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Abstract  25 

Numerous studies have demonstrated that individuals within a species will consistently vary 26 

between one another in behavioural traits. A prominent adaptive explanation for such ‘animal 27 

personalities’ relates to an individual’s intrinsic state driving and/or being driven by 28 

behaviour. Telomeres – the protective caps at the end of chromosomes which exist in most 29 

organisms – have been proposed as a biomarker of an individual’s intrinsic state and mortality 30 

risk. It is, however, unclear the extent to which telomere dynamics are associated with 31 

repeatable behavioural traits, with only a handful of studies exploring this relationship to date. 32 

Here, we examined the relationship between relative telomere length and exploration of both 33 

a novel environment and novel object in a wild population of Seychelles warblers 34 

(Acrocephalus sechellensis). We tested for between-individual covariation between 35 

exploratory traits, as well as between-individual covariation among exploratory traits and both 36 

relative telomere length and change in telomere length over time. We found that individuals 37 

who explored a novel environment more, also explored a novel object more, and that there 38 

was a strong quadratic age effect on both exploratory measures. However, there was no 39 

between-individual relationship between exploratory traits and either relative telomere length 40 

or change in relative telomere length over time. When assessing covariation between intrinsic 41 

state and personality, our findings demonstrate the importance of: (1) considering longitudinal 42 

evidence, where there is an opportunity for environmental stressors to influence telomere 43 

dynamics; (2) considering potentially confounding factors related to within-individual vs 44 

between-individual processes; and, (3) investigating covariation across many taxa. 45 

 46 
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Introduction 49 

Individuals within a population will differ consistently from one another in their behavioural 50 

traits (i.e. repeatable ‘animal personalities’), and these behavioural traits often correlate with 51 

one another to form ‘behavioural syndromes’ (Dall et al., 2004; Dingemanse & Wolf, 2010; 52 

Sih et al., 2004; Wilson, 1998). Animal personalities are typically described in the context of 53 

a proactive–reactive continuum, where individuals express varying levels of aggression, 54 

boldness, exploration and sociality (Réale et al., 2007). Research highlighting the prevalence 55 

and ecological implications of animal personalities is extensive (e.g. movement; Cote et al., 56 

2010, mating; Schuett et al., 2010, and population dynamics; Griffen & Dinuzzo, 2020); 57 

however, there is comparatively less empirical evidence describing the mechanisms that 58 

generate and/or maintain animal personalities. 59 

 60 

Many theoretical models explain the prevalence of animal personalities from an adaptive 61 

perspective (Dall et al., 2004; Dingemanse & Wolf, 2010; Wolf & Weissing, 2012), with 62 

particular emphasis on an individual’s ‘intrinsic state’ (Houston & McNamara, 1999; Mathot 63 

et al., 2019; Wolf & Weissing, 2010). Under an adaptive framework, consistent within-64 

individual behavioural traits can occur if an optimal behaviour is connected to a slow-65 

changing intrinsic state variable, such as metabolism (e.g. resting and basal metabolic rate; 66 

Careau et al., 2015), plasma hormone levels (e.g. glucocorticoids; Dosmann et al., 2015) 67 

and/or body condition (e.g. body mass; Bijleveld et al., 2014). If these intrinsic state variables 68 

also differ between individuals, then repeatable behavioural traits can arise (Sih et al., 2015). 69 

For instance, an individual with a high level of physiological stress and/or poor body 70 

condition may be more likely to perform risky behaviours depending on how much the 71 

individual stands to gain or lose (‘asset-protection principle’: Clark, 1994; Wolf et al., 2007), 72 
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particularly if they are on the verge of starvation or facing high levels of competition (Clark & 73 

Mangel, 2000; Luttbeg & Sih, 2010). Alternatively, individuals with a higher body condition 74 

may be more inclined to take more frequent risks if they are better at maximising the benefits 75 

of risky behaviour (‘state-dependent safety hypothesis’, Luttbeg & Sih, 2010). Both 76 

frameworks are supported by a recent meta-analysis by Niemelä & Dingemanse (2018a), 77 

which shows risk-taking behaviour increased with metabolic activity and hormone levels 78 

(asset-protection principle), as well as body mass and size (state-dependent safety 79 

hypothesis).  80 

 81 

One measure of intrinsic state that is rarely studied alongside repeatable behaviour, but is 82 

often used in evolutionary ecology as a biomarker of somatic stress, is telomere length 83 

(Wilbourn et al., 2018). Telomeres are repetitive nucleotide sequences that cap the ends of 84 

eukaryotic chromosomes and maintain genomic integrity (Blackburn, 2000). As a result of the 85 

‘end replication problem’, telomeres shorten with each cell division (Watson, 1972), meaning 86 

greater rates of telomere attrition occur during periods of high cellular division i.e., during 87 

growth and with age (Frenck et al., 1998; Hall et al., 2004). Telomeres are also susceptible to 88 

degradation through exposure of an individual to environmental stressors that trigger 89 

pathways of cellular damage, such as oxidative stress (Haussmann & Heidinger, 2015; 90 

Metcalfe & Alonso-Alvarez, 2010; von Zglinicki, 2001). However in some cells and/or 91 

tissues, telomere length can also increase, for example via the restoration of telomeric DNA 92 

by the enzyme telomerase (Blackburn et al., 1989), as well as other lengthening pathways 93 

(Cesare & Reddel, 2010; Mendez-Bermudez et al., 2012). These factors result in between-94 

individual variation in telomere dynamics. Telomeres are therefore often utilised as 95 

biomarkers of the conditions an individual has experienced over their lifetime, and the 96 
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associated somatic stress (Monaghan et al., 2022; Spurgin et al., 2018; Young, 2018), and 97 

thus are a good candidate for studying intrinsic state-dependent personality. 98 

 99 

Recent reviews suggest that telomeres should either correlate with, or function as, an adaptive 100 

mediator of an individual’s behaviour in a state-dependent manner (Bateson & Nettle, 2018; 101 

Young, 2018). The direction of associations identified in these studies indicates that 102 

individuals with poorer intrinsic state (i.e. shorter telomeres) tend to possess risk-taking 103 

behaviours (Sih et al., 2015), as shown with smoking behaviour in humans (Bateson & Nettle, 104 

2018) and impulsive foraging behaviour in juvenile starlings, (Sturnus vulgaris) (Bateson et 105 

al., 2015). However, comparatively less research has focused on the association between 106 

telomeres and repeatable behavioural traits. In wild brown trout (Salmo trutta), individuals 107 

with shorter telomere length have higher boldness and aggression (Adriaenssens et al., 2016), 108 

whereas Eastern chipmunks (Tamias striatus) with longer telomere length at first breeding 109 

attempt were faster explorers (Tissier et al., 2022). While these studies provide valuable 110 

insights into the importance of intrinsic state in behaviour, it is unclear whether there is a 111 

general positive or negative association between telomeres and behaviour, or whether these 112 

relationships are isolated to a handful of taxa. Therefore, it is important that further empirical 113 

evidence is gathered, particularly in free-living species, and populations that possess repeat 114 

trait measures. 115 

 116 

Here, we use longitudinal data from an island population of individually-marked Seychelles 117 

warblers (Acrocephalus sechellensis), to investigate whether intrinsic state, measured using 118 

relative telomere length (RTL), is associated with exploratory behaviour, measured as 119 

exploration of a novel environment and exploration of a novel object. In this population, 120 
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exploratory behaviour is repeatable: individuals consistently vary between one another in 121 

their levels of exploration over time and across contexts (Edwards et al., 2017). Further, short 122 

RTL and/or greater RTL shortening in individuals is associated with poor body condition 123 

(Barrett et al., 2013), lower food availability (Spurgin et al., 2018), increased inbreeding 124 

(Bebbington et al., 2016) and increased antagonistic interactions with conspecifics 125 

(Bebbington et al., 2017). RTL also declines with age, and adult survival is positively 126 

associated with telomere length and attrition, independent of age (Barrett et al., 2013). 127 

Further, assessments of repeated within-individual measures of RTL show that 46% of 128 

consecutive measurements demonstrate telomere lengthening (Brown et al., 2021; Spurgin et 129 

al., 2018), which is related to periods of reduced stress in females (Brown et al., 2021). As 130 

several studies support the concept that telomere dynamics reflect the costs of life-history 131 

stress in this system, it provides an excellent opportunity to determine whether there are also 132 

somatic costs associated with explorative behaviour.     133 

 134 

To gain understanding of the covariation between Seychelles warbler exploratory behaviour 135 

and relative telomere length, we assess correlations between the two traits by partitioning the 136 

total phenotypic covariance into its between-individual components (Dingemanse et al., 2012; 137 

Niemelä & Dingemanse, 2018b). Based on the general negative associations shown between 138 

intrinsic state and exploratory behaviour (Adriaenssens et al., 2016; Bateson et al., 2015; 139 

Niemelä & Dingemanse, 2018a), we expect negative between-individual correlations between 140 

exploration and RTL, which would indicate that more exploratory individuals have, on 141 

average, shorter relative telomere lengths than those who do not  (Niemelä & Dingemanse, 142 

2018b). We also assess whether there is a between-individual association between exploratory 143 

traits and telomere length change (lengthening or shortening; hereafter, ΔRTL). We predict 144 
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that individuals with higher exploratory scores will have shorter telomeres and will 145 

experience a more pronounced loss of telomere length over time compared to their less 146 

exploratory counterparts.  147 

 148 

Materials and Methods 149 

Study site and system 150 

The Seychelles warbler is a small insectivorous passerine endemic to the Seychelles 151 

archipelago. Our study population resides on Cousin Island (29 ha; 04°20′S, 55°40′E), where 152 

it has been monitored intensely since 1997 (Richardson et al., 2002). This population has been 153 

at carrying capacity since 1982, with ca. 320 adult individuals resident in ca. 115 territories 154 

(Hammers et al., 2019). Territories are occupied year-round by a single socially monogamous 155 

breeding pair, that normally produce one-egg clutches (91% of clutches) (Brouwer et al., 156 

2006). Individuals may adopt a subordinate status by either remaining in their natal group as 157 

non-breeders or, less frequently, dispersing to a neighbouring territory (Groenewoud et al., 158 

2018). Approximately 50% of territories contain 1–5 adult subordinates (Hammers et al., 159 

2019; Kingma et al., 2016), and ca. 35% of subordinates (mainly females) help raise offspring 160 

of the dominant pair (Hammers et al., 2019; Richardson et al., 2003). Subordinate females 161 

sometimes (ca. 11% of all maternities; Sparks et al., 2022) also gain maternity by laying an 162 

egg within the dominant female’s nest (‘cobreeding’). However, virtually no (< 0.6%) 163 

subordinate males gain paternity (Sparks et al., 2021), either within or outside their resident 164 

territory (Richardson et al., 2001).  165 

 166 

Fieldwork is conducted during the minor (January – March) and major (June – August) 167 

breeding seasons. In each season as many individuals as possible are caught with mist nets 168 
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and blood sampled via brachial venepuncture (ca. 25 μl stored in absolute ethanol at 4°C) for 169 

later molecular work including sexing (Richardson et al., 2001). Body mass is measured using 170 

either a Pesola or electronic scale (±0.1 g) and body size is determined by measuring the 171 

length of the right tarsus using sliding callipers (±0.1 mm). Any newly-caught individuals are 172 

fitted with a unique combination of three plastic colour rings and a metal British Trust for 173 

Ornithology (BTO) ring, resulting in ca. 96% of the adult population being ringed in any 174 

given year (Raj Pant et al., 2020; Richardson et al., 2001). Most individuals are first ringed at 175 

<5 months of age while still dependent in their natal territory. For individuals who had 176 

unknown lay, hatch, or fledge dates, age was estimated at time of capture using eye colour, 177 

where fledglings have grey eyes (1–5 months), subadults have light brown eyes (6–12 178 

months) and adults (>12 months) have dark brown eyes (Komdeur, 1992). Therefore, age is 179 

known for all individuals included in the study. During both breeding seasons, each territory 180 

is checked at least once a week to identify resident birds, as well as determine their social and 181 

breeding status (Richardson et al., 2002). As the annual resighting probability is close to one 182 

(0.98 ± 0.01 SE; Brouwer et al., 2010) and inter-island dispersal is virtually absent (Komdeur 183 

et al., 2004), individuals not observed during two consecutive breeding seasons can be 184 

confidently assumed to be dead (Brouwer et al., 2010; Hammers et al., 2021). 185 

 186 

Personality assays 187 

We assayed two measures of exploration (Edwards et al., 2017). Novel environment 188 

exploration was assayed during major and minor breeding seasons 2012–2015, 2019 and 189 

2021, as well as the minor breeding seasons in 2020 and 2022. Assays for novel object 190 

exploration were conducted during all of these seasons apart from the major and minor 191 

seasons in 2012. Personality assays were conducted as described previously (Edwards et al., 192 



9 
 

2017). In brief, individuals were assayed for personality after being caught in a mist net, 193 

blood sampled and left to rest for five minutes in a bird bag. Individuals were then placed into 194 

an Oxygen 4 tent (L322 × W340 × H210 cm; Gelert Ltd Wigan) containing three artificial 195 

trees, where the number of hops, flights and trees visited were recorded for 5 minutes and 196 

summed to create a measure of novel environment exploration. After a 2-minute break (see 197 

acclimation and randomisation tests, Edwards et al., 2017), a novel pink toy was introduced 198 

for 5 minutes and the exploration of that object was scored. Both novel environment 199 

exploration score and novel object exploration score are repeatable (0.23, 95% credible 200 

interval [CrI] = 0.08–0.36, and 0.37, 95% CrI = 0.04–0.59, respectively; Edwards et al., 201 

2017), where repeatability is calculated as the proportion of between-individual variance 202 

relative to the total phenotypic variance of the population when using repeat trait measures 203 

per individual (Nakagawa & Schielzeth, 2010). Novel environment exploration in this 204 

population is heritable (0.17, 95% CrI = 3e-4–0.33) while novel object exploration is not 205 

(Edwards et al., 2017). A total of 334 individuals were tested for both novel environment and 206 

object exploration (Table S1). 207 

 208 

Telomere length measurements  209 

RTL (measured as the amount of telomeric DNA sequence relative to the amount of the 210 

reference gene glyceraldehyde-3-phosphate dehydrogenase, GAPDH) was estimated using 211 

qPCR (quantitative polymerase chain reaction) for birds caught and blood sampled between 212 

1995 and 2014, as summarised in Spurgin et al., (2018). qPCR geometric efficiency (mean ± 213 

SD) for the telomere and GAPDH plates was 1.78 ± 0.05 and 1.92 ± 0.04, respectively 214 

(Spurgin et al., 2018). Within-plate repeatability of GAPDH and telomere cycle quantification 215 

(Cq) values were 0.74 (95% confidence intervals [CI] = 0.74–0.75) and 0.73 (95% CI = 0.71–216 
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0.74) for the GAPDH and telomere Cq values, respectively (Spurgin et al., 2018). Between-217 

plate repeatability of RTL, calculated using 422 samples measured at least twice, was 0.68 218 

(95% CI = 0.65–0.70; Spurgin et al., 2018). The within-individual variance of RTL (i.e., from 219 

multiple samples across an individual's lifetime) is greater than the variance among repeated 220 

measurements of the same sample (Levene's test: F = 43.63; p < 0.001; Brown et al., 2021). 221 

There were no storage time effects of the blood samples on telomere length (Spurgin et al., 222 

2018).  223 

 224 

We used RTL measures of individuals that were tested for novel environment exploration 225 

and/or novel object exploration at least once in their lives. After removing outlier samples 226 

with very large Cq values using the QC steps outlined in Spurgin et al. (2018), our final data 227 

set included 921 samples from 295 individuals tested for novel environment exploration and 228 

516 samples from 159 individuals tested for novel object exploration (Table S2–3). For 229 

ΔRTL, we measured the difference in RTL between two consecutive measures. This included 230 

478 paired measures from 214 individuals tested for novel environment exploration and 271 231 

paired measures from 117 individuals tested for novel object exploration (Table S4–5). Where 232 

multiple RTL measures were collected for the same bird within the same field season, we 233 

selected a single RTL measure at random for each field season to assess ΔRTL. As Seychelles 234 

warblers are caught opportunistically, the interval between two consecutive RTL measures 235 

ranges from 0.5 (i.e. a consecutive measure of RTL between the minor and major breeding 236 

seasons) to 7.7 years (mean: 1.9 years ± 1.3 SD).  237 

 238 

Statistical analyses 239 
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We performed analyses using R v.4.0.2 (RStudio Team, 2022) and the package MCMCglmm 240 

v 4.2.1 (Hadfield, 2010). For all analyses, we employed bivariate Markov chain Monte Carlo 241 

(MCMC) generalised linear mixed models (GLMMs) to estimate between-individual 242 

correlations. Using a Bayesian multivariate framework allowed us to fit the fixed effects 243 

impacting on both traits, thereby avoiding the error associated with using best linear unbiased 244 

predictors (Houslay & Wilson, 2017).  245 

 246 

Each model included two response variables. The first model included exploration of a novel 247 

environment and exploration of a novel object (both fitted as Poisson GLMM: see Figure S1 248 

for distributions). The remaining models included exploration score (novel environment or 249 

novel object) and either RTL or ΔRTL (Gaussian distributions) as the other response variable. 250 

RTL was square-root transformed to be consistent with previous work on this system 251 

(Spurgin et al., 2018), and for each model subset we subsequently z-transformed RTL (mean 252 

centred and divided by 1 SD) to improve comparability between RTL studies (Verhulst, 253 

2020). We adjusted ΔRTL for regression-to-mean effects by subtracting the mean difference 254 

between successive samples, estimated by the correlation between successive samples 255 

(Verhulst et al., 2013). Positive values indicate telomere lengthening and negative values 256 

indicate telomere shortening, relative to the population mean RTL. Distributions of non-257 

transformed and the square-root and z-transformed RTL, as well as raw ΔRTL and adjusted 258 

ΔRTL data are provided in Figures S2–3. As fewer individuals possessed measures for ΔRTL 259 

compared to RTL, and fewer individuals were tested for novel object exploration relative to 260 

novel environment exploration (Table S1–S5), we could not run multivariate models with 261 

more than two response variables, and so ran four bivariate models instead.  262 

 263 



12 
 

We included methodological fixed effects for novel environment and novel object 264 

exploration, including tent colour for novel environment exploration (factor: blue/green, 265 

Edwards et al., 2017), branch orientation for novel object exploration (factor: 266 

diagonal/parallel), assay number to control for habituation (Edwards et al., 2017), sex (factor: 267 

male/female) and age in years as both linear and quadratic terms to model for senescence 268 

(Patrick & Weimerskirch, 2015). For RTL, we included laboratory technician ID (factor: 2 269 

levels) and age in years (mean: 0.85 ± 0.35 SD) (log-transformed following Spurgin et al., 270 

2018). For ΔRTL, we included log transformed age at first RTL measurement (years, 271 

continuous), duration of interval between the two RTL measures (years, continuous, hereafter 272 

∆RTL period) and technician ID (factor: 3 levels). As it was possible for different technicians 273 

to process the first and second RTL, we created three levels for technician ID: one for either 274 

technician, and a third composite level that indicated that both technicians processed one 275 

sample each. Collinearity between the continuous fixed effects was checked by calculating 276 

variance inflation factors (VIFs); all VIFs were < 3. To allow estimation of (co)variance on 277 

the level of individuals, we included bird identity (bird ID) as a random effect for all response 278 

variables. Observer identity (observer ID) was included as a random factor for novel 279 

environment (factor: 16 levels) and novel object exploration (factor: 12 levels). As telomere 280 

length shows cohort (Spurgin et al., 2018) and plate (Sparks et al., 2021) effects, both were 281 

included in RTL models as random effects (factor: 17 levels and 71 levels for cohort and plate 282 

ID, respectively). Cohort year was not included as a random factor for ∆RTL models since 283 

Spurgin et al. (2018) found no support for cohort effects. Plate identities for both RTL 284 

measurements used to calculate ∆RTL were included as two random effects (as per Brown et 285 

al., 2021).  286 

 287 
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Unstructured variance–covariance matrices were estimated using the posterior distribution for 288 

the random effects of bird ID for each response variable for between-individual estimates: 289 

 

[
𝜎𝑡𝑟𝑎𝑖𝑡1
² 𝜎𝑡𝑟𝑎𝑖𝑡2,𝑡𝑟𝑎𝑖𝑡1

𝜎𝑡𝑟𝑎𝑖𝑡1,𝑡𝑟𝑎𝑖𝑡2 𝜎𝑡𝑟𝑎𝑖𝑡2
²

] ( 1 ) 

Between-individual correlation estimates were subsequently calculated by dividing the focal 290 

between-individual covariance by the square-root of the product of the between-individual 291 

variances of the two focal traits (see Houslay and Wilson, 2017). From this, we determined 292 

the mean slope estimate and its corresponding 95% highest posterior density (HPD) credible 293 

interval, where a HPD credible interval that did not overlap zero denoted a significant 294 

correlation. We also considered fixed effects to have a significant effect if the HPD credible 295 

interval did not overlap zero. In all cases, models were run for 4.6 x 106 iterations, with a 296 

burn-in of 6 x 104 and thinning interval of 500. We applied priors with a weakly informative 297 

distribution (V = diag(n), nu = n + 0.002, where n = number of response variables). We 298 

visually checked time-series plots of model parameters and assessed multiple convergence 299 

diagnostics, including autocorrelation (< 0.1) values, effect sizes (≥ 1,000), Geweke tests (Z-300 

score < 2) and Heidelberg and Welch (pass) diagnostics. 301 

 302 

Ethical note 303 

All relevant national, institutional, and/or international regulations for the handling and use of 304 

animals were adhered to. For fieldwork, ethical guidelines and agreements were observed 305 

locally. We had access to the Cousin Island Nature Reserve thanks to Nature Seychelles. All 306 

fieldwork and sample protocols were approved and permissions given by the Seychelles 307 

Department of Environment and Seychelles Bureau of Standards. Fieldwork procedures were 308 
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approved by the University of East Anglia's Ethical Review Committee and ratified by the 309 

University of Leeds. 310 

 311 

Results 312 

Male warblers had significantly higher novel environment and novel object exploration scores 313 

compared to females (Table 1). There was a quadratic effect of age on both measures of 314 

exploration: younger and older individuals had lower exploration scores than middle-aged 315 

individuals (Table 1, Figure 1). However, for novel environment this decline at older ages 316 

was driven by a few data points: without these points scores appear to increase with age 317 

before plateauing or declining slightly in older ages (Figure 1A). There was a negative effect 318 

of age on RTL (Table S6), but there was no effect of age at first RTL measurement, or the 319 

duration of interval between two consecutive RTL measures, on ΔRTL (Table S7). While we 320 

found no effect of technician on RTL, we did find a technician effect on ΔRTL (Table S7). 321 

 322 

There were also significant methodological effects for exploration tests: individuals tested in a 323 

blue tent for novel environment exploration produced higher exploration scores than those 324 

tested in a green tent (Table 1). Individuals tested for novel object exploration using artificial 325 

trees with diagonal branches also had a higher exploration score than individuals tested with 326 

parallel branches (Table 1). Both novel environment and novel object exploration scores had a 327 

positive association with exploration test number (Table 1).   328 

 329 

Novel environment exploration and novel object exploration displayed significant positive 330 

between-individual correlations (0.600, 95% credible interval = 0.353–0.777; Table 2, Figure 331 

2). Individuals that were more exploratory of a novel environment were also more exploratory 332 
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of a novel object. We found no significant between-individual correlations between either 333 

Seychelles warbler novel environment or novel object exploration with either RTL or ΔRTL 334 

(Table 2, Figure S4).  335 

 336 

Discussion  337 

Here, we tested for between-individual covariation in exploratory traits and telomere 338 

dynamics using long-term data from a wild population of Seychelles warblers. While we 339 

found a positive between-individual correlation between the two exploratory traits, which 340 

aligns with previous Seychelles warbler research (Edwards et al., 2017), we found no 341 

between-individual covariation in exploration of either a novel environment or novel object, 342 

with either telomere length or change in telomere length. However, both traits were age-343 

dependent: exploration score increased during early-life, then decreased in later life, while 344 

relative telomere length decreased with age.  345 

 346 

The asset-protection principle suggests that individuals who are in a poorer intrinsic state (i.e. 347 

shorter telomeres and greater telomere shortening) have less to lose, and so are more likely to 348 

undertake risky behaviour (Clark, 1994; Wolf et al., 2007). Alternatively, the state-dependent 349 

safety hypothesis posits a positive relationship between intrinsic state and behaviour, 350 

individuals that already have high intrinsic state (i.e. long telomeres) should express risk-351 

taking behaviours (i.e. more exploratory), and thus gain more resources that maintain their 352 

high state (McElreath et al., 2007). However, we found support for neither hypothesis, which 353 

may suggest that exploratory traits do not facilitate net asset gain in this system. If being 354 

exploratory did facilitate acquisition of more resources (e.g. acquiring a better quality 355 

territory, which can reduce telomere attrition; Brown et al., 2022), then individuals with short 356 
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telomeres are expected to have high (asset-protection principle) or low (state-dependent safety 357 

hypothesis) exploration scores. Instead, different personality traits, such as those shown to 358 

covary with alternative measures of intrinsic state in other species (Niemelä & Dingemanse, 359 

2018a), may form a stronger association with telomere dynamics in this system. For instance, 360 

male Seychelles warblers who engage in a higher frequency of territorial disputes have been 361 

shown to express higher rates of telomere attrition than their less confrontational counterparts 362 

(Bebbington et al., 2017). This indicates that aggression plays a functional role in facilitating 363 

asset gain in the Seychelles warbler, resulting in a detectable cost to intrinsic state.  364 

 365 

Previous studies have documented mixed associations between behaviour and telomere 366 

length. These include a negative association between telomere length and both exploration 367 

and aggression in brown trout (Adriaenssens et al., 2016), a negative association between 368 

telomere length and impulsive foraging decisions in European starlings (Bateson et al., 2015), 369 

as well as a positive association between exploration and telomere length in Eastern 370 

chipmunks (Tissier et al., 2022). However, in contrast to our research, these previous studies 371 

use either juvenile (Adriaenssens et al., 2016), or fairly short-term data (<15 months, Bateson 372 

et al., 2015; Tissier et al., 2022), where the opportunity for environmental stressors to 373 

influence telomere dynamics is limited. In this Seychelles warbler population, telomere length 374 

and dynamics are influenced by stochastic environmental factors experienced throughout an 375 

individual’s lifetime, such as early-life conditions, food abundance and malaria infections 376 

(Brown et al., 2021; Spurgin et al., 2018; van de Crommenacker et al., 2022). Therefore, it is 377 

possible that the complexity of these accumulated experiences throughout an individual’s life 378 

make it difficult to partition relevant drivers of intrinsic state and behaviour, which is why we 379 

were unable to detect a relationship between exploration and telomere dynamics. Further, 380 
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Bateson et al. (2015) monitored individuals in captive experimental environments, where 381 

extrinsic factors other than those manipulated in their study, could be controlled. This could 382 

subsequently increase the likelihood of detecting associations between behaviour and 383 

telomeres compared to wild populations.  384 

 385 

Importantly, recent meta-analyses (Mathot et al., 2019; Moran et al., 2021) have highlighted 386 

that many empirical studies testing for between-individual correlations between risk-taking 387 

behaviour and putative measures of intrinsic state often only report unpartitioned phenotypic 388 

estimates (113 out of 145 studies; Niemelä and Dingemanse, 2018a). Consequently, such 389 

studies, including those conducted in brown trout, starlings and Eastern chipmunks 390 

(Adriaenssens et al., 2016; Bateson et al., 2015; Tissier et al., 2022), often risk confounding 391 

within-individual and between-individual processes (‘the individual gambit’, Brommer, 392 

2013), which can produce potentially biased correlation estimates (Dochtermann & 393 

Dingemanse, 2013). Here, we avoided taking the individual gambit by opting to partition 394 

phenotypic variation into its between-individual components. Nonetheless, we found no 395 

between-individual correlations between exploration and telomere dynamics, indicating that 396 

the lack of association between exploration and telomere length is not a product of the 397 

individual gambit, but instead due to a lack of an association between exploration and 398 

telomere length. 399 

 400 

We predicted that more exploratory individuals would be in poorer intrinsic state, resulting in 401 

a negative association with telomere length and a higher rate of telomere shortening over 402 

time. However, it may be that telomere length alone is an insufficient biomarker of intrinsic 403 

state (Young, 2018). In our system, telomere length can fluctuate (i.e. both shorten and 404 
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lengthen) within an individual’s lifetime (Spurgin et al., 2018) and individual repeatability of 405 

telomere length is low (Sparks et al., 2021). These fluctuations are indicative of an 406 

individual’s somatic stress within a given timeframe (Brown et al., 2021), which may, 407 

consequently, weaken associations with both long-term intrinsic state and consistent 408 

behavioural traits. Furthermore, telomere dynamics can also be driven by other intrinsic 409 

differences between individuals, such as individual quality and biological age. Therefore, 410 

alternative markers may be more appropriate for investigating the link between personality 411 

and intrinsic state. Body mass is a commonly adopted measure of intrinsic state used in 412 

animal personality research (Niemelä & Dingemanse, 2018a). However, the literature 413 

indicates that the relationship between body mass and exploration score is inconsistent, with 414 

positive (Kelleher et al., 2017), negative (Bijleveld et al., 2014) and an absence (Royauté et 415 

al., 2015) of associations, and can be dependent on other measures of intrinsic state, such as 416 

hormones (Seltmann et al., 2012). While body mass is positively associated with individual 417 

condition in the Seychelles warbler (Brown et al., 2021), in supplementary analyses (where 418 

telomeres were substituted for body size and mass) we found no association between 419 

exploratory behaviour and body size or mass (Tables S8–12, Figure S5). That neither 420 

telomere dynamics nor body mass are associated with exploratory behaviour strengthens the 421 

possibility that there is no inter-play between exploration and intrinsic state in this system, 422 

and that alternative mechanisms (e.g. extrinsic factors) may be more important (Sih et al., 423 

2015).  424 

 425 

One intrinsic factor that was associated with both exploration and telomere length was age. 426 

Exploration scores were highest in prime-aged individuals, whereas telomere length was 427 

highest in early-life. Similar increases in risk-taking behaviour with age have been 428 
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demonstrated in superb fairy-wrens (Malurus cyaneus) (Hall et al., 2015), male grey mouse 429 

lemurs (Microcebus murinus) (Dammhahn, 2012), and field crickets (Gryllus campestris) 430 

(Fisher et al., 2015). These linear, positive relationships between exploration and age may 431 

reflect processes related to life-history, such as residual reproductive value, where older 432 

individuals that have fewer prospective offspring have less to lose, and so increase their 433 

expression of risk-taking behaviour (i.e. asset protection hypothesis, Roff, 2002; Wolf et al., 434 

2007). Alternatively, the association with age may reflect changes in other measures of 435 

intrinsic state with age, such as an increase in sex hormone titres (Boulton et al., 2015). For 436 

instance, testosterone levels often increase in early-life in passerines (Hau & Goymann, 2015; 437 

Těšický et al., 2022). However, it is not clear why exploration of a novel object shows a 438 

decline towards the end of an individual’s life. Future studies in this system should examine 439 

whether the age-related changes in exploratory behaviour are a result of behavioural plasticity 440 

(i.e. within-individual variation) or a product of selective disappearance of individuals with 441 

less exploratory behaviour (van de Pol & Verhulst, 2006). 442 

 443 

Summary 444 

We have shown that telomere dynamics do not covary with exploratory behavioural traits in 445 

the Seychelles warbler. Our results do not concur with the few existing published studies that 446 

have tested this relationship, which demonstrate either positive or negative relationships 447 

between risk-taking behaviour and telomeres. This highlights the importance of studying 448 

personality-dependent intrinsic state across a variety of taxa, across different age groups and 449 

in both wild and captive populations. Future research should aim to further explore whether 450 

this associations exist between telomeres and repeatable behavioural traits in other model 451 

systems, and if so, directly manipulate either intrinsic state or behavioural traits to determine 452 
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whether forced changes in state variables cause directional changes in behaviour, or vice 453 

versa. 454 
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Table 1.  Bivariate MCMC model results investigating the covariation between novel 790 

environment exploration and novel object exploration as response variables. Reported are the 791 
posterior modes and their 95% credible intervals of all fixed and random effects in the model. 792 
Fixed effects for exploration include: sex (contrast level = males), age at exploration test 793 
(years; quadratic and linear terms), and assay number, plus tent colour (contrast level = blue) 794 
for novel environment exploration, and branch orientation (contrast level = diagonal) for 795 

novel object exploration. Observer ID was included as a random effect.  Variance components 796 
attributed to bird ID for each response variable, as well as the covariance between the two are 797 
also shown. Statistical significance of fixed effects is indicated by 95% credible intervals not 798 
overlapping zero and these are denoted in bold. 799 

 800 

 801 

 802 

 803 

 804 

 805 

 806 

 807 

 808 

 809 

 810 

 811 

 812 

 Novel environment exploration Novel object exploration 

 
Fixed effects 

  

Sex (male)  0.298 [0.071, 0.515] 0.433 [0.165, 0.734] 

Age   1.960 [1.175, 2.711] 1.705 [0.765, 2.711] 

Age2  -1.317 [-2.055, -0.632] -1.251 [-2.169, -0.272] 

Assay number  0.746 [0.543, 0.958] 0.705 [0.422, 0.965] 

Tent colour (blue)  0.307 [0.051, 0.585]  

Branch orientation (diagonal)   0.450 [0.150, 0.781] 

Random effects   

Bird ID  0.607 [0.367, 0.848] 0.699 [0.344, 1.065] 

Observer ID  0.265 [0.096, 0.490] 0.217 [0.067, 0.432] 

Residual  0.961 [0.746, 1.165]      1.123 [0.783, 1.464] 

Covariance (Bird ID)     0.404 [0.166, 0.651] 

Covariance (Residual)     0.666 [0.440, 0.884] 
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Table 2.  Correlation coefficients (ri) and corresponding 95% credible intervals extracted 813 

from bivariate MCMCglmms between two exploration traits, and between exploration and 814 
relative telomere length (RTL) or rate of change of RTL (ΔRTL).  Statistical significance is 815 
indicated by 95% credible intervals not overlapping zero and these are denoted in bold. 816 

 817 

 818 

 819 

 820 

 821 

 822 

 823 

 824 

 825 

 826 

 827 

 828 

 829 

 830 

 831 

 832 

 833 

 834 

 835 

 836 

 837 

Trait 1 Trait 2 ri 95% Credible intervals Nindividuals 

Novel environment Novel object 0.614 0.415, 0.807 334 

Novel environment  RTL  0.100 -0.098, 0.256 295 

Novel object RTL  -0.058 -0.232, 0.121 159 

Novel environment  ΔRTL -0.061 -0.278, 0.130 214 

Novel object  ΔRTL 0.107 -0.105, 0.312 117 
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 838 

 839 

Figure 1. (A) Novel environment exploration and (B) novel object exploration scores show a 840 

quadratic age effect in 334 individuals (N=536; N=430 scores for novel environment and 841 
novel object, respectively). The points show raw data, the black lines show predictions and 842 

shaded areas represent 95% higher posterior density credible intervals from the bivariate 843 
model including both exploration scores (see Table 1). 844 
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 847 

 848 

Figure 2. The relationship between novel environment exploration and novel object 849 
exploration scores. Posterior means of the random intercepts (BLUPs) are shown here for 850 

visualisation purposes only. A solid trendline indicates a meaningful effect. 851 
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