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Abstract 

There is a growing interest in the effects of noise pollution on aquatic ecosystems. To date, 

these studies have mainly focused on hearing species, especially fish and mammals. Species 

from lower trophic levels, including many invertebrate species, are less studied despite their 

ecological importance. Within these taxa, studies investigating the effects of noise on 

holozooplankton are very rare. For the first time, I reviewed this literature about noise effects 

on both marine and freshwater zooplankton and showed that the effects of noise are largely 

unknown. Previous works demonstrate that they could detect vibrations using 

mechanoreceptors: noise is susceptible to affect the perception of their environment and to cause 

stress. The few studies suggest effects on physiology, behaviour, and fitness. After this review, 

and based on methods from ecology, ecotoxicology, and parasitology, I showed how they can 

be more used to study noise effects at individual scales, such as modifications of physiology, 

development, survival, and behaviour. Responses to noise, which could change species 

interactions and population dynamics, are expected to lead to larger-scale implications (i.e., 

alterations of food web dynamics and ecosystem functioning). We might expect further 

development of acoustic studies on zooplankton to better understand how anthropogenic noise 

affects aquatic environments. 

Keywords: Zooplankton, Anthropogenic noise, Aquatic ecosystems, Physiology, Fitness, Behaviour 

Community 
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1. Introduction 

Anthropogenic underwater noise is an established pollutant for marine ecosystems 

(Hildebrand, 2009) leading to international policies to reduce impacts (Colbert, 2020). Human 

activities, such as seismic surveys, shipping, or operational wind farms, affect soundscapes by 

increasing ambient noise levels in space and time over minutes to years and meters to thousands 

of kilometres (Duarte et al., 2021). Noises are extremely diverse in their intensity, structural 

spectrum and temporal pattern due to various sources, such as airgun and shipping; noise 

exposure could also be affected by the behaviour of organisms, such as their ability to escape 

to noise sources or their natural movement (e.g., diel variation). Noise could be punctual, 

repeated (regularly or randomly), and continuous (with or without variability). These 

characteristics lead them to be more or less predictable (Francis & Barber, 2013), affecting 

differently organisms, as shown in the ability of fish to habituate to chronic noise exposure 

(Nichols et al., 2015; Rojas et al., 2021). Sound perception is a crucial ability for 

communication, foraging or avoiding threatening situations. There is now an extensive body of 

research on the effects of noise on marine fish and mammals (see reviews of Erbe et al., 2016; 

Weilgart, 2018; Cox et al., 2018; de Jong et al., 2020), as they are known to have hearing organs 

and thus to be sensitive to sound pressure levels. However, there is a very limited number of 

studies on aquatic invertebrate responses to noise (see Raboin & Elias (2019) for a review about 

terrestrial invertebrates), because they are non-hearing organisms (i.e., without identified 

auditory organs), despite their biodiversity (Wale et al., 2021; Vereide & Kühn, 2023; Solé, 

Kaifu, et al., 2023). It includes holozooplanktonic species (i.e., zooplanktonic along their entire 

life cycle), which represent a crucial link for the transfer of energy between primary resources 

and higher trophic levels (Heneghan et al., 2016; Ratnarajah et al., 2023). Effects on 

zooplankton could have large repercussions on ecosystem functioning, such as the carbon cycle 

(Marine Zooplankton Colloquium, 2001; Richardson, 2008; Steinberg & Landry, 2017). For 



4 

instance, models analysed by Rohr et al. (2023) showed that 5% of the variation of their grazing 

rate affects export and secondary productivity by more than 1 PgC.yr-1 (i.e., more than 1 billion 

tons of carbon). Understanding the responses of zooplanktonic species to noise is thus 

mandatory to prevent human impacts. 

In both marine and freshwater environments, there are various sounds (natural and 

anthropogenic, biotic and abiotic) that could be detected by organisms (Duarte et al., 2021). 

Abiotic sounds, due to turbulence river, wind, wave, and reef, induce a basal ambient noise in 

a low-frequency range (Wenz, 1962; Wysocki et al., 2007; Hildebrand, 2009; Vračar & Mijić, 

2011; Sertlek et al., 2019). Organisms are adapted to this natural noise (Amoser & Ladich, 2005; 

Wysocki et al., 2007), in their ability to detect noise, and to communicate despite this noise. 

Moreover, these noises can be clues for organisms. For instance, fish and coral larvae use reef 

noise to orient them toward coral reefs (Montgomery et al., 2006; Lecchini et al., 2018). Natural 

ambient noise is also constituted by biological noise. Sounds could be produced to communicate 

by marine mammals (Erbe et al., 2016), fishes (Radford et al., 2014) and invertebrates as 

crustaceans (Popper et al., 2001) and insects (Aiken, 1985), or be a by-product, e.g., during 

displacement of crustaceans (Giguère & Dill, 1979), valve movements of bivalves (Di Iorio et 

al., 2012) or foraging activities (Hyacinthe et al., 2019). These sounds act as a clue for prey 

(Plachta & Popper, 2003), predators (Giguère & Dill, 1979; Holt & Johnston, 2011), 

competitors and conspecifics (Putland et al., 2016). It is now recognised that all these biotic and 

abiotic sounds are used by the diversity of aquatic organisms (marine mammals, fishes, 

molluscs, and crustaceans). Nevertheless, due to anthropogenic activities, such as boats, 

airguns, sonars, pile-driving, and windfarms, ambient noise is increased with a large overlap 

with natural noise, in the low frequency range and constitute now the large part of ambient noise 

(Wenz, 1962; Frisk, 2012; Duarte et al., 2021). For instance, the ambient noise of low 

frequencies is increased by 40 dB due to anthropogenic activities in the Northeast Pacific (Frisk, 
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2012). Consequently, it is now well-known that these new noises affect aquatic organisms, 

directly, by inducing stress, or indirectly, by altering communication and clue detection 

(Radford et al., 2014; Williams et al., 2015; Erbe et al., 2016; Lecchini et al., 2018; Solé, Kaifu, 

et al., 2023). 

Despite the absence of an earing system, invertebrates can be affected by noise. They can 

detect sound with their external mechanoreceptors (Solé, Kaifu, et al., 2023). Thus, according 

to their sensory system, the main sound characteristic for invertebrates is the particle motion 

instead of the pressure level (Nedelec et al., 2016; Rogers et al., 2021).  Studies have shown the 

reactions of crustaceans, as oxygen consumption and predatory behaviour of adults, and impair 

larvae development (Edmonds et al., 2016), molluscs (André et al., 2011) and cnidarian species 

(Solé et al., 2016), through damages to sensory hair cells of statocysts, to noise and are 

summarized in the recent review of Solé, Kaifu, et al. (2023). An important functional group 

seems completely understudied: in Solé, Kaifu, et al. (2023), only two out of approximately 90 

studies on marine invertebrates concern holozooplanktonic arthropods (McCauley et al., 2017; 

Fields et al., 2019), lacking a non-peer-reviewed article before (Tremblay et al., 2019), and three 

others have been published since (Kühn et al., 2023; Vereide et al., 2023; Aspirault et al., 2023). 

The other zooplanktonic organisms studied (see the marine review by Vereide & Kühn, 2023) 

are in majority larvae of bivalves (Aguilar de Soto et al., 2013), cephalopods (Solé et al., 2018), 

crustaceans (Stenton et al., 2022), and more rarely other taxa such as bryozoans (Stocks et al., 

2012), where various effects have been noted as lower survival, impaired development and 

metamorphosis, and faster settlement. Investigation made in the 1990s demonstrated that small 

crustaceans, constitutive of zooplankton, were able to react to environmental vibration. Yen et 

al. (1992) and Gassie et al. (1993) showed that calanoid copepods use mechanoreceptors of their 

first antennae to detect environmental vibrations. They were followed by Buskey et al. (2002), 

who demonstrated the behavioural responses of copepods (Acartia spp.) to increase their speed 
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a few milliseconds after vibration stimuli. These responses to vibration have raised questions 

about the effects of anthropogenic activities producing noise (e.g., seismic airguns, boat noise) 

on zooplankton (Utne-Palm et al., 2022), knowing the impacts found in vertebrates (McCauley 

et al., 2003; Fewtrell & McCauley, 2012), i.e., mainly effects on survival and behaviour.  

In this review, I overview how zooplankton responses to noise could be described. First, I 

reviewed, for the first time, the literature linking noise and marine and freshwater 

holozooplankton. For this review, I searched articles referenced by Google Scholar with terms 

for noise (noise, sound, acoustic, boat noise, airgun, anthropogenic, and pollution), organisms 

(zooplankton, invertebrates, arthropods, crustacean, mollusc, cnidarian, medusa, copepods, 

daphnia) and habitat (aquatic, marine, freshwater). From this pool of articles, I added references 

within these initially identified publications, and papers citing them to limit the risk of missing 

some articles. I considered only organisms that are zooplanktonic throughout their life (i.e., 

holozooplankton), excluding meroplankton as planktonic larvae (e.g., decapods, bivalves, 

fishes) and planktonic adults (e.g., cnidarians). I considered peer-reviewed articles as well as 

book chapters, meeting proceedings and preprints. I found only thirteen articles studying the 

effects of noise, six in marine and seven in freshwater systems, highlighting how large the gap 

is. Following this review, and because zooplankton are widely used as bioindicators (Parmar et 

al., 2016; Dahms et al., 2016; Ebert, 2022), I propose methodologies inspired by ecology, 

ecotoxicology, and parasitology studies to fill this gap. It would offer a large panel of ideas to 

develop this interesting question on how noise affects organisms and aquatic communities. 

2. Noise effects on zooplankton species: a review 

2.1. Responses from marine species 

In marine systems, studies have mainly shown the negative effects of acute noise (150-180 

dB SEL Re 1µPa2.s) on copepod survival. In in situ experiments, McCauley et al. (2017) 

observed increased mortality of various zooplankton crustaceans, such as small copepods, 
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cladocerans, and krill larvae exposed to a seismic survey. They hypothesized that this mortality, 

observed the day after noise exposure, resulted from damage to their mechanoreceptors. This 

explanation may be limited for their mortality observed one day after noise exposure; however, 

it suggests that acute exposure to airgun noise could have long-term effects but there were no 

measurements next days. Fields et al. (2019) showed a less intense effect of the airgun with a 

small increase in copepod mortality and no effect on their behaviour; these different results, in 

terms of the intensity of the negative effect, may be explained by the size of the plankton species 

differing between the two studies. Without mechanical explanations until now, it seems that 

smaller zooplankton species are less impacted by noise (Solé, Kaifu, et al., 2023). This 

hypothesis is supported by Vereide et al. (2023), who observed increased mortality of the small 

copepod A. tonsa exposed to airguns. Non-lethal effects on copepods were also reported 

(Tremblay et al., 2019; Fields et al., 2019; Kühn et al., 2023). Fields et al. (2019) showed altered 

expression of two unannotated genes, thus consequences for organisms are unknown. After an 

acute boat noise exposition (i.e., 24h) of two copepod species, the feeding behaviour of A. tonsa 

was altered, with a reduction in their ingestion and clearance rate (Kühn et al., 2023). In contrast, 

the clearance rate of Eurytemora herdmani is not affected (Aspirault et al., 2023). Nevertheless, 

the only chronic noise exposure on copepods (A. tonsa) did not affect the ingestion rate or O2 

consumption but led to physiological impacts with altered ROS (reactive oxygen species) 

activities (Tremblay et al., 2019). The only study on a non-crustacean taxon, a rotifer, showed 

reduced egg production (eggs of smaller size) of Brachionus plicatilis (Aspirault et al., 2023). 

2.2. Responses from freshwater species 

Freshwater ecosystems are also threatened by the omnipresence of shipping activities that 

overlap with prominent frequencies used by aquatic animals (Mickle & Higgs, 2018). Studies 

are more focused on the effects of less intense chronic or acute noise (100-150 dB RMS Re 

1µPa2) on daphniid behaviour and survival, and communities. Sabet et al. (2019) tested the 
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short-term effects of motorboat noise on the mobility of the cladoceran (Crustacean) Daphnia 

magna and found no change in their swimming behaviour, as in a previous study with regular 

and intermittent noise (Sabet et al., 2015). This result was also confirmed in a study with another 

Daphnia species, where the effect of motorboat noise did not affect the mobility of Daphnia 

pulex exposed for the first time (Rojas, Prosnier, et al., 2023). These boat noises also did not 

affect the survival or fecundity of chronically exposed D. magna (Prosnier, Rojas, et al., 2023). 

However, chronic exposure to broadband noise leads to both a reduction in their velocity and 

an increase in their survival and fecundity (Prosnier et al., 2022). Two studies enlarged the boat 

noise effect at the community scale. They highlighted that the effects of noise on the 

zooplanktonic community – affecting Bosminidae and Daphniidae proportions – could be more 

important in the absence of fish predators than in their presence (Rojas, Desjonquères, et al., 

2023; Rojas, Gouret, et al., 2023), highlighting that aquatic communities could be affected by 

noise in ways other than by vertebrates. Therefore, motorboat noise, which is the least intense 

but of longer duration than airgun noise, may affect zooplanktonic arthropods but appears to 

have contrasting behavioural effects among species, making it difficult to generalize effects. 
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2.3. Future perspectives 

All these recent studies highlight that many ways of noise effects on zooplankton are 

beginning to be explored. About these ways, I distinguished five research axes in which it seems 

important to continue (Fig. 1); the four firsts are on isolated individuals (or almost). These five 

axes seem currently distinguished because papers generally focus on one aspect, and the 

methodology could be greatly different between them. (1) Neurology: the need to identify which 

frequencies and at which intensity sound can affect organisms. Until now, a wide variety of 

noises have been investigated, some more realistic (airgun, boat), others more artificial 

(broadband). A better understanding would allow standardization and lead to comparison 

between studies. (2) Physiology: there is a need to assess how the stress induced by noise 

directly affects individual metabolism, i.e., gene expression and energetic cost. (3) Fitness: the 

          

         

         

                                            

            

       

          

       
        

         

         
           

    

           

       

          

     

          

Figure 1. Summary of the main objectives, i.e., the five axes I have distinguished, to study noise effects on 

zooplankton. See table 1 for the detailed literature following the lower part of this figure. 
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effect of noise on the population through fitness measurements, such as survival and fecundity 

rates, and alterations in development (i.e., effects on morphology). It mainly results from the 

previous axis (the energetic cost of stress could reduce survival) and could also be affected by 

the next axis through indirect effects. (4) Behaviour: the effect of noise on behaviour, obviously 

linked with previous axes – noise damages and masking effects should alter environmental 

perception, physiological stress should alter various behaviours, energy requirement could 

affect predation, and energy cost and acquisition could affect fecundity and physiology content. 

In this axis, I include the predator-prey relationship because behaviour is generally used to 

explain or predict the ability to prey and vulnerability to predation. Finally, (5) Community: the 

effect of noise at the community level, that is, the repercussion of alteration of an individual’s 

survival, fecundity, and behaviour. Most research on the effect of noise on zooplankton focuses 

on the first four axes, while the last is the aim explained by the other to answer the crucial 

question: How does anthropogenic noise affect aquatic food webs? Moreover, some transversal 

aspects need to be considered, such as the different effects due to acute and chronic exposure 

and the short-term and long-term effects. The long-term effects during chronic exposure raise 

the question of their ability to habituate to noise and thus the importance of noise predictability. 

To answer this question, much previous work in other related fields, such as fundamental 

ecology, ecotoxicology or parasitology, has provided a wealth of methodological knowledge. 

In the next parts, I present numerous of these methodologies to fill gaps in each of these axes, 

where rarely more than one study (thus either freshwater or marine system, one species studied, 

one type of noise) has been conducted (Table 1). 
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Table 1: Relevant studies on noise impacts on marine and freshwater holozooplankton species. Significant effects are in bold. The figures 

in the first column illustrate that there are mainly two taxa: copepods in marine studies and cladocerans in freshwater studies. 

    Neurology Physiology Fitness Behaviour Community 

 Study 

Sound 

(source) 

(dB 1) 

Duration 
Noise 

perception 
Genetic 

ROS, 

Composition 
Development 

Survival, 

Fecundity 
Mobility 

Predation, 

Feeding 

Composition, 

dynamic 

Marine 

 

(Gassie et 

al., 1993) 

Acute 

(vibrations) 

Short-term 

(direct) 

 Neuronal 

activity 
       

(Buskey et 

al., 2002) 

Acute 

(vibrations) 

Short-term 

(direct) 

 Speed 

Direction 

change 

       

(McCauley 

et al., 2017) 

Acute 

(airgun) 

(156 SEL) 

Short-term 

(1 day) 
     Survival    

(Fields et 

al., 2019) 

Acute  

(airgun) 

(183-221 SEL) 

Short-term 

(1 day) 

Long-term 

(7 days) 

 
Genetic 

expression 
   Survival 

Speed 

Escape 
  

(Tremblay 

et al., 2019) 

Chronic 

(motor noise) 
?   

O2 consumption 

 ROS activity 
   Ingestion rate  

(Vereide et 

al., 2023) 

Acute 

(airgun) 

(166-180 SEL) 

Long-term 

(6 days) 
   

 Size 

Delayed stage 

 Survival 

(immediate 

and delayed) 

   

(Kühn et 

al., 2023) 

Chronic 

(boat noise) 

(174 SEL) 

Short-term 

(2-4 days) 
      

 Ingestion 

rate 

 Clearance 

rate 

Handling time 

 

(Aspirault 

et al., 2023) 

Chronic 

(boat noise) 

(129 RMS) 

Short-term 

(1 day) 
   Size 

 Fecundity 

(egg production 

and size) 

 Clearance rate  

Freshwater 

 

 

(Sabet et 

al., 2015) 

Acute 

(regular and 

intermittent) 

(122 RMS) 

Short-term 

(direct) 
     

Speed 

Depth 
  

(Sabet et 

al., 2019) 

Acute 

(boat noise) 

Short-term 

(direct) 
     

Speed 

Hops 

Depth 

  

(Prosnier, 

Rojas, et 

al., 2023) 

Chronic 

(boat noise) 

(103-150 RMS) 

Long-term 

(+30 days) 
    

Survival 

Fecundity 
   

(Prosnier et 

al., 2022) 

Chronic 

(broadband 

noise) 

(128 RMS) 

Long-term 

(+30 days) 
   Size 

 Survival 

 Fecundity 
 Speed   

(Rojas, 

Gouret, et 

al., 2023) 

Chronic 

(boat noise) 

(100-122 RMS) 

Long-term 

(44 days) 
       Sp. abundance 

(Rojas, 

Prosnier, et 

al., 2023) 

Acute 

(boat noise) 

(100-122 RMS) 

Short-term 

(direct) 
     Speed   

(Rojas, 

Desjonquèr

es, et al., 

2023) 

Chronic 

(boat noise) 

(105-110 RMS) 

Long-term 

(42 days) 
       Sp. abundance 

1. SEL: Sound-Exposure Level in dB Re 1µPa2.s, RMS: Root-Mean-Square in dB Re 1µPa2 
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3. Zooplankton: overview of existing methodologies 

3.1. Neurology: Noise detection 

Before asking how organisms are affected by noise, it seems important to understand how 

they could detect noise. Because zooplankton species have not developed a hearing system, they 

use only external mechanoreceptors, e.g., on the first antennae of copepods (Yen et al., 1992; 

Gassie et al., 1993); they are not able to detect the pressure level (i.e., the classical measure in 

µPa) but the particle motion (i.e., the tidal velocity in m/s) (Nedelec et al., 2016; Rogers et al., 

2021). Therefore, it is now recognized that measuring particle motion is mandatory to 

understand zooplankton reactions to noise (André et al., 2016; Popper & Hawkins, 2018) and 

consequently to characterize the various noises (airgun, shipping, etc.). Considering this 

information, electrophysiological experiments as previously done (Gassie et al., 1993; Hartline 

et al., 1997) would be interesting. Other methods, such as behavioural methods, offer, with 

lower precision, information on which sounds are detectable by organisms (Buskey et al., 2002). 

This step is mandatory to determine the frequency range of sound detection by organisms. Until 

now, the few data, about non-zooplanktonic crustaceans, show a sound detection of low 

frequency noise below 3000 Hz (Duarte et al., 2021; Solé, Kaifu, et al., 2023). For instance, 

Lovell et al. (2005) showed, using electrophysiology methods, that the common prawn 

(Palaemon serratus) has a frequency range of 100-3000 Hz. Similar studies on zooplanktonic 

species are mandatory to, at least, determine a frequency range, and ideally to draw a 

spectrogram, allowing comparison, and thus prediction, with the frequency of anthropogenic 

noise, as airgun, 10-300Hz, and boat, 10-20000Hz (Duarte et al., 2021). The only 

neurophysiology study on a zooplanktonic copepod shows a detection for a frequency range of 

40 to 1000Hz (Yen et al., 1992). Other clues of sound frequency effects are available in 

literature: it suggests a noise effect on copepods for a noise of 0.7-500Hz (Fields et al., 2019), 

100-3 000Hz (Kühn et al., 2023), on rotifer for a noise of 100-10 000Hz (Aspirault et al., 2023), 
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and on daphnia for a noise of 100-20 000Hz (Prosnier et al., 2022). Other studies either show 

no effect or do not provide a frequency range of noise exposure. 

Moreover, the absence of behavioural or neuronal response could be explained by damage 

to mechanoreceptors due to high noise, as observed in two species of Mediterranean 

Scyphozoan medusa (Solé et al., 2016) and the sea louse Lepeophtheirus salmonis, a parasitic 

copepod (Solé, Lenoir, Fortuño, et al., 2021), and visually detectable with microscopy. These 

methods could allow us to know noise thresholds (both in terms of intensity, frequency, and 

particle motion) for detection and damage. Similar to ecotoxicological methods, Tyack & 

Thomas (2019) proposed a dose-response method, allowing us to link the intensity of noise and 

its impacts.  

3.2. Physiology: Metabolism measurements 

Many physiological markers of stress can be measured on zooplankton, from the individual 

to the natural community, as has been done, in a noise context, for fish with cortisol 

measurements (Nichols et al., 2015; de Jong et al., 2020). Several methods have been developed 

in ecotoxicology (Handy & Depledge, 1999), especially for copepods, which now seem to be 

popular biological models (Raisuddin et al., 2007; Dahms et al., 2016), as water fleas are for 

freshwater systems (Bownik, 2020; Ebert, 2022). For instance, for both short- and long-term 

experiments, it is possible to measure reactive oxygen species (ROS) that involve cellular 

damage, the organisms’ composition, such as protein or carbon content, and gene expression, 

providing information regarding the basis of the chain reaction (Dahms et al., 2016). Lee et al. 

(2019) used various ROS measurements (glutathione, GST, glutathione reductase, GR, 

glutathione peroxidase, GPx, superoxide dismutase, SOD) to determine how ocean acidification 

affected T. japonicus with higher concentrations of stress markers. Won et al. (2014) measured 

fatty acid concentration in copepods (Paracyclopina nana) following UV exposure, whereas 



14 

(Prosnier, Loeuille, et al., 2023) measured the quantity of carbohydrates, lipids and protein of 

D. magna infected by an iridovirus; and Forshay et al. (2008) measured the carbon to nitrogen 

ratio of D. pulicaria infected by a chytridiomycete (fungus). Another measurement is oxygen 

consumption, through respirometry methods, which has already been performed for both 

copepods and daphniids (McAllen & Taylor, 2001; Zitova et al., 2009). The results of these 

studies show methodologies that can be used in the field of zooplankton bioacoustics but 

highlight the constraint of pooling small individuals, leading to a loss of individual variability. 

In a noise context, Tremblay et al. (2019) showed no effects on O2 consumption but higher ROS 

(similar to Lee et al., 2019), and Fields et al. (2019) showed a higher expression of two genes 

of unknown effects, showing that the issue needs to be studied, as there may be underlying 

effects. Measurements of physiological markers would be a good tool to obtain information on 

the ability of zooplankton to habituate to noise, i.e., whether they return to a basal level after a 

certain time of exposure. These physiological alterations could directly result from noise stress, 

as acidification directly affects ROS (Lee et al., 2019), or be a by-product of behaviour 

modifications, as the modification of their mobility (Prosnier et al., 2022) or their feeding rate 

(Kühn et al., 2023) could affect their energy budget. 

3.3. Fitness: survival and reproduction measurements 

Due to physiological stress or behavioural changes, anthropogenic noise can directly affect 

zooplankton species. These most visible effects, which have obvious implications for 

zooplankton populations and communities, are the effects on fitness, i.e., reproductive success 

through effects on survival and fecundity. Contrary to the studies on vertebrates, it is easier to 

obtain much information about fitness on isolated individuals or populations under in situ 

(realistic) or laboratory (controlled) conditions. Zooplankton allows us to easily observe the 

effects on eggs, juveniles/larvae, and adult survival, fecundity, and development of each stage 

(Dahms et al., 2016). In a noise context, McCauley et al. (2017) and Vereide et al. (2023) 
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assessed instantaneous and delayed mortality in marine zooplankton, whereas Aspirault et al., 

(2023) studied rotifer fecundity; Prosnier et al. (2022) and Prosnier, Rojas, et al. (2023) studied 

both mortality and fecundity in the freshwater water flea Daphnia magna. Reduced 

development is also being developed with the use of size or stage duration for copepods exposed 

to airgun noise (Vereide et al., 2023), which could have repercussions on fitness over 

generations. Linked to development, Olivier et al. (2023) developed the larvosonic, to study the 

effects of noise on small aquatic organisms. Moreover, the study of population dynamics, 

coupled with mathematical models, allows us to determine effects on fitness and fitness 

components (such as reproductive rate, generation time, and growth rate …). For instance, in 

ecotoxicology, Leung et al. (2007) studied the effects of tributyltin on the snail Lymnaea 

stagnalis using the Euler-Lotka equation (see also Starke et al., 2021; Prosnier, Rojas, et al., 

2023). McCauley et al. (2008) coupled a structured model and controlled experimentation to 

characterize the dynamic of a Daphnia-algae system. 

3.4. Behaviour: individual and predation measurements 

Behaviour is certainly one of the main studied aspects of the impact of anthropogenic noise, 

as noise should affect communication and perception of the environment (Tidau & Briffa, 

2016). Zooplankton responses to noise have been studied primarily in freshwater during fish 

predation experiments to test whether noise altered their behaviour (anti-predator defence, 

swimming distance, detectability) and thereby their vulnerability (Sabet et al., 2015; Rojas et 

al., 2021, 2023; see also Fernandez Declerck et al., 2022 for a small zoobenthic prey). 

Nevertheless, many other behavioural measurements were performed to test if and how a 

pollutant could affect a zooplanktonic organism. Bownik (2017) proposed measuring swimming 

speed (see also, in noise experiments, Sabet et al., 2019; Prosnier et al., 2022; Rojas, Prosnier, 

et al., 2023), swimming time, hopping frequency (used for water fleas but also usable for 

copepods, Elmi et al. (2021)), vertical distribution (important for diel migration, tested myself 
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for D. magna exposed to noise, unpublished data), swimming trajectory, and sinking rate. 

Alteration of mobility could affect noise exposure, either because diel migration leads to diel 

exposure or because mobility could be interpreted as an ability to escape pollutants (Michalec 

et al., 2013). Note that some morphological and behavioural differences between sexes need to 

be taken into account (Holm et al., 2018), and thus, males and females could react differently 

to anthropogenic noise. In the case of population studies, it is also possible to measure their 

spatial distribution and their individual distance, i.e., swarming behaviour (Buskey et al., 1996). 

These behavioural measurements can also be performed in the context of multi-stimuli, where, 

for instance, noise could affect reaction to other stimuli like olfactory stimuli, known as cross-

sensory interference (Halfwerk & Slabbekoorn, 2015) – but none of these effects have been 

reported for crabs (Hubert et al., 2021; Solé, De Vreese, et al., 2023). 

Linked to their vulnerability to predation, a recent study shows that marine copepods produce 

sounds, likely hearable by their predators (Kühn et al., 2022). This sound production has been 

previously described for freshwater copepods and daphnids about predation by Chaoborus 

larvae (Giguère & Dill, 1979). These sounds are maybe a by-product of their mobility, likely 

during escape behaviour. In the context of anthropogenic noise, it raises a question: is noise able 

to mask these sounds, that could be a clue for predators or conspecifics. And, if the sound is not 

simply a by-product, are organisms able to modify their sound emission in reaction to 

environmental noise. The two effects (masking and modulation) are known in marine mammals 

and fishes (Putland et al., 2018) – leading to higher or lower detection by their predator. 

Noise should affect predator-prey relationships. Behaviour alteration should affect the 

encounter rate of prey and predators and thus their predation rate or vulnerability to predation 

(Gerritsen & Strickler, 1977). Noise can also affect the perception of prey and predator (masking 

effect) and physiology (energy needs). Thus, it is interesting to study the effects of noise on 

predation, by considering a system where zooplankton is either a prey or a predator. For 
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instance, Sabet et al. (2015) and Rojas et al., (2023) studied D. magna behaviour because they 

were fish prey. In parasitism experiments, Prosnier, Loeuille, et al. (2023) studied how Daphnia 

infection affects the attack rate and handling time of its predator. As a consumer, zooplankton 

can be herbivores or filterers, such as cladocerans or small copepods, or active predators, such 

as larger species. Regarding the filterer, Hong et al. (2012), in an ecotoxicology study, measured 

the feeding appendage beating of A. tonsa. The classical functional response experiments 

(Holling, 1959a; b) used during the previously cited fish experiments could be used both for 

filterers (Porter et al., 1982) and active predators (Krylov, 1988), as was done for larvae of the 

damselfly Ischnura elegans exposed to boat noise, showing an increase in handling time 

(Villalobos-Jiménez et al., 2017). Note that these behavioural measurements are useful to 

explain results when the studied species is a prey or a predator. In the noise context, Tremblay 

et al., (2019), Kühn et al. (2023), and Aspirault et al. (2023) studied the ingestion rate of 

copepods. Regarding behaviour linked to predation, the body rotation of the insect Chaoborus 

larvae was studied to explain its vulnerability to predation by fish (Rojas et al., 2021; Rojas, 

Prosnier, et al., 2023) or its predation rate on cladocerans (Rojas, Desjonquères, et al., 2023). 

4. From individual to community 

4.1. Experimental approaches 

Modification of key processes, such as metabolism, reproduction, survival, and predator-

prey interactions, through behavioural changes, will directly affect the population dynamics of 

species and therefore that of the community. However, current research has focused mainly on 

individual responses, which is not sufficient, and there is a need to assess complex communities 

for a global response (Kunc et al., 2016). Recent results suggest that if noise alters the 

developmental rate, survival and/or fecundity, it may also alter competitiveness, as 

Decaestecker et al. (2015) demonstrated in the case of water flea infection by a pool of parasites. 

Therefore, it is possible to assume that effects on zooplankton could induce top-down effects 
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through cascading effects and bottom-up effects (Sommer et al., 2001; Banerji et al., 2015; 

Wollrab & Diehl, 2015). Mesocosm studies have highlighted how changes in biological 

(community response) and spatial (from microcosm to mesocosm) scales affect dynamics. They 

have shown that responses are more complex than expected when community complexity is 

increased (Gérard Lacroix, pers. comm. with freshwater experiments). In marine systems, the 

assessment of other stressors, such as acidification, has highlighted the utility of plankton 

community studies coupled with biochemical measurements (Spisla et al., 2021). To study 

communities, it is possible to study community dynamics, stability, and composition. 

Physiological measurements, as stable isotopes, are a good tool to assess long-term effects on 

communities (Boisnoir et al., 2020), which target dietary shifts over time. To remind us in the 

noise context, see the community studies of Rojas, Gouret, et al. (2023), with vertebrates, and 

Rojas, Desjonquères, et al. (2023), without vertebrates. These complex community studies 

provided indirect effects on organisms that may be less impacted by noise, such as 

phytoplankton (no observed effect on the density of the microalgae Diacronema lutherie and 

Tetraselmis suecica after 24-h exposure to boat noise (Aspirault et al., 2023)), i.e., a by-product 

of herbivore alterations – but one study showed that the seagrass Posidonia oceanica, an aquatic 

plant, could be affected by noise (Solé, Lenoir, Durfort, et al., 2021), suggesting a possible 

direct effect on phytoplankton. 

4.2. Theoretical approaches 

To date, only experimental approaches have been conducted to understand how noise affects 

organisms and communities, despite their recognized importance in understanding the observed 

ecological dynamics (McCauley et al., 2008). One exception is the work of Roca (2018), who 

modelled predator-prey relationships as a function of ambient noise intensity. Models are useful 

tools for studying the effects of pollutants (Lamonica et al., 2023) from simple systems (e.g., 

predator-prey interactions, see Prosnier et al., 2015) to complex food webs (Clements & Rohr, 
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2009). Theoretical studies will provide a better understanding of the mechanisms by which noise 

affects community structure and stability (Wollrab & Diehl, 2015). For example, Hulot et al. 

(2000) used models to understand the importance of bottom-up and top-down effects in 

freshwater mesocosms. Similarly, in an infected tri-trophic system, Banerji et al. (2015) 

showed, with a model, that trophic alterations were driven by host mortality rather than by 

alterations in predator behaviours. In addition, a combination of noise propagation models 

(Barber et al., 2011; Lin et al., 2019; Guibard et al., 2022) and food web models could be useful 

for developing spatially structured models. These models allow us to understand the role of 

zooplankton mobility (diel migration, noise escape, natural current) in temporally and spatially 

structured noise pollution. 

Table 2: Summary of methodologies usable to study the effects of noise on zooplankton. 

Research axes Objectives Measurements/Technics Example of references 

Neurology 

Characterisation of noise 

detection (frequency, 

levels), drawing 

spectrogram 

Electrophysiology (neuronal 

activities) 

(Yen et al., 1992; Gassie et al., 

1993; Lovell et al., 2005) 

Behavioural reaction to mechanic 

stimulations 
(Buskey et al., 2002) 

Dose-response (Tyack & Thomas, 2019) 

Physical damages (e.g., 

receptor degradations) 
Microscopic observation 

(Solé et al., 2016; Solé, Lenoir, 

Fortuño, et al., 2021) 

Physiology 

Link to genetic  Genetic expression (Fields et al., 2019) 

Acute and chronic stress 

characterization 

Stress marker (ROS, Cortisol) 
(Nichols et al., 2015; Dahms et 

al., 2016; Lee et al., 2019) 

Energetical content (Lipids, 

Carbohydrates, Proteins) 

(Won et al., 2014; Prosnier, 

Loeuille, et al., 2023) 

C/N ratio (Forshay et al., 2008) 

Respirometry 

(McAllen & Taylor, 2001; 

Zitova et al., 2009; Tremblay et 

al., 2019) 

Fitness 

Mortality 

Field 

(McCauley et al., 2017; Fields 

et al., 2019; Vereide et al., 

2023) 

Lab 

(Prosnier et al., 2022; Prosnier, 

Rojas, et al., 2023; Aspirault et 

al., 2023) 

Fecundity Lab 
(Prosnier et al., 2022; Prosnier, 

Rojas, et al., 2023) 

Development 
Field (Vereide et al., 2023) 

Lab (Olivier et al., 2023) 
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All 
Population (coupling experimental 

and modelling approaches)   

(Leung et al., 2007; McCauley 

et al., 2008; Starke et al., 2021; 

Prosnier, Rojas, et al., 2023) 

Behaviour 

Individual behaviour 

Various individual measurements 

(speed, hopping, orientation, vertical 

distribution) 

(Bownik, 2017; Sabet et al., 

2019; Elmi et al., 2021; 

Prosnier et al., 2022) 

Sex differences (Holm et al., 2018) 

Cross-sensory interference 

(Halfwerk & Slabbekoorn, 

2015; Hubert et al., 2021; Solé, 

De Vreese, et al., 2023) 

Populational behaviour Swarming (Buskey et al., 1996) 

Sound production Lab and field 
(Giguère & Dill, 1979; Kühn et 

al., 2022) 

Predator-prey interaction 

Vulnerability to predation 

(Functional response, handling time, 

attack rate) 

(Sabet et al., 2015; Prosnier, 

Loeuille, et al., 2023; Rojas, 

Desjonquères, et al., 2023; 

Rojas, Prosnier, et al., 2023) 

Predation by zooplankton (functional 

response, ingestion rate, clearance 

rate) 

(Krylov, 1988; Hong et al., 

2012; Villalobos-Jiménez et al., 

2017; Tremblay et al., 2019; 

Kühn et al., 2023; Aspirault et 

al., 2023) 

Community 

Competition 
Competitor abundances in 

mesocosms 
(Decaestecker et al., 2015) 

Trophic cascade, Top-

down and bottom-up 

effects 

Multi-trophic network and food-

chain experiments 

(species abundance) 

(Sommer et al., 2001; Banerji et 

al., 2015; Wollrab & Diehl, 

2015; Rojas, Desjonquères, et 

al., 2023; Rojas, Gouret, et al., 

2023) 

Community dynamics 

Species abundance and biochemical 

measurements 

(Spisla et al., 2021; Rojas, 

Desjonquères, et al., 2023; 

Rojas, Gouret, et al., 2023) 

Stable isotopes (Boisnoir et al., 2020) 

Mathematical models 

(Hulot et al., 2000; McCauley et 

al., 2008; Clements & Rohr, 

2009; Prosnier et al., 2015; 

Lamonica et al., 2023) 

 

5. Discussion 

I proposed various measurements of noise effects on zooplankton in several aspects (Table 

2). However, we need to keep in mind that all these levels are interconnected. For instance, the 

effect on mobility should directly affect their survival or their fecundity through an alteration 

of energy allocation. Prosnier, Rojas, et al. (2022) explained their surprising increase in fitness 
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by the lower mobility of D. magna exposed to noise. The lower consumption of A. tonsa (Kühn 

et al., 2023) ask for repercussions on their fitness. Prey mobility is generally studied to explain 

differences in predator foraging (Sabet et al., 2015; Rojas et al., 2021; Fernandez-Declerck et 

al., 2023); thus, in a community context, noise should indirectly affect the fitness of 

zooplanktonic organisms. It is also possible to link behaviour and physiology, e.g., activity, 

predation, and O2 consumption of fish and mussels (Fernandez Declerck, unpublished data; 

Turco et al., in prep.). Another interesting point is the deleterious effects on mechanoreceptors 

(Solé et al., 2016). These permanent damages should lead to long-term effects on their 

behaviour, on their ability to detect prey or predators, and thus on their fitness. These various, 

and generally independent, studies presented in the review not only focus on numerous 

interesting impacts of noise but also highlight mechanisms that could explain how and why 

noise affects, or could affect, all these levels. 

Over the past decade, there has been increasing interest in how anthropogenic noise affects 

ecosystems, particularly marine mammal and fish species. The current perspective highlights 

that few studies on zooplankton responses in marine and freshwater systems have examined all 

aspects from individuals to communities. However, there are still huge gaps in knowledge that 

could be filled by methodologies developed in ecology, ecotoxicology and parasitology studies. 

Three important areas should be investigated: (1) determining what noise (spectrum, 

temporality), studied in terms of particle movement, might affect zooplankton diversity, (2) 

using few model organisms to understand whether noise impacts physiology, fitness and 

behaviour to a greater or lesser extent, i.e., to understand mechanisms, then enlarging the 

number of models to assess whether generalizations are possible, and (3) understanding, through 

experiments and models, how noise affects the structure and stability of zooplankton 

communities. Consequently, zooplankton species seem to be good models for studying many 

effects of noise from physiology to community, from the short term to the long term, including 
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multigenerational experiments allowing evolution (Ebert, 2022). A difficulty could be in the 

experimental design to obtain a correct noise exposition, particularly about the noise spectrum 

that is greatly affected by the setup and necessitates correction (e.g., Prosnier, Rojas, et al., 

2023). Olivier et al. (2023) designed a larvosonic system to study the effects of noise on larvae, 

but this system should also be useful for all zooplanktonic studies. 

It is important to consider that this perspective paper focuses on holozooplanktonic species 

(primarily arthropods), although many other groups are, in part of their cycle life, constituents 

of zooplankton (the meroplanktonic species). These organisms can be affected by noise – see 

the reviews of Solé, Kaifu, et al. (2023) and Vereide & Kühn (2023) – when they are 

zooplanktonic in the larval stages (Simpson et al., 2011; Aguilar de Soto et al., 2013; Nedelec 

et al., 2015) or more rarely during their adult stage (cnidarian, Solé et al., 2016). Moreover, they 

could be affected during their other stages, when they are nekton (fish, Nichols et al., 2015), 

benthic (crabs, Wale et al., 2013), fixed (mussels, Hubert et al., 2022) or parasitic (parasitic 

copepods, Solé, Lenoir, Fortuño, et al., 2021). Therefore, due to the diversity of zooplankton 

communities and their ecological roles, the methods presented must be developed for all of 

these organisms (note that the larvosonic system was initially developed for zooplanktonic 

larvae of a bivalve (Olivier et al., 2023)). This broader perspective is essential for understanding 

how anthropogenic noise affects aquatic communities. 
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