 sensor and Trimble AP50 GPS). 244 

Details of the ALS survey were as follows: flight elevation above ground level: 450 m; point density: 8 245 

pulses/m2; footprint size: 0.12 m; swath width: 539 m; overlap: 25%; vertical precision: ± 0.30 m; 246 

horizontal precision: ± 0.80 m. Further details including the flight speed, laser wavelength, scan 247 

frequency, and pulse frequency were not provided with the dataset (www.planning.act.gov.au). The raw 248 

ALS data was pre-processed by the vendor and came with a classification of ground, building, water, 249 

vegetation, and noise points. The data were distributed in LAS v.1.4 format projected in spatial 250 

reference Geocentric Datum of Australia 1994, Map Grid of Australia Zone 55 251 

(www.planning.act.gov.au).  252 

 253 

We separated the raw ALS data into each of our 30 x 30 m resolution cells using LAStools (rapidlasso 254 

GmbH; van Rees, 2013). We used the package ‘lidR’ (v.3.1.3; Roussel et al., 2020) in R (v.4.0.5; R Core 255 

Team, 2021) to further process the ALS data and derive vegetation structure characteristics for each cell 256 

as follows: First, point cloud data were normalised by subtracting the height of ground points from the 257 

height of non-ground points (following e.g., Ciuti et al., 2018; Korma et al., 2021; Roussel et al., 2020; 258 

Shokirov, 2021; Shokirov et al., 2023). Second, points classified as ground, building, water, and noise 259 

were removed, resulting in only points classified as vegetation being retained. A total of two cells were 260 

found to contain no vegetation points, and so at this stage they were excluded from further processing. 261 

Third, vegetation points were reclassified into two layers: understorey layer (0 – 8 m), and canopy 262 

layer (> 8 m). We used 8 m as the threshold distinguishing these two vegetation layers based on the 263 

distribution of the z coordinates (i.e., height values) of the point cloud (Figure S7) and detailed 264 

knowledge of the primary Eucalyptus spp. in the study area (Fraser & Purdie, 2020). We then removed 265 

canopy vegetation points from the point cloud data as we expected the structure of the understorey 266 

vegetation to be most relevant for superb fairy-wrens based on their nesting behaviour (Figure S1–S2). 267 

http://www.planning.act.gov.au/
http://www.planning.act.gov.au/
http://www.planning.act.gov.au/
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Fourth, from the understorey vegetation points, we calculated three vegetation structure 268 

characteristics related to aspects of the vegetation height, complexity, and density that are most often 269 

used in studies aiming to understand the determinants and consequences of nest-site selection in birds 270 

(Borgmann & Conway, 2015; Filliater et al., 1994). The three characteristics we calculated were: mean 271 

height of the understorey vegetation, variation in height of the understorey vegetation (as measured by 272 

the standard deviation, SD) and volume of the understorey vegetation. We initially calculated volume 273 

within four specific height thresholds (0 – 2 m, 2 – 4 m, 4 – 6 m, 6 – 8 m) but because the nests of 274 

superb fairy-wrens are generally <2 m above the ground, in our analyses we considered volume at the 275 

lowest height threshold only (hereafter referred to as ‘groundstorey volume’). Definitions of each of the 276 

three understorey vegetation structure characteristics are provided in Table 1. The final ALS point cloud 277 

dataset used in this study comprised a total of 1,686,744 understorey vegetation points, with a mean ± 278 

SD of 2270.18 ± 1994.04 points/cell.  279 

 280 

2.3 | Statistical analysis 281 

Analyses were conducted using a Bayesian framework implemented in the package ‘brms’ (v.2.15.0; 282 

Bürkner, 2017) in R (v.4.0.5; R Core Team, 2021). Prior to analysis we mean standardised all 283 

explanatory parameters to allow for effect size comparisons (Harrison et al., 2018; Schielzeth, 2010). 284 

We assessed potential multicollinearity between explanatory parameters for each dataset by checking 285 

variance inflation factors (VIF), using the check_collinearity function in the package ‘performance’ 286 

(v.0.7.2; Lüdecke et al., 2021), and by conducting Pearson correlation tests. All VIF factors were < 2.10 287 

and all correlation coefficients were < 0.45, indicating that explanatory variables were not strongly 288 

correlated with each other (Table S2–S3; Dormann et al., 2013, Zuur et al., 2009). Additionally, we 289 

assessed potential spatial autocorrelation among our understorey vegetation structure parameters by 290 

calculating Moran’s I statistic (Moran, 1950), using the moran.mc function in the package ‘spdep’ 291 

(v.1.1.8; Bivand et al., 2013). We found evidence of spatial clustering in our datasets (Figure S8, Table 292 

S4: i.e., cells that were close together were more similar in their vegetation structure than sites further 293 

apart). We therefore included a spatial conditional autoregressive (CAR) structure in our models 294 

(Figure S9) to account for this spatial autocorrelation (Bürkner, 2017; Dormann et al., 2007; Ciuti et 295 

al., 2017; Zuur et al., 2009). Further details are provided as Appendix S1 in Supplementary Information.  296 

 297 
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We constructed Bayesian spatial hierarchical generalised linear regression models for each of our four 298 

response variables of nest presence, nest success rate, fledgling survival rate, and reproductive success 299 

(Table 2). In all models, we included fixed effects of year (as a continuous covariate) plus the three 300 

understorey vegetation structure parameters. To account for repeated measurements of non-301 

independent data, we included cell ID and year (as multi-level factors) as random effects in all models. 302 

Female ID was additionally included as a random effect in the three models of breeding performance to 303 

account for multiple observations of the same breeding female.  304 

 305 

We initially also considered: non-linear (i.e., quadratic) effects of all understorey vegetation structure 306 

parameters; the two different parts of the study area (as a two-level factor: managed, unmanaged); and 307 

possible two-way interactions between all explanatory parameters. In cases where these effects were 308 

non-significant, we discarded them from our final models (and do not present them here). Previous 309 

studies of superb fairy-wrens have shown positive associations between a female’s age, the number of 310 

helpers, and a suite of breeding performance metrics (e.g., Cockburn et al., 2008; Hajduk et al., 2020, 311 

2021). We therefore included as fixed effects female age (as a two-level factor: 1 year old, 2+ year old, 312 

following e.g., Backhouse et al., unpublished data; Kruuk et al., 2015; Hajduk et al., 2018) and number 313 

of helpers (as a two-level factor: 0 helpers, 1+ helpers, following e.g., Cooper et al., 2020; Taylor & 314 

Langmore, 2020) in our three models of breeding performance to control for their effects, but we do 315 

not focus on these effects in detail in our results because the focus of this study was to examine the 316 

effects of understorey vegetation structure on nest-site selection and breeding performance. 317 

 318 

We ran all models on 4 independent MCMC chains for 8000 iterations, with a thinning interval of 10 319 

and a warm-up period of 3000 iterations (resulting in a total of 2000 posterior samples), specifying 320 

weakly informative priors with a normal error distribution (μ: 0; σ2: 1; Gelman et al., 2015). The effective 321 

sample sizes for specific parameters varied owing to autocorrelation, but we ensured that they were 322 

always above 400 (i.e., a minimum effective sample size of 100 per chain; Vehtari et al., 2021). Model 323 

convergence was confirmed visually by inspecting the trace plots of parameter estimates, and by 324 

ensuring that potential scale reduction factors were < 1.01 (Gelman et al., 2013; Vehtari et al., 2021). 325 

For each model, we assessed the goodness-of-fit using the posterior predictive check, pp_check, 326 

function in the package ‘bayesplot’ (v.1.8.1; Gabry & Mahr, 2021). Unless stated otherwise, summary 327 

statistics are presented as means (± SE). Model parameter estimates are presented as posterior means 328 
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(± SD) and 95% credible intervals. We consider there to be statistical support for specific parameters 329 

when the 95% credible intervals do not span zero.  330 

 331 

RESULTS 332 

Understorey vegetation structure parameters 333 

The mean (± SD) of the three understorey vegetation structure parameters were as follows: mean 334 

height: 3.3 ± 1.0 m (Figure 2c); SD height: 2.2 ±0.4 m (Figure 2d); groundstorey volume: 378.4 ± 267.8 335 

m3 (Figure 2e). There was a positive correlation between mean height and SD height (Pearson 336 

correlation coefficient = 0.30), and negative correlations between mean height and groundstorey 337 

volume (Pearson correlation coefficient = -0.42) and between SD height and groundstorey volume 338 

(Pearson correlation coefficient = -0.25) (Table S3).  339 

 340 

Nest-site selection 341 

Of the 741 cells, 39.41% (n = 292 cells) never had a nest during the 11 years of our study, while 23.35% 342 

(n = 173 cells) had a nest in 1 year only (Figure 1, Figure S10). The maximum number of years a cell had 343 

a nest was 9 years (two cells; Figure 1).  344 

 345 

In relation to the understorey vegetation structure, the probability of nest presence in a cell decreased 346 

with increasing mean height (nest-cell-years: 3.01 ± 0.03 m; unused cell-years: 3.33 ± 0.01 m; Table 3, 347 

Figure 3a – b), and increased with increasing groundstorey volume (nest-cell-years: 477.20 ± 8.53 m3; 348 

unused cell-years: 363.09 ± 3.12 m3; Table 3, Figure 3c – d). Note that because a cell encompasses c. 349 

10% of the average superb fairy-wren territory, random nest-site selection within a territory would be 350 

expected to predict an average probability of 0.10 for nest presence. Rates of nest presence >0.10 351 

therefore indicate preference for sites with lower (Figure 3b) and denser vegetation (Figure 3d). We 352 

found no significant effect of SD height on nest presence (Table 3). 353 

 354 

Nest success rate 355 

The nest success rate was on average 0.44 ± 0.01 (n = 1138 female-nest-cell-years) and varied between 356 

years. The highest nest success rate occurred in 2012 (0.51 ± 0.04; 123 female-nest-cell-years), while 357 

the lowest nest success rate occurred in 2019 (0.36 ± 0.07; n = 50 female-nest-cell-years). We found no 358 

significant linear change of nest success rate over time (Table 3). Most often cells contained only one 359 
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nest from one female only in a given year (80.84% female-nest-cell-years; range 1 – 4). As such, nest 360 

success rates were generally either 0.00 (51.41%; n = 585 female-nest-cell-years) or 1.00 (39.81%; n = 361 

453 female-nest-cell-years).  362 

 363 

We found no effect of mean height on nest success rate (female-nest-cell-years in which nest success 364 

rate > 0.00: 3.00 ± 0.04 m; female-nest-cell-years in which nest success rate was 0.00: 3.02 ± 0.03; 365 

Table 3, Figure 4a–b). Similarly, we found no effect of SD height on nest success rate (Table 3). 366 

However, there was a significant decline in nest success rate with increasing groundstorey volume 367 

(female-nest-cell-years in which nest success rate > 0.00: 463.96 ± 11.39 m3; female-nest-cell-years in 368 

which nest success rate was equal to 0.00: 490.16 ± 12.07; Table 3, Figure 4c–d).  369 

 370 

Fledgling survival rate 371 

Fledgling survival rate was on average 0.61 ± 0.02 (n = 556 female-nest-cell-years). The highest 372 

fledgling survival rate occurred in 2016 (0.76 ± 0.04; n = 53 female-nest-cell-years), whilst 2013 had 373 

the lowest fledgling survival rate (0.50 ± 0.05; n = 57 female-nest-cell-years). The average number of 374 

fledglings produced across all female-nest-cell-years was 2.96 ± 0.05 (range: 1 - 9), which corresponds 375 

to the typical clutch size of three eggs (Cockburn et al., 2016; Rowley & Russell, 1997).  376 

 377 

None of the understorey vegetation structure parameters were significant as main effects for fledgling 378 

survival rate (Table 3). However, we did find a significant interaction between mean height and 379 

groundstorey volume: fledgling survival rates decreased with groundstorey volume when female-nest-380 

cell-years contained smaller understorey vegetation (i.e., when mean height was lower than the 381 

population-level average, n = 268 female-nest-cell-years; Table 3, Figure 5). 382 

 383 

Reproductive success 384 

A total of 37.70% female-nest-cell-years produced one or more independent offspring overall (n = 429 385 

of 1138 female-nest-cell-years). The highest percentage of female-nest-cell-years to produce 386 

independent offspring occurred in 2018 (45.33%; n = 34 of 75 female-nest-cell-years) and 2012 387 

(43.09%; n = 53 of 123 female-nest-cell-years), while the lowest percentage of female-nest-cell-years to 388 

produce independent offspring occurred in 2019 (26.00%; n = 13 of 50 female-nest-cell-years). None of 389 
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the understorey vegetation structure parameters were found to significantly influence whether a female 390 

had any reproductive success in a nest-cell in a given year (Table 3).  391 

 392 

DISCUSSION 393 

Our study combined high-resolution ALS-derived measures of understorey vegetation structure with 394 

detailed breeding data from a long-term study of a population of superb fairy-wrens. We found 395 

differences in the characteristics of understorey vegetation structure in sites chosen for nesting, but no 396 

evidence that this selection reduced the risk of nest or fledgling predation. We discuss the outcomes of 397 

these results in turn below, and the implications for the use of ALS in studies of the evolutionary and 398 

behavioural ecology of wild animal populations.  399 

 400 

Understorey vegetation structure characteristics and nest-site selection 401 

Our results indicate that female superb fairy-wrens select where to build their nests and raise their 402 

offspring based on aspects of the understorey vegetation height, complexity, and density. The 403 

probability of nest presence in a given 30 x 30 m resolution cell increased with decreasing mean height 404 

of the understorey vegetation in that cell. A low mean height value is indicative of an area containing 405 

more grass tussocks and small shrubs, vegetation types that superb fairy-wrens preferentially use to 406 

nest in within our study area (Figure S2). Nest presence also increased with groundstorey volume, with 407 

nest-cells having a higher value of groundstorey volume compared to unused cells. We found no 408 

statistical significance of SD height affecting the probability of nest presence. However, this was possibly 409 

due to a lack of power in the 11 year subset of data (i.e., 2009 – 2019) used in this analysis; when we 410 

repeated our nest presence analyses using the full dataset (i.e., 1994 – 2019), we found that the 411 

parameter estimates were almost identical, but reduced error around the estimate meant that the 412 

positive association between SD height and nest presence was statistically significant (Table S1). Denser 413 

and more complex vegetation, particularly immediately surrounding the nest, is expected to be favoured 414 

in response to a preponderance of visually and auditorily-oriented predators (Bowman & Harris, 1980; 415 

Martin, 1993; Martin & Roper, 1988; Filliater et al., 1994). Our results are therefore consistent with the 416 

expectation that superb fairy-wrens’ choice of where to nest and raise their offspring is shaped by 417 

predation pressures.  418 

 419 

Vegetation structure characteristics and superb fairy-wren breeding performance 420 
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Previous studies of superb fairy-wrens have reported increased rates of nest predation and decreased 421 

numbers of fledglings in relation to visually estimated aspects of vegetation density (Backhouse et al., 422 

unpublished data; Colombelli-Négrel & Kleindorfer, 2009). Our study confirms these findings when 423 

measuring vegetation density from high-resolution ALS data by showing that nest success rates 424 

decreased with increasing volume of groundstorey-level vegetation. Fledgling survival rates also 425 

decreased with increasing groundstorey volume, though only when the mean height was lower. Overall, 426 

groundstorey volume did not significantly affect whether a female achieved any reproductive success in 427 

a given 30 x 30 m resolution nest-cell. As before, this finding was possibly due to a lack of power in the 428 

subset of data used in this study; when we repeated our reproductive success analyses using the full 429 

dataset, we found almost identical effect sizes, but the negative groundstorey volume effect was 430 

significant due to reduced error with the larger sample sizes (Table S1). Our findings therefore indicate 431 

a potential paradox: why do nest-sites with increased groundstorey volume have decreased rates of nest 432 

success and fledgling survival when such structural vegetation characteristics should be adaptive 433 

against visually and auditorily-oriented predators, such as pied currawongs?  434 

 435 

There are several possible explanations for this paradox. Whilst pied currawongs have been previously 436 

identified as the dominant species responsible for depredating the nests and fledglings of superb fairy-437 

wrens in our study population (Prawiradilaga, 1996), they were not present in our study area until the 438 

1970s (Taylor, 1992). It is therefore possible that superb fairy-wren nest-site selection evolved in 439 

response to historical selection pressures generated by different predatory species (Chalfoun & Schmidt, 440 

2012), with pied currawongs not deterred by dense vegetation, and hence current nest-site preferences 441 

are insufficient at impeding the pied currawong’s ability to detect and access the nests and fledglings of 442 

superb fairy-wrens. 443 

 444 

Alternatively, superb fairy-wren nest-site selection might be adaptive against pied currawongs, but the 445 

current importance of pied currawongs as a predator of superb fairy-wren nests and fledglings in our 446 

study area may have been overestimated, or the dynamics between superb fairy-wrens and pied 447 

currawongs may have changed since Prawiradilaga (1996). Indeed, despite a sustained increase in the 448 

numbers of pied currawongs in our study area (Cockburn, unpublished data), long-term rates of superb 449 

fairy-wren nest predation have decreased (Table S1; Backhouse et al., unpublished data).  450 

 451 
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It is also possible that nesting in areas with increased groundstorey volume may make superb fairy-452 

wren nests and fledglings more vulnerable to other predators (Filliater et al., 1994). Red foxes are also 453 

common predators of superb fairy-wren nests and fledglings in our study area (Turner et al., 454 

unpublished data). Elsewhere in Australia, red foxes have been linked to the extinction of an estimated 455 

14 native mammal species and one bird species (Woinarski et al. 2019), and to the ongoing population 456 

declines of many others (Woinarski et al. 2022), because of their generalist diet and ability to thrive in 457 

a range of habitat types. Red foxes often locate their prey using olfactory cues, which may not be reduced 458 

by structural vegetation characteristics (Colombelli-Négrel & Kleindorfer, 2009). It is therefore possible 459 

that current nest-site preferences are not adaptive to predation pressures imposed by red foxes. In our 460 

study, we do not have sufficient observations of predation events to test whether the relative importance 461 

of understorey vegetation structure on superb fairy-wren breeding performance differed with predator 462 

species, but our results illustrate the need to understand the potential importance of other predators.          463 

 464 

Potential use and limitations of ALS in future studies in evolutionary and behavioural ecology 465 

Few studies have so far used ALS in evolutionary and behavioural ecology, and such studies have most 466 

often focused on using ALS-derived measures of vegetation structure to assess differences in species’ 467 

distributions, richness, and abundances (Ciuti et al., 2017; Davies & Asner, 2014; de Vries et al., 2021; 468 

Shokirov et al., 2023). In general, these studies have found significant (positive or negative) associations 469 

between one or more ALS-derived measures of vegetation structure and these different components of 470 

species composition (Davies & Asner, 2014), including in a landscape with a very similar vegetation 471 

structure to our study area (Shokirov et al., 2023). More recently, studies have also shown that ALS data 472 

can be used to assess how structural vegetation characteristics affect the breeding behaviours and life-473 

histories of single populations or species (Davies et al., 2016, 2019; Hill et al., 2004; Hill & Hinsley, 474 

2015; Klein et al., 2020). Much of these studies have thus far been conducted in North America and 475 

Europe and are biased towards a few taxonomic groups, mainly birds (Davies & Asner, 2014). However, 476 

the increasing accessibility of national or regional ALS datasets means there is tremendous potential 477 

for studies to be conducted globally for entire taxonomic groups and ecosystems (Lefsky et al. 2002, 478 

Vierling et al. 2008).  479 

 480 

While traditional field methods can also be used to assess vegetation structure, doing so may be costly, 481 

labour intensive and more subjective, and measurements are usually only taken at a subset of locations. 482 
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Obtaining structural vegetation data in remote environments or across rugged terrains can also be 483 

particularly challenging. In contrast, ALS can produce spatially contiguous measures of vegetation 484 

structure at high resolution, thereby producing a more realistic representation of vegetation structure 485 

of the landscape. ALS also provides a means of collecting data in areas that have restricted or limited 486 

access, and to cover broad spatial extents that would otherwise be impossible using traditional field 487 

methods. It should be noted that several previous studies have found strong associations between 488 

structural vegetation characteristics derived from ALS and those measured quantitatively in the field 489 

(Hyde et al., 2005, 2006). However, one advantage of ALS is that it allows for more complex measures 490 

of vegetation structure to be calculated (Bakx et al., 2019). Additionally, these calculations can be done 491 

post-hoc, as our understanding of the relative importance of different vegetation structural parameters 492 

improves. 493 

 494 

There are of course limitations to ALS that need to be considered. First, ALS datasets can be 495 

computationally demanding, requiring large amounts of computer memory to process. For example, 496 

the unprocessed ALS data for our study area (c. 65 hectares) was c. 10 GB in size and initially consisted 497 

of c. 250 million data points. Some level of specialisation is also required to process and analyse ALS 498 

data, but the development of packages and workflows in geographic information system (GIS) or open-499 

source software such as R and Python has reduced technical challenges (van Rees, 2013; Roussel et al., 500 

2020). Second, the general purpose of many ALS surveys is to provide accurate and precise mapping of 501 

the ground terrain (Reutebach et al., 2005). For this reason, most ALS surveys are conducted in winter 502 

when deciduous trees and shrubs have no leaves to limit introduced ‘noise’ from vegetation points. ALS 503 

data captured in winter may thus not provide a realistic representation of vegetation structure for 504 

landscapes in which deciduous species are abundant. Future studies are needed to understand the effect 505 

of seasonality on the ability of ALS to accurately capture structural vegetation data. Note, however, the 506 

vegetation in our study area is predominantly evergreen, dominated by Eucalyptus species (Fraser & 507 

Purdie, 2020). Finally, ALS may be ineffective at penetrating through the particularly dense canopy 508 

vegetation (Bakx et al., 2019), thus limiting its ability to accurately capture the structural characteristics 509 

of understorey vegetation in some landscapes. However, Shokirov et al. (2023) have shown that ALS is 510 

effective at capturing understorey vegetation in a landscape close to and similar in structure to our study 511 

area, by comparing structural vegetation characteristics derived from ALS and higher resolution 512 

Terrestrial Laser Scanning (TLS) and relating these measures to avian species diversity and abundance.  513 
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 514 

CONCLUSION 515 

Our analysis used ALS to investigate breeding behaviour in a wild bird population, illustrating the 516 

specific aspects of the understorey vegetation structure associated with superb fairy-wrens’ choice of 517 

nest-site. The relationships between understorey vegetation structure and superb fairy-wren breeding 518 

performance are complex and highlight the need for future research to consider the relative importance 519 

of specific predators. Our study demonstrates the promising potential for using ALS-derived measures 520 

of vegetation structure, and in particular for testing effects of more complex measures such as variation 521 

in structure, in studies of evolutionary and behavioural ecology. The increasing availability of ALS data 522 

provides an exciting opportunity for furthering our understanding of the ecological pressures that shape 523 

the breeding behaviours and life-histories of birds, and other wild animal populations, at an 524 

unprecedented resolution and spatial coverage. 525 

 526 
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Figure 1: Location of the study area in Canberra, Australian Capital Territory, Australia. The study area encompasses an 

area of c. 65 hectares that includes a managed area (c. 43 hectares) in the Australian National Botanic Gardens (ANBG; the 

perimeter of which is shown in black) and an unmanaged area (c. 22 hectares), which is part of the adjacent Black Mountain 

Nature Reserve. We established a 30 x 30 m resolution grid (n = 768 cells) over the extent of the study area, for which fairy-

wren breeding data and ALS-derived vegetation structure parameters were extracted. Data for 27 of the 768 cells were excluded 

from analyses (shown in white), leaving a total of 741 cells; these excluded areas contain semi-artificial habitats that the fairy-

wrens do not inhabit (see main text for further details).  The left-hand panel shows the spatial distribution of the 741 cells across 

the study area, with cells shaded based on the number of years they contained a nest-site; the middle panel shows the location 

of the study area within the Australian Capital Territory; and the right-hand panel shows the latter’s location in Australia. 
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Table 1: Overview of the understorey vegetation structure parameters derived from ALS for each 30 x 30 m resolution cell. z = normalised height value of LiDAR point; Voxel = A value of volume 

represented in three-dimensional (x, y, z) space.  

 

 

† Note: ALS point cloud data were converted to 1 x 1 x 1 m voxels using the voxelize_points function in the package ‘lidR’ (v.3.1.3; Rousel et al., 2020) in in R (v.4.0.5; R Core Team, 2021). The method of using voxels to 

estimate vegetation density followed e.g., Béland et al. (2014); Sasaki et al. (2016); Shokirov (2021), Shokirov et al. (2023); Stoker (2009).  

 

 

 

 

 

 
  

 
 

Parameter Parameter Abbreviation Height Threshold Description Ecological Interpretation  

Mean height of the understorey vegetation 

(measured in metres) 

Mean Height 0 – 8 m Mean value of z within each 30 x 30 m resolution cell A high mean height value indicates that a cell contains more 

tall shrubs and small trees, and fewer grass tussocks. A low 

mean height value indicates that a cell contains more grass 

tussocks and small shrubs. The spatial distribution of mean 

height across the study area is shown in Figure 2c. 

Standard deviation of the height of the 

understorey vegetation (measured in 

metres) 

SD Height 0 – 8 m  SD of z values within each 30 x 30 m resolution cell SD height describes the variation in the vegetation height. A 

high SD height value indicates that a cell contains a more 

heterogenous, or complex, vegetation height distribution. 

The spatial distribution of SD height across the study area is 

shown in Figure 2d. 

Volume of the vegetation in the lowest 

layer of the understorey (measured in 

cubic metres).  

Groundstorey Volume 0 – 2 m The number of 1 x 1 x 1 m voxels† between 0–2 m 

containing one or more vegetation point within each 

30 x 30 m resolution cell. Maximum potential 

groundstorey volume is 1800 m3 (i.e., 30 x 30 x 2 m).  

The density of vegetation in the lowest understorey layer. The 

spatial distribution of groundstorey volume across the study 

area is shown in Figure 2e. 
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Table 2: Definition of terms and overview of the superb fairy-wren breeding parameters used in this study.  

 
  

 
 

Breeding Parameter  

Observation Level 

 

Number of Observations 

 

Description 

 

Model Structure 

Nest Presence A 30 x 30 m resolution cell 

in a given year (i.e., cell-

year) 

8151 cell-years  

(i.e., 741 cells; 11 years) 

Cells that contained a nest in a given year were assigned a 

binary score of 1 (i.e., nest-cell-year) otherwise 0 (i.e., unused 

cell-year)  

Bernoulli error distribution (and logit-link function) 

Nest Success Rate A nest-cell for a given 

breeding female in a given 

year (i.e., female-nest-cell-

year) 

1138 female-nest-cell-years The number of successful nests relative to the total number of 

nest attempts for each breeding female in a nest-cell in a given 

year 

Binomial error distribution (and logit-link function). 

The denominator (i.e., the total number of nest 

attempts for each female-nest-cell-year) was equal to 1 

in 80.8% of observations 

Fledgling Survival Rate A nest-cell for a given 

breeding female in a given 

year (i.e., female-nest-cell-

year) 

556 female-nest-cell-years. Only 

female-nest-cell-years that 

contained one or more fledgling 

were included in this model 

The number of fledglings to survive to independence relative 

to the total number of nestlings that successfully fledged for 

each breeding female in a nest-cell in a given year 

Binomial error distribution (and logit-link function). In 

total, 22.1% of observations were zeros. Therefore, to 

account for excess zeros in the Binomial error 

distribution, we included a zero-inflated parameter in 

this model (Bürkner, 2017) 

Reproductive Success A nest-cell for a given 

breeding female in a given 

year (i.e., female-nest-cell-

year) 

1138 female-nest-cell-years Female-nest-cell-years with one or more offspring successfully 

raised to independence were assigned a binary score of 1 (i.e., 

reproductive success) otherwise 0 (i.e., no reproductive 

success) 

Bernoulli error distribution (and logit-link function) 
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                                                                                                                                                                                       Figure 2: (a) Height-normalised LiDAR point cloud data for the study area acquired using ALS.                                                                                                         

                                                                                                                                                                                       Note, ground points are not presented. A three-dimensional animation of these data is  

                                                                                                                                                                                       provided as Video S1. (b) An example 120 x 30 m cross-section of the point cloud data. 

                                                                                                                                                                                       Dashed line indicates the cut-off point (8 m) between the understorey and canopy  

                                                                                                                                                                                       layer. Solid line indicates the cut-off point (2 m) below which the groundstorey volume was  

                                                                                                                                                                                       estimated. (c - e) Spatial distribution of the three understorey vegetation structure parameters   

                                                                                                                                                                                       used in the analysis (ANBG perimeter shown in black). 
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Figure 3: Nest presence in relation to (a – b) mean height and (c – d) groundstorey volume. Panels (a) and (c) show the 

distribution of the raw data. The box and whiskers show the mean, plus upper and lower quartiles, and the interquartile range 

of the raw data for each group. Panels (b) and (d) show the model estimated marginal means (± 95% confidence intervals), 

after correcting for main effect parameters, as described in Methods. For visualisation purposes, the raw data were grouped 

into bins (each bin represents an interval of 1 m in (b) and an interval of 200 m3 in (d)) with points showing the group mean ± 

SE. In all panels, the number of observations (cell-years) in each group is given. Model estimates are provided in Table 3. 
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Figure 4: Nest success rate in relation to (a – b) mean height and (c – d) groundstorey volume. Panels (a) and (c) show the 

distribution of the raw data. For visualisation purposes, the raw data were grouped into two bins: 0.00 and > 0.00. The box 

and whiskers show the mean, plus upper and lower quartiles, and the interquartile range of the raw data for each group. Panels 

(b) and (d) show the model estimated marginal means (± 95% confidence intervals), after correcting for main effect 

parameters, as described in Methods. For visualisation purposes, the raw data were grouped into bins (each bin represents an 

interval of 1 m in (b) and an interval of 200 m3 in (d)) with points showing the group mean ± SE. In all panels, the number of 

observations (female-nest-cell-years) in each group is given. Model estimates are provided in Table 3. 
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Figure 5: Fledgling survival rate in relation to groundstorey volume when vegetation is low (green; mean height is less than 

the population-level average) or high (purple; mean height is greater than the population-level average). Regression lines show 

the model estimated marginal means (± 95% confidence intervals), after correcting for main effect parameters, as described in 

Methods. For visualisation purposes, the raw data were grouped into bins (each bin represents an interval of 200 m3) with 

points showing the group mean ± SE. The number of observations (female-nest-cell-years) in each group is given. Model 

estimates are provided in Table 3. 
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Table 3: Summaries of Bayesian spatial hierarchical generalised linear regression models. The parameter estimates are presented as posterior means ± standard deviation (SD) and 95% credible 

intervals (CI). All explanatory parameters were mean standardised for analysis. Main effect parameters for which the 95% CI do not overlap zero are highlighted in bold. 

                                                                                                                                                          

 

 

  

 

 

 Nest Presence Nest Success Rate Fledgling Survival Rate Reproductive Success 

Parameters Estimate ± SD [95% CI] Estimate ± SD [95% CI] Estimate ± SD [95% CI] Estimate ± SD [95% CI] 

Intercept -2.37 ± 0.09 [-2.54 – -2.19] -0.38 ± 0.13 [-0.63 – -0.12] 1.17 ± 0.24 [0.70 – 1.64] -0.56 ± 0.15 [-0.86 – -0.29] 

Year -0.28 ± 0.07 [-0.43 – -0.13] 0.04 ± 0.09 [-0.13 – 0.20] 0.05 ± 0.16 [-0.27 – 0.37] 0.05 ± 0.09 [-0.13 – 0.22] 

Mean Height -0.24 ± 0.09 [-0.41 – -0.08] -0.04 ± 0.09 [-0.21 – 0.13] 0.24 ± 0.15 [-0.06 – 0.54] 0..03 ± 0.09 [-0.15 – 0.21] 

SD Height 0.10 ± 0.07 [-0.04 – 0.25] -0.04 ± 0.07 [-0.18 – 0.10] -0.19 ± 0.13 [-0.44 – 0.05] -0.13 ± 0.08 [-0.28 – 0.02] 

Groundstorey Volume 0.42 ± 0.08 [0.26 – 0.57] -0.20 ± 0.07 [-0.33 – -0.06] 0.07 ± 0.12 [-0.17 – 0.31] -0.11 ± 0.08 [-0.27 – 0.04] 

Groundstorey Volume: Mean Height 0.07 ± 0.07 [-0.06 – 0.20] 0.02 ± 0.07 [-0.11 – 0.16] 0.34 ± 0.13 [0.10 – 0.59] 0.10 ± 0.07 [-0.06 – 0.24] 

Female Age (Relative to 1 Year Old)     

          2+ Years Old  -0.02 ± 0.14 [-0.28 – 0.24] -0.08 ± 0.21 [-0.50 – 0.33] -0.10 ± 0.15 [-0.38 – 0.20] 

Number of Helpers (Relative to 0)     

          1+ Helpers  0.26 ± 0.13 [-0.01 – 0.51] -0.07 ± 0.20 [-0.46 – 0.32] 0.32 ± 0.14 [0.04 – 0.58] 

Random Effects Variance Component ± SD [95% CI] Variance Component ± SD [95% CI] Variance Component ± SD [95% CI] Variance Component ± SD [95% CI] 

Cell ID 0.35 ± 0.19 [0.03 – 0.71] 

(n = 741) 

0.19 ± 0.13 [0.01 – 0.49] 

(n = 448) 

0.90 ± 0.18 [0.54 – 1.27] 

(n = 301) 

0.22 ± 0.15 [0.01 – 0.55] 

(n = 448) 

Female ID  0.52 ± 0.11 [0.28 – 0.74] 

(n = 317) 

0.81 ± 0.22 [0.33 – 1.24] 

(n = 250) 

0.30 ± 0.15 [0.02 – 0.59] 

(n = 317) 

Year 0.19 ± 0.08 [0.06 – 0.37] 

(n = 11) 

0.13 ± 0.10 [0.01 – 0.36] 

(n = 11) 

0.37 ± 0.17 [0.08 – 0.75] 

(n = 11) 

0.16 ± 0.12 [0.01 – 0.44] 

(n = 11) 

Spatial Correlation 2.21 ± 0.23 [1.71 – 2.62] 0.17 ± 0.09 [0.01 – 0.39] 0.14 ± 0.11 [0.00 – 0.41] 0.16 ± 0.11 [0.01 – 0.43] 

Zero Inflation Parameter   0.13 ± 0.02 [0.09 – 0.17]  

 n = 8151 cell-years n = 1138 female-nest-cell-years n = 556 female-nest-cell-years n = 1138 female-nest-cell-years 
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Appendix S1: Supplementary Methods 

Assessing spatial autocorrelation 

Modelling data that relate to contiguous spatial regions, such as survey data, can pose a common problem in that 

they often display spatial autocorrelation (Dormann et al., 2007). In the case of our study, this would mean that 

cells from our 30 x 30 m resolution grid that were close together (i.e., neighbours) would likely be more similar in 

their understorey vegetation structure than those further apart. If spatial autocorrelation is present in the raw data 

and remains present in the residuals of the statistical model that uses such data, then inferences for that analyses 

will be violated. It is therefore important that researchers working with spatial data use diagnostic tools to check 

for spatial autocorrelation. In this study, we assessed for spatial autocorrelation for each of the three understorey 

vegetation structure parameters in each of our four datasets by calculating the Moran’s I statistic (Moran, 1950), 

using the moran.mc function in the package ‘spdep’ (v.1.1.8; Bivand et al., 2013): 

 

 
𝐼 =  

𝑁 ∑ ∑ 𝑤𝑖𝑗
𝑛
𝑗=1 (𝑥𝑖

𝑛
𝑖=1 − �̅�)(𝑥𝑗 − �̅�)

(∑ ∑ 𝑤𝑖𝑗) ∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1

𝑛
𝑗=1

𝑛
𝑖=1

 

 

(a) 

Where N is the number of cells (N= 741 cells in our nest presence dataset, 448 cells in our nest success rate and 

reproductive success datasets, and 301 cells in our fledgling survival rate dataset), Xi and Xj are the understorey 

vegetation structure parameter values for cell i and j respectively, x̄ is the mean of the understorey vegetation 

structure parameter across all cells, and Wij is a spatial weights matrix of i relative to j. We used a binary spatial 

weights matrix, with Wij  equal to 1 if cells were identified as neighbours (otherwise 0). We identified neighbouring 

cells using a first order Queen’s contiguity criterion – i.e., where common sides and common vertices are considered 

when defining the neighbour relation. This method differs from, for example, a first order Rook contiguity criterion, 

which considers only common sides when defining neighbour relations. Thus, where the Rook criterion will result 

in a cell having between 1–4 neighbours, the Queen criterion enables a cell to have up to eight neighbours.  

 

 

 

 

 

 

 

Example of the identification of neighbouring cells when using  

(a) first order Rook contiguity criterion; (b) first order Queen’s contiguity criterion. 
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These methods require all data to be contiguous. However, this was not the case for data in our nest success rate, 

fledgling survival rate, and reproductive success datasets, which were based on observations from a subset of our 

study area (Figure S9). Two cells in our nest success rate and reproductive success datasets, and seven cells in our 

fledgling survival rate dataset, contained no first order neighbours. Moreover, observations from larger sections of 

our study area were unlinked from either other. In cases where single observations were unlinked, we assigned 

them a single randomly chosen second order neighbour. In cases where larger sections of our study area were 

unlinked, we assigned one randomly chosen cell a randomly chosen second order neighbour, depicted below 

(Figure S9).  

 

 

 

  

 

 

 

 

 

Cells that contained no first order neighbours were randomly assigned to  

one of a potential sixteen second order neighbours (light green). 

 

Moran’s I statistic ranges from −1.0 to 1.0. When I is positive, data are considered spatially clustered, whereas when 

I is negative data are considered spatially dispersed. When I is equal to 0 data are considered to be spatially random 

(Moran, 1950). Our diagnostics revealed that mean height, SD height, and groundstorey volume were all spatially 

clustered in the dataset that we used for our analysis of nest presence, and groundstorey volume was spatially 

clustered in the datasets that we used for our nest success rate and reproductive success models (Table S4, Figure 

S8). Therefore, we incorporated the spatial weights matrix as a conditional autoregressive (CAR) structure in all 

four of our models, to ensure the cell ID random effect was spatially structured.  

 

 

 

 

 



 
Page 4 of 18 

 

Table S1: Summaries of Bayesian spatial hierarchical generalised linear regression models using the full breeding dataset from 1994–2019. The parameter estimates are presented as posterior means 

± standard deviation (SD) and 95% credible intervals (CI). All explanatory parameters were mean standardised for analysis. Main effect parameters for which the 95% CI do not overlap zero are 

highlighted in bold. 

 Nest Presence Nest Success Rate Fledgling Survival Rate Reproductive Success 

Parameters Estimate ± SD [95% CI] Estimate ± SD [95% CI] Estimate ± SD [95% CI] Estimate ± SD [95% CI] 

Intercept -2.06 ± 0.06 [-2.18 – -1.95] -0.68 ± 0.08 [-0.84 – -0.52] 1.14 ± 0.15 [0.85 – 1.44] -0.84 ± 0.09 [-1.01 – -0.66] 

Year -0.23 ± 0.05 [-0.32 – -0.13] 0.11 ± 0.04 [0.02 – 0.19] -0.06 ± 0.09 [-0.24 – 0.12] 0.06 ± 0.05 [-0.05 – 0.16] 

Mean Height -0.14 ± 0.07 [-0.27 – -0.01] -0.00 ± 0.06 [-0.11 – 0.11] 0.09 ± 0.08 [-0.08 – 0.25] 0..03 ± 0.06 [-0.08 – 0.15] 

SD Height 0.13 ± 0.05 [0.03 – 0.23] -0.03 ± 0.04 [-0.12 – 0.05] 0.01 ± 0.07 [-0.12 – 0.14] -0.10 ± 0.05 [-0.19 – -0.01] 

Groundstorey Volume 0.42 ± 0.08 [0.26 – 0.57] -0.14 ± 0.05 [-0.24 – -0.05] 0.05 ± 0.07 [-0.09 – 0.19] -0.10 ± 0.05 [-0.20 – -0.00] 

Groundstorey Volume: Mean Height 0.02 ± 0.05 [-0.08 – 0.12] 0.01 ± 0.05 [-0.08 – 0.10] 0.20 ± 0.07 [0.07 – 0.34] 0.06 ± 0.05 [-0.04 – 0.15] 

Female Age (Relative to 1 Year Old)     

          2+ Years Old  0.23 ± 0.08 [0.07 – 0.39] -0.13 ± 0.12 [-0.36 – 0.11] 0.16 ± 0.09 [-0.01 – 0.34] 

Number of Helpers (Relative to 0)     

          1+ Helpers  0.18 ± 0.08 [0.03 – 0.33] 0.02 ± 0.11 [-0.19 – 0.23] 0.22 ± 0.08 [0.06 – 0.38] 

Random Effects Variance Component ± SD [95% CI] Variance Component ± SD [95% CI] Variance Component ± SD [95% CI] Variance Component ± SD [95% CI] 

Site ID 0.20 ± 0.13 [0.01 – 0.46] 

(n = 741) 

0.37 ± 0.09 [0.16 – 0.53] 

(n = 627) 

0.60 ± 0.11 [0.38 – 0.81] 

(n = 499) 

0.37 ± 0.10 [0.15 – 0.54] 

(n = 627) 

Female ID  0.32 ± 0.09 [0.12 – 0.47] 

(n = 731) 

0.71 ± 0.10 [0.51 – 0.90] 

(n = 569) 

0.13 ± 0.09 [0.01 – 0.33] 

(n = 731) 

Year 0.22 ± 0.04 [0.15 – 0.31] 

(n = 26) 

0.10 ± 0.06 [0.01 – 0.23] 

(n = 26) 

0.35 ± 0.08 [0.21 – 0.54] 

(n = 26) 

0.16 ± 0.07 [0.02 – 0.30] 

(n = 26) 

Spatial Correlation 2.20 ± 0.13 [1.83 – 2.34] 0.20 ± 0.15 [0.01 – 0.53] 0.13 ± 0.09 [0.01 – 0.36] 0.15 ± 0.12 [0.01 – 0.46] 

Zero Inflation Parameter   0.15 ± 0.01 [0.12 – 0.17]  

 n = 19266 cell-years n = 3148 female-nest-cell-years n = 1443 female-nest-cell-years n = 3148 female-nest-cell-years 
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Figure S1: The height (cm) at which superb fairy-wrens built their nests in the study area (n = 1139 nests between 2013 – 2019, 

with 2013 being when we started recording nest height in our study area). For each year, the frequency distribution of the raw 

data is shown by the histogram, the box shows the mean, plus upper and lower quartiles, and the interquartile range, while the 

whiskers show the 95% confidence interval. The dashed red line is the mean nest height across all years. The number of nests 

in each year is given. 
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Nest locations between 2009 – 2019 (data used in this study): 

          

                                  

 

 

 

 

 

 

 

 

Nest locations between 1994 – 2019 (duration that comprehensive breeding data have been collected across 

the entire extent of the study area): 

 

 

 

 

 

 

 

 

 

 

 

Figure S2: The percentage of superb fairy-wren nests built in different vegetation substrates in the study area (a) between 

2009–2019; (b) between 1994–2019. The number of observations (number of nests) in each group is given. 
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Nest fate between 2009 – 2019 (data used in this study): 

 

 

 

 

 

 

 

 

Nest fate between 1994 – 2019 (duration that comprehensive breeding data have been collected across the 

entire extent of the study area): 

 

 

 

 

 

 

 

 

 

Figure S3: The fate of superb fairy-wren nests in the study area (a) between 2009 – 2019 (the years documented in this study, 

n = 1839 nests); (b) between 1994 – 2019 (the full duration of the study period, n = 4799). The number of observations (number 

of nests) in each group is given. Depredated = when all eggs or nestlings disappeared prior to their expected fledging date; 

Fledged = at least one offspring surviving to successfully fledge; Abandoned = nest failed after adult birds stopped incubating 

eggs or provisioning nestlings prior to their expected fledgling date; Female died = nest failed after the death of the breeding 

female; Parasitised = brood parasitised by cuckoos (e.g., see Turner et al., 2022); Other / Unknown = nest failed due to other or 

unknown cause.  
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Daily fledgling mortality rate between 2009 – 2019 (data used in this study): 

 

 

 

 

 

 

 

 

 

 

 

 

 

Daily fledgling mortality rate between 1994 – 2019 (duration that comprehensive breeding data have been 

collected across the entire extent of the study area): 

 

 

 

 

 

 

 

 

 

Figure S4: Mean (± SE) daily mortality rate of superb fairy-wren fledglings until independence (a) between 2009 – 2019 (n = 

1844 fledglings); (b) between 1994 – 2019 (n = 4821 fledglings). The number of observations (fledgling-days) for each day is 

given. 
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Figure S5: Mean (± SE) daily maximum (green bars) and minimum (purple bars) temperature, and total rainfall (black line) 

for each year of the study between 2009–2019. Note, a year spans 1 September – 31 August so, for example, 2019 consists of 

weather data from 1 September 2019–31 August 2020. Data were based on daily weather conditions at Canberra Airport, 

Australian Capital Territory, Australia (which is c. 8 km east of the study area) and were obtained from the Australian Bureau 

of Meteorology (http://www.bom.gov.au/climate/data).  

  

http://www.bom.gov.au/climate/data
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Figure S6: The change in (a) nest presence; (b) the number of breeding females in the study area over time. is. The regression 

lines represent model estimated marginal means (± 95% confidence intervals) from simple linear regressions.  The number of 

observations (in (a) the number of cells with a nest; in (b) number of breeding females) in each year is given across the top of 

each graph. 
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Figure S7: Mean (± SE) number of LiDAR vegetation points in each cell (n = 741) at 2 metre height increments. Dashed line 

indicates the chosen cut-off point (8 m) between the understorey and canopy layer. Solid line indicates the chosen cut-off point 

(2 m) at which the groundstorey volume was estimated. 
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Table S2: Checking for multicollinearity among model parameters. The Variance Inflation Factor (VIF) is calculated as 1/(1 – 

R2); values < 5 indicate a low correlation between the parameter and other model parameters. The Increased SE indicates how 

much larger the standard error is the parameter due to associations with other model parameters. Tolerance is calculated as 

1/VIF, and indicates the amount of variability in the parameter that is not explained by the other model parameters. 

Multicollinearity checks were implemented using the check_collinearity function in the R package ‘performance’ (v.0.7.2; 

Lüdecke et al., 2021).  

 

Nest Presence 

Parameters VIF Increased SE Tolerance 

Year 1.00 1.00 1.00 

Mean Height 1.54 1.24 0.65 

SD Height 1.19 1.09 0.84 

Groundstorey Volume 1.53 1.24 0.65 

Groundstorey Volume: Mean Height 1.44 1.20 0.69 

 

Nest Success Rate 

Parameters VIF Increased SE Tolerance 

Year 1.03 1.02 0.97 

Mean Height 1.95 1.40 0.51 

SD Height 1.34 1.16 0.75 

Groundstorey Volume 1.32 1.15 0.76 

Groundstorey Volume: Mean Height 1.44 1.20 0.69 

Mother Age 1.04 1.02 0.96 

Number of Helpers 1.05 1.02 0.95 

 

Fledgling Survival Rate 

Parameters VIF Increased SE Tolerance 

Year 1.01 1.01 0.99 

Mean Height 2.09 1.45 0.48 

SD Height 1.23 1.11 0.81 

Groundstorey Volume 1.24 1.11 0.81 

Groundstorey Volume: Mean Height 1.57 1.25 0.64 

Mother Age 1.02 1.01 0.98 

Number of Helpers 1.02 1.01 0.98 

 

Reproductive Success 

Parameters VIF Increased SE Tolerance 

Year 1.03 1.02 0.97 

Mean Height 1.88 1.37 0.53 

SD Height 1.28 1.13 0.78 

Groundstorey Volume 1.23 1.11 0.81 

Groundstorey Volume: Mean Height 1.41 1.19 0.71 

Mother Age 1.08 1.04 0.92 

Number of Helpers 1.07 1.04 0.93 
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Table S3: Pearson coefficients indicating the level of relationship between main effect parameters in each of the four Bayesian 

spatial hierarchical regression models: (a) nest presence; (b) nest success rate; (c) fledgling survival rate; (d) Reproductive 

Success. Positive relationships are highlighted in green, whilst negative relationships are in purple. Shading is dependent on 

the strength of the relationship, becoming bolder as relationships approach +1 or -1. 
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Table S4: Checking for spatial autocorrelation among understorey vegetation structure parameters. Spatial autocorrelation 

was considered significant when pseudo-P < 0.05 (highlighted in bold). Moran’s I statistics were calculated using the moran.mc 

function in the R package ‘spdep’ (v.1.1.8; Bivand et al., 2013). 

 

Nest Presence 

Parameters Moran’s I Pseudo-P 

Mean Height 0.29 < 0.001 

SD Height 0.26 < 0.001 

Groundstorey Volume 0.48 < 0.001 

Number of Cells (n = 741)   

Mean Number of Neighbours/Cells (n = 7.34)   

Number of Monte-Carlo Simulations (n = 2000)   

 

Nest Success Rate 

Parameters Moran’s I Pseudo-P 

Mean Height 0.04 0.07 

SD Height 0.04 0.10 

Groundstorey Volume 0.05 0.05 

Number of Cells (n = 448)   

Mean Number of Neighbours/Cells (n = 5.17)   

Number of Monte-Carlo Simulations (n = 2000)   

 

Fledgling Survival Rate   

Parameters Moran’s I Pseudo-P 

Mean Height 0.01 0.38 

SD Height -0.03 0.76 

Groundstorey Volume 0.03 0.18 

Number of Cells (n = 301)   

Mean Number of Neighbours/Cells (n = 3.86)   

Number of Monte-Carlo Simulations (n = 2000)   

 

Reproductive Success   

Parameters Moran’s I Pseudo-P 

Mean Height 0.04 0.07 

SD Height 0.04 0.10 

Groundstorey Volume 0.05 0.05 

Number of Cells (n = 448)   

Mean Number of Neighbours/Cells (n = 5.17)   

Number of Monte-Carlo Simulations (n = 2000)   
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Figure S8: Density plots of Monte-Carlo simulated Moran’s I statistics (n = 2000 simulations) for (a) mean height; (b) SD 

height; and (c) groundstorey volume in each dataset. The curve shows the distribution of expected Moran’s I if the understorey 

vegetation structure parameters were randomly distributed. The dashed line indicates the observed Moran’s I. Moran’s I 

statistics were calculated using the moran.mc function in the R package ‘spdep’ (v.1.1.8; Bivand et al., 2013). 
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Figure S9: Visualisation of the spatial weights matrix used in each of our four Bayesian spatial hierarchical generalised linear 

models: (a) nest presence (n = 741 cells; mean number of neighbours = 7.34); (b) nest success rate (n = 449 cells; mean number 

of neighbours = 5.18); (c) fledgling survival rate (n = 301 cells; mean number of neighbours = 3.86); (d) Reproductive Success 

(n = 449 cells; mean number of neighbours = 5.18).  Shown in red are the links that were randomly chosen to ensure our data 

were contiguous. 
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Figure S10: Spatiotemporal distribution of superb fairy-wren nest-sites in the study area (between 2009–2019). 

 

 

 



 
Page 18 of 18 

 

References 

Bivand, R.S., Pebesma, E. & Gomez-Rubio, V. (2013). Applied spatial data analysis with R (2nd edition). Springer, 

New York. 

 

Dormann, C. F., McPherson, J. M., Araújo, M. B., Bivand, R., Bolliger, J., Carl, G., Davies, R. G., Hirzel, A., Jetz, 

W., Kissling, W. D., Kühn, I., Ohlemüller, R., Peres-Neto, P. R., Reineking, B., Schröder, B., Schurr, F. M., & Wilson, 

R. (2007). Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. 

Ecography, 30, 609–628.  

 

Lüdecke, D., Ben-Shachar, M.S., Patil, I., Waggoner, P. & Makowski, D. (2021). performance: An R package for 

assessment, comparison, and testing of statistical models. Journal of Open Source Software, 6, 3139. 

 

Moran, P.A.P. (1950). Notes on continuous stochastic phenomena. Biometrika, 37, 17–23. 

 

Turner, R.S., Langmore, N.E., Osmond, H.L., & Cockburn, A. (2022). First recorded evidence of ejection of a cuckoo 

egg in a fairy-wren species. Australian Field Ornithology, 39, 104–109.  


	2022-12-16_Turner_et_al_EcoEvoRxiv_MS
	2022-12-16_Turner_et_al_EcoEvoRxiv_SI

