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Abstract 6 

Most species belong to ecological communities where their interactions give rise to emergent 7 
community-level properties, such as diversity and productivity. Understanding and predicting 8 
how these properties change over time has been a major goal in ecology, with important 9 
practical implications for sustainability and human health. Less attention has been paid to the 10 
fact that community-level properties can also change because member species evolve. Yet, our 11 
ability to predict long-term eco-evolutionary dynamics hinges on how repeatably community-12 
level properties change as a result of species evolution. Here, we review studies of evolution of 13 
both natural and experimental communities and make the case that community-level properties 14 
at least sometimes evolve repeatably. We discuss challenges faced in investigations of 15 
evolutionary repeatability. In particular, only a handful of studies enable us to quantify 16 
repeatability. We argue that quantifying repeatability at the community level is critical for 17 
approaching what we see as three major open questions in the field: (1) Is the observed degree 18 
of repeatability surprising? (2) How is evolutionary repeatability at the community level related to 19 
repeatability at the level of traits of member species? (3) What factors affect repeatability? We 20 
outline some theoretical and empirical approaches to addressing these questions. Advances in 21 
these directions will not only enrich our basic understanding of evolution and ecology but will 22 
also help us predict eco-evolutionary dynamics.  23 
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1 Introduction 24 

Stephen J. Gould captured the imagination of many with his now famous thought experiment 25 
where he proposed to replay “life’s tape” and observe “if the repetition looks at all like the 26 
original” [1]. Although evolutionary biologists have been interested in the repeatability of 27 
evolution for decades before Gould [2,3], his vivid metaphor set the stage for much of the 28 
modern agenda in the field [4–8]. Numerous documented cases of parallelism and convergence 29 
from natural and experimental systems support the idea that a biological system facing the 30 
same environment would evolve, with a non-negligible probability, towards outcomes that share 31 
some essential similarities [4,5,7–13]. As a result, many evolutionary biologists today believe 32 
that Gould’s thought experiment would reveal at least some degree of repeatability. A new goal, 33 
highlighted in the present journal issue, is to predict how populations will evolve [6,14–16]. 34 

While genuine prediction is the ultimate goal, the notion of evolutionary repeatability (i.e., 35 
replicates evolving along similar paths and/or towards similar outcomes) remains fundamentally 36 
important. Since evolution is driven by random processes, such as mutation, recombination, and 37 
genetic drift, evolutionary predictions are in general formulated in statistical terms, e.g., 38 
“substitution at site x will occur with probability p” or “population will on average evolve 39 
phenotype y”. However, knowing the statistics of an ensemble is often not enough if we want to 40 
predict the future behavior of a specific population (e.g., whether a pathogen population within 41 
an infected patient will develop drug resistance). Accurate predictions for individual populations 42 
are possible only when the uncertainty around one or a few typical evolutionary outcomes is low 43 
[6,15], i.e., when evolution is repeatable. Compare, for example, a situation when 100 different 44 
evolutionary outcomes can occur with probability 1% each (low predictability) versus a situation 45 
when one of them occurs with probability 99% (high predictability). In other words, repeatability 46 
of evolution affects our power to predict its course. 47 

The multitude of cases of parallelism and convergence identified in the field and in the lab in 48 
recent decades have refined our understanding of evolutionary repeatability. For example, it is 49 
now appreciated that repeatability is not a binary category, i.e., evolution is not either repeatable 50 
or not repeatable [8]. Rather, repeatability is a matter of degree, which can be quantified (see 51 
Box 1 and Refs. [8,10,15]). Another important realization is that different characters evolve with 52 
different degrees of repeatability. In particular, the degree of evolutionary repeatability varies 53 
across levels of biological organization, with lowest repeatability generally found at the genetic 54 
level (with some important exceptions [17–21]) and highest repeatability at the level of fitness 55 
[5,11,22–26]. 56 

Much of the literature so far has been concerned with the repeatability of evolution of properties 57 
of individuals: genotype (reviewed in [14,27–29]), phenotypes (e.g., [5,8,18,28,30–33]) and 58 
fitness (e.g., [34–36]). However, most species belong to ecological communities where they 59 
interact with one another by competing for resources, parasitizing, cooperating, etc. These 60 
interactions endow communities with emergent properties, such as diversity, productivity, 61 
function, etc., that depend on but cannot be reduced to individual-level properties [37–43]. Such 62 
community-level properties are part of the environment in which community-member species 63 
evolve and to which they adapt. As they adapt, community properties can also change and 64 
thereby affect the subsequent course of species evolution. Due to such eco-evolutionary 65 
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feedbacks [44–47], evolution at the level of individuals is inextricably linked to the evolution of 66 
the surrounding community. It is thus meaningful to ask how repeatable evolution is at the 67 
community level. Asking this question is important because it can help us identify the level of 68 
description of biological systems where evolution is most repeatable and therefore most 69 
predictable [39]. 70 

It is unclear a priori how repeatable we should expect evolution at the community level to be. On 71 
the one hand, interactions between species may multiply historical contingencies [7] and 72 
thereby make evolutionary outcomes at the community level non-repeatable. On the other hand, 73 
communities may self-organize into certain ecological states [48–50], which could make 74 
evolution of community-level properties highly repeatable. We return to this discussion in 75 
Section 4.3. 76 

The question of whether similar environments repeatably select for similar ecological 77 
communities has a long history. Early studies documented similarities and differences between 78 
geographically distant communities, but did not establish how ecological and evolutionary 79 
processes generated the observed outcomes (e.g., [37,51–54]). More recently, this problem has 80 
been addressed primarily from an ecological perspective [38]. The role of evolutionary 81 
processes (i.e., those that cause heritable changes in the genetic and phenotypic composition 82 
of populations of community-member species) in causing repeatable outcomes at the 83 
community level has received less attention. Although, as we demonstrate below, the studies of 84 
adaptive radiations and species coevolution in nature and in the lab bear greatly on this 85 
question, their emphasis has been on the patterns and processes of phenotypic evolution rather 86 
than on the community-level properties. The goal of this review is to synthesize our current 87 
understanding of community-level repeatability from an evolutionary perspective and outline 88 
potentially interesting avenues for future research. 89 

2 Defining community evolution and its 90 

repeatability 91 

We understand an ecological community as a collection of individuals that belong to two or 92 
more ecologically distinct types, share space and time, and ecologically interact with each other. 93 
By “ecologically distinct types” we generally mean species, but two or more eco-types of the 94 
same species would qualify as a community if they are sufficiently distinct ecologically (e.g., 95 
[55,56]). The condition of shared space and time is meant to constrain the spatial scale and the 96 
temporal timeframe of ecological interactions under consideration. Without it, we may have to 97 
consider species that influence each other across vast geographic distances (e.g., 98 
phytoplankton affect the physiological processes of most of life on Earth by producing oxygen) 99 
or across exceedingly long stretches of time (e.g., fossil fuels). However, even with this 100 
restriction, one may not be able to observe all members of a community and may be forced to 101 
focus on certain subsets of community members [37]. 102 

Ecological communities possess emergent community-level properties, i.e., properties that 103 
depend on but cannot be reduced to the properties of individual members of the community 104 
[37–41]. For example, whereas beak morphology is a trait of an individual finch, the distribution 105 
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of beak morphologies in a community of finches on an island is a property of the community. 106 
Other community-level properties include species composition and diversity, function, 107 
productivity, etc. The distribution of ecological interactions can also be considered a community-108 
level property [12]. We do not endow the word “emergent” with any meaning beyond the fact 109 
that these properties do not exist at lower levels of biological organization, although it is implicit 110 
that community properties likely depend on the ecological interactions between community 111 
members. For example, different finch species on Galapagos islands have different beak 112 
morphologies as a result of competition [57]. 113 

To make the language clearer, we will refer to individual-level properties as traits (unless we 114 
specifically talk about genotype) but we will always say community-level properties. We will use 115 
the word characters to refer to community properties, individual traits or genotypes. Characters 116 
can be discrete or continuous, one- or multi-dimensional, and we refer to values that a given 117 
character can take as character states, as in “replicates have different character states”. 118 

Community properties change over time for many reasons, but we can distinguish between 119 
three major classes of processes that cause communities to change. First, a community can 120 
change because of events external to it, i.e., those that occur regardless of the state of the 121 
community, such as yearly seasonality or an influx of migrants. Second, a community may 122 
change as a result of ecological processes within the community itself, such as births and 123 
deaths, production of certain compounds by member species, competition for resources, etc. 124 
The third class of processes that alters communities are heritable changes in the traits of 125 
community-member populations, i.e., evolution. As community members evolve, interactions 126 
between them may change, which in turn may alter the ecology of the community and 127 
precipitate further evolution of its members. In other words, community properties can change 128 
due to a complex entanglement between evolutionary and ecological processes, termed eco-129 
evolutionary feedbacks [44–47,58]. 130 

While all these processes clearly operate in most if not all ecological communities, 131 
understanding how they all work together is difficult, due to differences in timescales on which 132 
they operate, differences in study methodologies, etc. To make investigations tractable, 133 
community ecologists tend to focus on the first two types of processes [38]. In this article, we 134 
focus on the community dynamics that are driven by the second and third processes, i.e., those 135 
internal to the community. As the fields of community ecology and evolutionary biology advance 136 
and converge, it will be important to integrate our understanding of all three types of processes 137 
[58].  138 

Keeping this scope limitation in mind, what would be an ideal setup for investigating the 139 
repeatability of eco-evolutionary dynamics that are driven only by internal processes? We would 140 
ideally consider a collection of initially identical (replicate) ecological communities that are given 141 
the freedom to change and evolve over time in identical environmental conditions. One could 142 
then determine the degree of evolutionary repeatability by characterizing the similarity between 143 
these evolutionary “replays”. While such an idealized scenario never occurs in nature, 144 
investigating it is valuable for two reasons. First, it deepens our understanding of eco-145 
evolutionary dynamics that are fundamental to any biological system. And second, because 146 
unpredictable external perturbations can only exacerbate divergence between replicates, an 147 
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understanding of this idealized scenario could provide us with an upper bound on the 148 
repeatability of evolution in more complex situations. 149 

The notion of evolutionary repeatability is related to those of evolutionary parallelism and 150 
convergence. However, repeatability presupposes that the initial character states are identical, 151 
whereas convergence implies that they are distinct (and become more similar during evolution). 152 
Parallel evolution occurs when the character states become neither more nor less similar over 153 
time, whether or not they were initially identical [8]. Thus, the notion of repeatability is more 154 
closely related to the idea of parallel evolution when the initial states are identical, but there are 155 
some distinctions. For example, parallel evolution implies a change in the character state. In 156 
contrast, a consistent absence of change across replicates (e.g., due to stabilizing selection) is 157 
a valid instance of repeatability. Another distinction is that parallelism is an attribute of a pair of 158 
populations/communities. In contrast, we envision repeatability as a property of an infinitely 159 
large ensemble of replicates (Figure 1B,C). For example, one way to quantify parallelism is by 160 
calculating the angle between the evolutionary vectors of two replicates [8]. The corresponding 161 
aspect of repeatability would then be characterized by the distribution of such angles (Figures 162 
1B,C insets). In other words, repeatability is an abstract feature of a system that gives rise to 163 
observable instances of parallelism and convergence. And conversely, we can use these 164 
instances to infer the degree of evolutionary repeatability. 165 

Figure 1. Distinction between evolutionary parallelism and evolutionary repeatability. A. 
Parallelism is a property of a pair of populations or communities (which may or may not be initially 
identical). The degree of parallel evolution can be quantified, for example, by the angle θ between the 
respective evolutionary vectors in the character state space [8]. θ ≈ 0 corresponds to high parallelism; θ ≫ 
0 corresponds to low parallelism. B, C. Repeatability is a property of an ensemble of initially identical 
populations or communities. It can be quantified, for example, by the distribution of angles between pairs 
of replicates. A distribution of angles θ concentrated around zero corresponds to high repeatability (panel 
B inset); a wide distribution corresponds to low repeatability (panel C inset). Note that θ captures only one 
aspect of repeatability—whether replicates evolve in similar directions in the character state space—but 
ignores whether they evolve at similar rates (also see discussion in Box 1). 
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3 Evidence that evolution is repeatable at the 166 

community level 167 

As mentioned above, to evaluate the repeatability of community evolution, we would ideally like 168 
to observe many initially identical replicate communities that independently evolve in the same 169 
environment. Although implementing such an ideal setup is impossible in natural systems, 170 
several well-described communities come close [7]. In addition, setups closely approximating 171 
the ideal are achievable in the lab [7]. While many studies of both natural and laboratory 172 
systems have investigated the repeatability of evolution of species traits in the context of 173 
ecological communities, fewer have specifically focused on the repeatability of community-level 174 
properties. We highlight these studies below and summarize the broad patterns that we 175 
identified in this literature.  176 

3.1 Community evolution in nature 177 

Our empirical understanding of the repeatability of evolution in nature comes from observations 178 
of parallelism and convergence. In most cases, these are reported at the genetic and trait levels 179 
(reviewed in [4,5,8,10,28,59]), but many of the traits evolving in parallel are directly involved in 180 
between-species interactions, e.g., dermal bones that are important for feeding in stickleback 181 
fish [60], host-plant preference in stick insects [61], or the ability to synthesize specialized 182 
metabolites used for attracting pollinators or defending against predators in plants [62]. Thus, it 183 
is likely that at least some aspects of the ecological community to which these species belong 184 
have also evolved in parallel. However, most instances of trait parallelism and convergence 185 
allow us to draw only indirect conclusions about the repeatability of evolution of community-level 186 
properties. More direct evidence for such repeatability comes from studies of adaptive radiations 187 
and from studies of co-evolving species pairs. 188 

Adaptive radiations. A canonical case of adaptive radiation involves a single founder species 189 
that colonizes multiple neighboring islands or lakes [63]. These quasi-replicate founder 190 
populations subsequently diversify into communities of interacting (usually competing) species. 191 
The fact that the communities are initially identical (consisting of a single founder species) and 192 
the fact that they evolve on neighboring but largely isolated habitats with similar environments is 193 
important because it allows researchers to witness how quasi-replicate ecological communities 194 
are assembled by adaptive evolution and diversification. In many well-characterized cases, 195 
quasi-replicate communities evolve to similarly partition the morphological and ecological trait 196 
space, a community-level property. More precisely, these communities undergo parallel 197 
diversification into several “ecomorphs” each of which has stereotypical morphological, dietary 198 
and behavioral traits and occupies a distinct ecological niche. Examples of parallel ecomorph 199 
evolution include the evolution of large- and small-beaked Darwin’s finches on Galapagos 200 
islands [64–66], morphological and dietary parallelism in cichlids in Africa’s great lakes [67–70], 201 
benthic and limnetic stickleback fish in Canadian glacial lakes [71,72], pelagic and benthic 202 
feeding behaviors in damselfish in coral reefs [73], crown-giant, trunk-crown, trunk and trunk-203 
ground ecomorphs in lizards on Caribbean islands [30,74], and matte white, dark and gold 204 
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ecomorphs for Tetragnatha spiders on Hawaiian islands [75,76] (see Supplementary Table S1 205 
for more details). 206 

Although most communities that arose in replicated adaptive radiations reveal a degree of 207 
community-level parallelism, its underlying causes are often unclear (see Section 4.2). In 208 
particular, trait and hence community-level similarities can evolve by genetic drift or by natural 209 
selection driven by various ecological factors, and distinguishing between causal mechanisms is 210 
not straightforward, particularly when only biased subsets of species from replicate communities 211 
are examined in detail [77,78]. Mahler et al overcame this challenge by studying entire adaptive 212 
radiations of lizards of the genus Anolis in the Caribbean islands [78]. They used a recently 213 
developed mathematical model of trait evolution along a phylogeny [79] to show that the 214 
distributions of morphological characters on different islands were best described by a model 215 
where species convergently evolved towards a small set of adaptive peaks corresponding to 216 
ecomorph classes. This study provides a plausible mechanism for how evolving ecological 217 
communities independently arrive at a similar partitioning of the morphospace. 218 

Co-evolving species pairs. Studies of co-evolution of ecologically interacting species also 219 
provide evidence that evolution at the community level can be highly repeatable. In these 220 
studies, researchers typically focus on multiple quasi-replicate pairs of co-evolving species. 221 
Species pairs can be both antagonistic, such as insects evolving to overcome plant chemical 222 
defenses [80], microbes evolving virulence to overcome host immunity [81,82] or animals 223 
evolving resistance to predator toxins [83,84]; or mutualistic, such as fig trees and wasps [85–224 
90], plants and mycorrhizal fungi [91,92] and others [12,92–95]. In these cases, the community-225 
level properties that evolve in parallel are the interactions between the community members 226 
[12,86,96–98]. In extreme cases, the interaction between partners in each pair can evolve to be 227 
highly specialized, so that partners interact almost exclusively with each other but not with other 228 
members of the clade. For example, many tree species of the genus Ficus form mutualistic 229 
host-pollinator associations with wasps of the family Agaonidae. The fig trees and the wasps 230 
have co-diversified and evolved pairs of species with highly specific host-pollinator interactions 231 
where one wasp species typically pollinates one fig tree species and vice versa [85–89]. Further 232 
analysis by Segar et al found that entire fig wasp communities in Africa, Australia and America 233 
form five ecological guilds that have independently evolved towards similar relative abundances 234 
[90]. 235 

Challenges. Cases of parallelism and convergence reviewed above strongly suggest that at 236 
least some community-level properties can evolve repeatedly even under natural conditions that 237 
may be far from the ideal setup. However, deviations from this ideal pose several important 238 
challenges. One challenge, specific to community-level repeatability, is to rule out the possibility 239 
that some community members evolved elsewhere and then repeatably assembled into 240 
communities that were later observed (rather than having repeatably evolved in situ). In other 241 
words, it may be difficult to establish that the observed community-level repeatability resulted 242 
only from internal eco-evolutionary processes rather than from migration-driven community 243 
assembly. 244 

Other challenges that we see arise both at the level of communities and at lower levels of 245 
biological organization, and we discuss them in this broader context. Ascertainment biases pose 246 
several challenges to our ability to quantify repeatability. One bias, known as the “denominator 247 
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problem”, arises because not all populations or communities that would qualify as replicates are 248 
observed or analyzed [99], e.g., because researchers intentionally focus on quasi-replicates that 249 
evolved in parallel rather than those that diverged. Such focus is well intentioned because 250 
quasi-replicates that diverged are more likely to have experienced different environments and 251 
would not have qualified as true replicates. However, should they have qualified but diverged 252 
due to the intrinsic randomness of evolution, excluding them inflates the perceived degree of 253 
repeatability. Another source of the denominator problem are extinctions. Some replicates 254 
cannot be observed because they went extinct, and extinction may be biased with respect to the 255 
character whose parallelism is investigated. Regardless of the reasons, if not all replicates are 256 
observed, the true degree of repeatability cannot be accurately inferred. Another bias arises 257 
from the very requirement for replication, which, as mentioned above, can be satisfied by 258 
species and communities that live on islands or in lakes. However, ecological communities in 259 
these habitats are often less complex than elsewhere. Thus, if ecological complexity affects 260 
evolutionary repeatability, our perceptions of the degree and prevalence of repeatability may be 261 
skewed. 262 

Another challenge is that populations or communities where parallel evolution is observed are 263 
not true replicates. Quasi-replicates vary at least somewhat in the environment they experience 264 
and in their initial state (community structure, genetic composition of member species, 265 
population sizes, etc.). On the one hand, the fact that parallelism is observed despite these 266 
“extrinsic” differences between quasi-replicates suggests that evolution would have been even 267 
more repeatable among true replicates. On the other hand, extrinsic variation compromises our 268 
ability to interpret any quantitative measure of repeatability. Specifically, if some quasi-replicates 269 
did not evolve in parallel, it is unclear whether the lack of parallelism should be attributed to the 270 
intrinsic randomness and contingency of evolution or to the extrinsic variation between quasi-271 
replicates. Imagine that 50 out 100 quasi-replicates evolved character state A and the other 50 272 
evolved character state B. Clearly, evolution is somewhat but not perfectly repeatable. This lack 273 
of perfect repeatability could be a genuine feature of evolution, e.g., just by chance, 50 quasi-274 
replicates acquired mutations that confer character state A and the other 50 acquired mutations 275 
that confer character state B. But it is also possible that each quasi-replicate experienced one of 276 
two environments, either one that selects for A or one that selects for B, and evolution is in fact 277 
perfectly repeatable in each environment. 278 

These challenges can be mitigated by more complete and less biased sampling in natural 279 
systems. Nevertheless, fully overcoming them may only be possible in experimental systems, 280 
which we discuss next. 281 

3.2 Community evolution in the lab 282 

Evolution experiments allow researchers to observe how the (almost) exact replicates of a 283 
population or a community evolve in (almost) identical conditions [7,99]. Such a setup is ideal 284 
for studying the repeatability of evolution driven by intrinsic factors, although controlled 285 
disturbances or migration can also be added [100,101]. Furthermore, the fact that all replicates 286 
are observed by the experimentalist—rather than a possibly biased subset of them—avoids the 287 
denominator problem and makes it possible to quantify the repeatability of evolution. 288 
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Laboratory evolution studies have been carried out in various antagonistic (usually, bacteria-289 
phage [18,20,102–134]), mutualistic and commensal [135–150] systems with two- or more 290 
[151–160] species and in adaptive diversifications [55,100,101,161–167]. While most of these 291 
studies do not focus on evolutionary repeatability per se, the data they collect show that various 292 
community-level properties, such as absolute and relative abundances of community members 293 
[105,139,140,168], species interactions [18,169,170], community growth rate [136,138,168] and 294 
productivity [135,136,151], change over the course of evolution with some degree of 295 
repeatability (see Supplementary Table S1 for details). 296 

Another important observation is that the repeatability of community evolution is variable 297 
between systems. For example, Pseudomonas fluorescens diversifies in a static spatially 298 
heterogeneous liquid medium into three ecotypes with perfect repeatability [55], whereas phage 299 
evolves the ability to infect Escherichia coli through a new receptor in only about 25% of 300 
replicates [18]. Identifying features of the community or the environment that predict the 301 
repeatability of community evolution is an emerging area of research (see Section 4.2 below). In 302 
particular, two recent studies tested an intriguing hypothesis that species interactions influence 303 
the repeatability of community evolution [152,171]. Researchers compared communities formed 304 
by coevolved species with those formed by the same species evolved alone in otherwise 305 
identical abiotic conditions. Celiker and Gore found that communities formed by six soil bacteria 306 
were more diverse in terms of their structure (i.e. the relative abundances of all species) after 307 
the member species evolved all together compared to them having evolved alone [152]. In 308 
contrast, Venkataram et al found that the interaction between yeast Saccharomyces cerevisiae 309 
and alga Chlamydomonas reinhardtii shifted more repeatably towards stronger mutualism when 310 
yeast evolved in the presence of the alga than alone [171]. Thus, species interactions appear to 311 
affect repeatability, but further studies will be needed to understand this effect. 312 

In another recent study, Meroz et al assembled 87 two- and three-species bacterial 313 
communities and evolved them for about 400 generations [158]. They found that the 314 
community-structure similarity between replicates of the same community declined over time, 315 
but replicates of the same community remained more similar to each other than to other 316 
communities. Interestingly, the structure of evolved three-species communities could be to 317 
some extent predicted based on the structures of evolved two-species sub-communities. In Box 318 
3, we use this study to illustrate how quantitative experimental approaches can help us answer 319 
interesting questions about the repeatability of community evolution, e.g., whether and how 320 
repeatability depends on community complexity. 321 

Challenges. Experimental studies confirm that evolution can be repeatable at the community 322 
level. They also allow researchers to move beyond merely documenting the cases of parallelism 323 
and begin quantifying repeatability and dissecting its underlying mechanisms. However, the 324 
experimental approach to the problem of repeatability faces a major challenge. What can the 325 
results obtained in the lab tell us about the repeatability of community evolution in nature? 326 

Most laboratory evolution studies use model microbes, owing mainly to practical matters such 327 
as their small size, short generation times, and the ability to survive cryopreservation. These 328 
features allow researchers to maintain many replicates, observe interesting evolutionary 329 
changes over tractable time scales of only weeks or months, and directly compare evolved and 330 
ancestral types as well as dissect the molecular mechanisms of evolution. But these important 331 
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benefits also impose major limitations. Microbes are unicellular and interact with each other 332 
largely (although not exclusively) by exchanging metabolites. Experimental microbial 333 
communities have low complexity and have one or at most two trophic levels. The selective 334 
environment is usually constant or subject to regular periodic fluctuations, and laboratory 335 
evolution is usually observed over short periods of time, corresponding to only hundreds of 336 
generations. It is thus unclear whether the results obtained in experimental microbial 337 
communities can be generalized to more complex, multitrophic communities, communities of 338 
multicellular organisms, and to longer time scales. Results from evolution experiments may 339 
generalize most easily to other microbial communities, such as the gut microbiome, but also 340 
with some caveats, e.g., the environment in the gut is spatially structured, temporally variable 341 
and subject to feedback control by the host. 342 

Overall, probing and extending the limits of generalizability of experimental results will require 343 
researchers to observe evolution over long (~104 generations [172]) and ultra-long (~105 344 
generations [99]) timescales that are still accessible in some experimental systems (see 345 
Methods) and in more diverse experimental and semi-natural communities with non-model 346 
species. For example, it is now possible to study microbiome evolution in the mouse gut [173] or 347 
observe how microbes adapt to their host plants [174]. Community evolution studies are also 348 
being conducted in simple metazoa such as insects [175,176] and Daphnia [110,153]. It will be 349 
important to identify similarities and differences in how such communities evolve compared to 350 
their microbial counterparts. 351 

3.3 Summary 352 

Studies of ecological communities in nature established the foundational fact that the evolution 353 
of community-level properties can be to some extent repeatable, even under non-ideal 354 
conditions. However, quantifying the repeatability in natural systems and attributing it to 355 
exclusively internal processes is problematic. Community-level repeatability is also readily 356 
observed in the lab where it can be quantified and where the factors that influence repeatability 357 
can be probed. However, the generalizability of results obtained in the lab is an important 358 
challenge. 359 

4 Open questions in the study of evolutionary 360 

repeatability 361 

Previous research has established that evolutionary repeatability is worth studying at the 362 
community level, but the inquiry is still at its early stages. The next phase will center on 363 
addressing more exciting but difficult questions [12]. We discuss three questions that we think 364 
are the most interesting and important: 365 

1. Is the observed degree of repeatability surprising or consistent with our expectations? 366 

2. How is the repeatability of evolution at the community level related to that at other levels of 367 
biological organization? 368 



11 

3. Which features of the community predict the repeatability of its evolution? 369 

Addressing these questions will require researchers to quantify the degree of evolutionary 370 
repeatability. In Box 1, we discuss three general notions of repeatability, which apply at any 371 
level of biological organization. State repeatability tells us how similar replicates are at a given 372 
snapshot in time. Trajectory repeatability tells us whether replicates evolve along similar paths 373 
in the character state space and do so at similar rates. Path repeatability tells us whether 374 
replicates traverse geometrically similar paths, regardless of the speed. Since replicates can 375 
take different trajectories towards the same state, state repeatability can change over time 376 
(Figure 2) and a high degree of state repeatability at one or multiple time points does not 377 
necessarily imply a high degree of path or trajectory repeatability. Similarly, high path 378 
repeatability does not imply high state or trajectory repeatability because replicates may 379 
traverse similar paths at different rates. On the contrary, a high degree of trajectory repeatability 380 
implies high degrees of both path repeatability and state repeatability at all times. Thus, 381 
trajectory repeatability is the strongest notion of the three. 382 

4.1 Is the repeatability of evolution surprising? 383 

Once the degree of evolutionary repeatability is quantified, it is natural to ask whether this 384 
degree is surprisingly high (or low). Since this question is relevant both in the context of 385 
community properties and individual traits, we discuss it here in this broader context, noting the 386 
differences where appropriate. 387 

Surprise implies an underlying model of eco-evolutionary dynamics against which the 388 
observations are compared. Fundamentally, the degree of repeatability depends on how initially 389 
identical replicate populations or communities diverge over time, which is governed by the four 390 
evolutionary processes of mutation, recombination, genetic drift and natural selection, and by 391 
the ecological interactions between community members. Thus, the degree of repeatability we 392 
expect (at any level of biological organization) depends on which processes we include into our 393 
model and how we model them. In Box 2, we suggest four types of models that researchers can 394 
consider for explaining the patterns of evolutionary repeatability observed in their systems. 395 

Because natural selection and ecological interactions can explain almost any observed pattern 396 
and because evolution even in the absence of selection or ecological interactions can be to 397 
some extent repeatable [77], Occam’s razor dictates that we should first ask whether the 398 
observed degree of repeatability is consistent with neutral null models. It is relatively 399 
straightforward to construct and parameterize neutral null models for sequence evolution, which 400 
include only mutation and genetic drift [26,177–180]. At the community level, if one is interested 401 
in understanding whether absolute species abundances (or other properties that depend only on 402 
species abundances) evolve repeatably, a null model must include demographic fluctuations. 403 
Parameterizing neutral models for the evolution of other traits and community-level properties is 404 
considerably harder because it requires measuring how mutations and recombination affect 405 
these characters [77,181]. Essentially, such null models must specify the genetic and 406 
developmental constraints under which community members evolve (see Box 2). Regardless of 407 
the details however, the salient feature of neutral models is the absence of attractors. As a 408 
result, replicates are expected to diffuse in the character state space and diverge from each 409 
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other (Figure 2A,B). Then, the state repeatability has to monotonically decline over time, 410 
eventually approaching a (possibly non-zero) equilibrium value (Figure 2C). However, a 411 
monotonic decline does not imply neutral evolution; it could be consistent with neutral or non-412 
neutral evolution.  413 

If the observed patterns of repeatability are inconsistent with neutral models (e.g., if state 414 
repeatability is a non-monotonic function of time), one can ask whether they are consistent with 415 
models with a single point attractor in the character state space (see Box 2). Since such models 416 
generally permit multiple distinct paths towards the attractor [182,183], replicates are expected 417 
to take diverse paths and initially diverge. However, if all paths lead to the same attractor, a 418 
fitness optimum in the trait space or to the eco-evolutionary attractor in the community-property 419 

Figure 2. Expectations for evolutionary repeatability under simple models. A–C. In neutral models, 
replicates are expected to gradually diverge in the trait space (A) as well as in the space of community 
properties (B). As a result, state repeatability is expected to monotonically decline over time (C). D–F. In 
models with a single adaptive peak, replicate populations are expected to initially diverge and later 
converge in the trait space (D). Similarly, in models with a single eco-evolutionary point attractor, replicate 
communities are expected to initially diverge and later converge in the space of community properties (E). 
As a result, state repeatability is in general expected to be a U-shaped function of time (F). However, the 
time point where the repeatability begins to increase and the magnitude of the increase will depend on 
the details of the system (see text). Note that trajectories may intersect because different mutations can 
fix in different replicates. In all panels: black point indicates the initial state, color represents time (darker 
= earlier, lighter = later). In panels D and E, “x” marks the evolutionary attractor. In panel D, gray curves 
represent fitness isoclines. 
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space, replicates are expected to eventually converge towards it (Figures 2D,E). The timescale 420 
when convergence begins and its rate are determined by multiple factors, including species 421 
population sizes, the strength of selection. If the populations are sufficiently large, we expect the 422 
state repeatability to be a U-shaped function of time (Figure 2F). Thus, an increase in state 423 
repeatability suggests the presence of a single attractor (or possibly multiple neighboring 424 
attractors). However, genetic drift in smaller populations may erode this trend inversion, and 425 
repeatability may never increase. 426 

If the observed patterns of repeatability are inconsistent with either neutral evolution or evolution 427 
towards a single attractor, more complex models can be considered, such as models with 428 
multiple and dynamic attractors or eco-evolutionary models, all of which can be sufficiently 429 
flexible to fit almost any observed pattern (Box 2). We illustrate what can be learned from 430 
comparing data to predictions of some simple models in Box 3, using the data obtained by 431 
Meroz et al [158].  432 

Overall, developing better models of evolution of community-member traits and community-level 433 
properties and testing them against data are important goals for future research. Work in this 434 
direction will improve our understanding of how genetic constraints, various selection pressures 435 
and ecological interactions between community members work together to make eco-436 
evolutionary dynamics more or less repeatable. 437 

4.2 How is the repeatability of evolution at the community level 438 

related to that at other levels of biological organization? 439 

The second question that we see as fundamental is how the repeatability of evolution at the 440 
community level relates to that at the level of the underlying traits of community members. This 441 
question can be broken down into two more basic problems. How do species traits map onto 442 
community-level properties [40,42]? And how does evolution explore the trait space? 443 

The first problem, which can be termed “structural”, is the ecological analog of the problem of 444 
the genotype to phenotype to fitness map in evolutionary biology [184]. At one extreme, 445 
community-level properties could be insensitive with respect to the variation in the underlying 446 
traits that typically arises by mutations and recombination (Figure 3A), i.e., the trait-to-447 
community map could be “robust”, analogous to a “smooth” fitness landscape [15]. An indication 448 
that trait-to-community maps are to some extent robust comes, for example, from studies 449 
showing that microbial species that diverged millions of years ago form communities that are 450 
apparently functionally equivalent [48,50,185]. If trait-to-community maps are generally robust, 451 
many distinct evolutionary trajectories and outcomes at the trait level (and hence low 452 
repeatability) would usually translate to similar trajectories and outcomes at the level of 453 
community properties (and hence high repeatability). 454 

The opposite extreme is also conceivable: different trait variants that typically arise by mutations 455 
and recombination could shift communities into qualitatively different ecological states (Figure 456 
3B), i.e., the trait-to-community map could be “sensitive”, analogous to a “rugged” fitness 457 
landscape [15]. A study of an experimental mutualism between Salmonella enterica and 458 
Escherichia coli suggests that some trait-to-community maps may in fact be sensitive [138]. 459 
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Douglas et al found that different mutations in S. enterica that have apparently similar effects on 460 
protein function produced a wide range of effects on community growth. If the trait-to-community 461 
maps are typically sensitive, low diversity of evolutionary trajectories and outcomes at the trait 462 
level (and hence high repeatability) would often result in high diversity of trajectories and 463 
outcomes at the community level (and hence low repeatability). It is possible that both extremely 464 
robust and extremely sensitive as well as intermediate trait-to-community maps are realized in 465 
different systems or even in the same system, e.g., robust with respect to some traits but 466 
sensitive to others, or some community properties may be robust while others sensitive. It 467 
seems important to empirically characterize the sensitivity of various community-level properties 468 
with respect to various ecologically relevant traits of constituent members and to develop theory 469 
for understanding these dependencies. 470 

The degree of evolutionary repeatability depends not only on the structure of the map from traits 471 
to community-level properties but also on the dynamics of evolution. Selection pressures 472 
exerted on a species by the surrounding community could force it to evolve along a narrow path 473 
in its trait space. Then, evolution at both trait and community levels would be highly repeatable, 474 
even if the trait-to-community map is sensitive. As mentioned above, there is some evidence 475 

Figure 3. Robust and sensitive trait-to-community maps. Community-member species can access a 
limited region of the trait space by mutations and recombination (large gray ovals around the wildtype). 
Arrows show the fact that species traits determine community-level properties. A robust trait-to-
community map (left) is one where communities formed by accessible variants have similar properties 
(colored regions). A sensitive map (right) is one where communities formed by different accessible 
variants have distinct properties. 
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that the diversity of evolutionary outcomes depends on whether community members evolve in 476 
each other’s presence or alone [152], which suggests that selection pressures exerted by the 477 
community change the way evolution explores the trait space. 478 

It may be interesting to focus some future work on disentangling the effects of structure and 479 
dynamics on the repeatability of community evolution. To explore the local structure of the trait-480 
to-community map, one could generate variation that is maximally unbiased by selection (e.g., 481 
by random mutagenesis), and measure the effects of these random variants on community 482 
properties. One could also measure which of these variants pass the selection filter, which 483 
would give one a glimpse at how selection biases the exploration of the trait space and, 484 
consequently, the space of community-level properties. 485 

4.3 Which features of the community predict the repeatability of 486 

its evolution? 487 

The third worthwhile goal is to identify which system properties most reliably predict the 488 
repeatability of its evolution [6,39]. For example, is evolution under selection imposed by 489 
ecological interactions more or less repeatable than evolution under abiotic selection 490 
pressures? Do communities with certain types of ecological interactions evolve generally more 491 
repeatably than others (e.g., mutualistic versus antagonistic communities)? Is evolution at the 492 
community level more or less repeatable for more complex communities, for communities with 493 
more trophic levels, or those that evolve in more nutrient rich environments? These questions 494 
are probably easier to approach experimentally and theoretically than in natural systems 495 
because they require measuring community-level repeatability across communities that vary 496 
only by a single factor, e.g., complexity. In Box 3, we use the study by Meroz et al [158] to 497 
illustrate the potential for community evolution experiments to address some of these questions. 498 
While research in these directions is at its earliest stages, the initial results are encouraging 499 
[152,158,171]. One important potential outcome of this work would be to identify general rules 500 
for predicting a system's evolutionary repeatability based on its features. 501 

5 Summary and conclusions 502 

Our ability to predict evolution hinges on evolution being to some extent repeatable, at least 503 
under identical environmental conditions. How repeatable evolution is depends on the level of 504 
biological organization at which it is observed. We focused in this article on the repeatability of 505 
evolution of community-level properties. Our review of the relevant literature showed that there 506 
is substantial evidence that evolution at the community level is to some extent repeatable, but 507 
the more difficult and profound questions remain largely unresolved. We identified and 508 
discussed three of them. (1) Is the degree of repeatability surprising? (2) How does repeatability 509 
at the community level relate to that at lower levels of biological organization? (3) Which 510 
features of the community predict its evolutionary repeatability? Addressing these questions will 511 
require new data and the development of new theory and methods. We outlined some 512 
approaches that could be fruitful.  513 
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Box 1. Quantifying the repeatability of evolution 514 

Evolutionary repeatability is a matter of degree. Quantifying it enables us to test models against 515 
data as well as compare the degree of repeatability, e.g., across systems (see Box 3 for an 516 
illustration). 517 

Suppose we are interested in the repeatability of evolution of character X, which can be a 518 
genetic sequence, a trait or a community-level property. X can be discrete or continuous with 519 
one or multiple dimensions. As each replicate i evolves, its character will trace a stochastic 520 
trajectory Xi(t) in the character state space. There are three ways to describe this ensemble of 521 
evolving replicates [186]. The probability distribution of states describes how likely a replicate is 522 
to have a particular character state x at time t. The probability distribution of trajectories 523 
describes how likely a replicate is to have a particular trajectory x(t) in the character trait space 524 
[186–188]. Importantly, x(t) is considered explicitly as a function of time. Finally, it is also 525 
possible to view the trajectory Xi(t) of replicate i as a geometric curve in the character state 526 
space, ignoring the times when the replicate passes through each state. We refer to such a 527 
curve as a “path”. Then, the ensemble of replicates is described by the probability distribution of 528 
paths; it tells us how likely a replicate is to trace any given geometric path. 529 

These three descriptions lead to three corresponding notions of repeatability which emphasize 530 
different aspects of this idea [186]. Path repeatability tells us whether replicates evolve along 531 
similar curves in the state space, regardless of speed. Trajectory repeatability tells us whether 532 
replicates evolve along similar curves and do so at similar speeds. Finally, state repeatability 533 
tells us how similar the character states of different replicates are at any given moment. 534 
Szendro et al also used the notion of endpoint repeatability which is a special case of state 535 
repeatability at t = ∞ [186]. In practice, measuring or inferring full trajectories or paths may be 536 
extremely difficult. Instead, one might be able to measure some of their features, e.g., the 537 
angles of divergence between replicate paths (Figure 1). The distributions of different features 538 
will then capture different aspects of repeatability. 539 

Our intuitive notion of repeatability corresponds to the narrowness of a probability distribution 540 
and, as such, it can be quantified with various measures of distribution narrowness, such as 541 
entropy, variance or Hill’s diversity [189]. Simpson’s diversity index, a special case of Hill’s 542 
diversity [189], is a particularly convenient measure because it has a simple interpretation as the 543 
probability that two random replicates have the same character state [190] or evolve along the 544 
same path or trajectory. All these measures of distribution narrowness are well defined for 545 
discrete characters, e.g., genetic sequences. However, some of the more convenient measures, 546 
such as entropy, Hill’s and Simpson’s diversity, do not have natural convenient extensions for 547 
continuous characters. The repeatability of evolution of continuous characters can be quantified 548 
by discretizing them, by using measures of distribution narrowness that are applicable to 549 
continuous characters (e.g., variance along the direction of maximum variation) or by defining a 550 
similarity metric and calculating, for example, the expected similarity between pairs of replicates. 551 
However, these approaches have caveats; for example, entropy may depend on a particular 552 
discretization scheme, and a similarity metric may not capture all the relevant aspects of 553 
similarity between states, trajectories or paths. 554 
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The above considerations are general and apply to all types of characters, from genotypes to 555 
community-level properties. However, the best choice of particular type of repeatability (state, 556 
path, trajectory) and its measure (entropy, Simpson’s diversity, expected similarity, etc.) will 557 
depend on the characters whose repeatability is investigated and on the research question. For 558 
example, one can evaluate the similarity of any pair of evolved character states using the angle 559 
between the respective evolutionary vectors (see Figure 1 and Ref. [8]) and then quantify state 560 
repeatability using the average angle among pairs. This measure clearly captures one aspect of 561 
repeatability—whether replicates evolve in the same direction in the character state space—but 562 
neglects another potentially important aspect: whether the replicates evolve at similar rates 563 
along different paths. 564 

In general, to calculate any measure of repeatability one needs to know the underlying 565 
distribution of states, trajectories or paths. Thus, the first step towards quantifying repeatability 566 
is to estimate one or more of these distributions. In Box 3, we use the data by Meroz et al [158] 567 
to illustrate this approach.  568 
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Box 2. Modeling the repeatability of evolution 569 

We suggest four types of models against which the observed patterns of evolutionary 570 
repeatability (at any level of biological organization) can be compared. 571 

Neutral models. The main component of a neutral model is the variation that can be generated 572 
by mutation and recombination as well as demographic stochasticity. If the genetic mutation 573 
rates and mutational biases are known, standard population genetic models can be used to 574 
obtain the neutral null expectation for the distribution of replicates in the genotype space (and, 575 
hence, the null for the degree of repeatability) [26,177–180]. At the community level, a 576 
demographic noise null model can be easily constructed for absolute and relative species 577 
abundances as well as any other properties that depend on them (see Box 3 for an example). 578 
To obtain the null expectation for trait and other higher-level characters, one has to specify how 579 
the organism’s genetic and developmental architecture constrains the variation at the relevant 580 
level that is produced by mutations and recombination [5,191,192]. These constraints can be 581 
modeled with G and M matrices [193,194], which can be estimated from mutagenesis and 582 
breeding experiments [195,196]. Constraints can change over time as populations evolve [197], 583 
but they likely change slowly [194,196]. Thus, it is reasonable to start with a neutral model of 584 
evolution under constant constraints. 585 

Models with selection and a single attractor. The simplest models of selection are the 586 
adaptive landscape model [194,198] and the related Fisher’s geometric model [199,200], both of 587 
which assume that the organism evolves on a fitness landscape (over a trait space) with one 588 
optimum. In this model, the location and the shape of the fitness peak are free parameters in 589 
addition to those present in neutral models. One can extend this type of model to an ecological 590 
community by assuming that each community member evolves on its own adaptive landscape 591 
[79]. Such communities will evolve towards a single attractor in the community-property space. 592 
Ecological interactions are not explicitly incorporated in this type of model. 593 

Complex models with selection. More complex forms of natural selection can be captured by 594 
adaptive landscape models with multiple optima [79,201] or a moving optimum [202]. These 595 
models can have an arbitrary number of free parameters and therefore can generate any 596 
patterns of repeatability. One should therefore attempt to fit these models to data only if simpler 597 
models fail to provide a reasonable fit. 598 

Eco-evolutionary models. In models discussed so far, selection is imposed on organisms 599 
externally, as if the environment that exerts selection is not affected by the evolving population. 600 
An example would be adaptation to higher altitude [203]. However, in ecological communities, 601 
selection on individual community members is at least in part exerted by the ecological 602 
interactions themselves [146,151]. Such selection can be captured by eco-evolutionary models 603 
where the rates of reproduction and death of each eco-type depend on the traits and 604 
abundances of other eco-types [41,204]. These models require some knowledge of ecological 605 
interactions in the community, but this knowledge pays off because ecology then specifies the 606 
direction and strength of selection on each community member. Thus, such models can be both 607 
more realistic and more parsimonious than the complex models with selection.  608 
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Box 3. A case study in quantifying the repeatability 609 

of community evolution 610 

Here, we use the study by Meroz et al to illustrate how quantitative experiments can advance 611 
our understanding of the repeatability of community evolution. Meroz et al assembled 87 two- 612 
and three-species bacterial communities by drawing members from a panel of 16 species that 613 
had no prior history of association [158]. They evolved 3 to 18 replicates of each community for 614 
about 400 generations in batch culture and measured how the community structure (i.e. the 615 
relative abundances of all species) changed over time. Here, we reformulate some of their 616 
findings in terms of measures of repeatability and make some new observations after 617 
reanalyzing their data. 618 

We first quantified the state repeatability (see Box 1) of the eco-evolutionary dynamics using a 619 
euclidean distance-based measure (Methods) and found that it declined on average (see 620 
Figure; P = 0.025 for two-species communities and P = 0.006 for three-species communities, 621 
repeated-measures ANOVA, excluding the first 70 generations; see Methods for details), 622 
consistent with the authors’ conclusions. Interestingly, the rates of decline varied between 623 
communities. In 6 out of 40 (15%) two-species communities and in 9 out of 29 (31%) of three-624 
species communities, the repeatability declined less than expected under demographic 625 
fluctuations (P < 0.05, t-test after Benjamini-Hochberg correction), suggesting that ecological 626 
interactions between species stabilize their abundances. In contrast, in 14 (35%) two-species 627 
communities and in 12 (41%) of three-species communities, the repeatability declined more 628 
than expected under demographic fluctuations (P < 0.05, t-test after Benjamini-Hochberg 629 
correction), suggesting that different replicates evolved distinct changes in ecological 630 
interactions. In the remaining communities, repeatability was either consistent with the neutral 631 
expectation or deviated in the opposite directions at different time points. 632 

Furthermore, we identified six two-species communities and two three-species communities 633 
where the repeatability changed non-monotonically over time, such that their replicates evolved 634 
towards surprisingly similar compositions by the end of the experiment despite significant 635 
differences at intermediate timepoints (see colored lines in the Figure). These observations 636 
suggest that in these communities replicates evolved towards the same or similar eco-637 
evolutionary attractors. 638 

Finally, we found that the repeatability of community evolution did not differ significantly 639 
between two- and three-species communities (P = 0.94; ANOVA F = 0.006, DFn = 1, DFd = 462; 640 
compare panels A and B in Figure). This suggests that higher-order species interactions may 641 
have only minor effects on the eco-evolutionary dynamics, consistent with the authors’ finding 642 
that the structure of three-species communities can be predicted based on the composition of 643 
two-species communities. 644 
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 645 
Community-level repeatability changes over time in experimental microbial communities. Data 646 
from Ref. [158]. A. Two-species communities. B. Three-species communities. Each line represents a 647 
unique community. Communities with significantly non-monotonic state repeatability are colored (see 648 
Methods). Thick black lines show the average state repeatability. Dashed lines show the expected 649 
repeatability for communities with random relative abundances.  650 
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6 Methods 651 

6.1 Duration of evolution experiments 652 

We estimate the duration of the longest realistic evolution experiments based on the fact that 653 
the shortest known generation times are around 10 minutes [205,206]. If such a rapid growth 654 
rate can be sustained, an evolution experiment would proceed at a rate of 144 generations per 655 
day. A 30 year-long experiment (approximately a duration of one research career) at this rate 656 
would then yield about 1.5 million generations. In practice, the number of generations per day 657 
rarely exceeds 10 [172,207] and in most existing model communities the number is even lower 658 
[136,140,152,158,171]. At this rate, ~104 generations can be achieved within about 3 years, i.e., 659 
within the span of a typical funding cycle. The longest (i.e., career-long) experiments at this rate 660 
are unlikely to substantially exceed ~105 generations. The longest running microbial evolution 661 
experiment to date is the LTEE started in 1988 by Richard Lenski, which is now at between 70 662 
and 80 thousands of generations [208]. 663 

6.2 Analysis of Meroz et al data 664 

Data source and preprocessing. We downloaded from the github repository the scripts and 665 
the data on species abundances for two- and three-species microbial communities collected by 666 
Meroz et al [158]. The iPython Notebook provided with the data was used to preprocess the 667 
data and generate a table of relative species abundances for each replicate community at each 668 
sampled time point. 669 

Quantifying the repeatability of evolution. Replicate community i can be represented at time 670 
t by a vector xi(t) of relative abundances of community members, such that the sum of 671 
components of each vector xi(t) at each time t equals 1. We calculate the similarity metric sij(t) 672 
between any pair of replicate communities i and j at time t as 𝑠!"(𝑡) 	= 	1	 − 𝑑!"(𝑡)/√2 where dij(t) 673 
is the euclidean distance between vectors xi(t) and xj(t). sij(t) takes values between zero (when 674 
the replicate communities have maximally dissimilar relative abundance vectors, e.g., (1,0,0) 675 
versus (0,1,0)) and one (when the replicate communities have identical relative abundance 676 
vectors). We then use the mean similarity ⟨s(t)⟩ over all pairs of replicate communities as an 677 
index of state repeatability at time t. To generate a null expectation for ⟨s(t)⟩, we sampled 3 678 
random communities with relative abundances drawn from a uniform distribution and normalized 679 
to 1. This sampling procedure was carried out 10,000 times each for two-species and three-680 
species communities. 681 

For interpreting the values of ⟨s⟩ it is important to note that in the limit of infinitely many 682 
replicates ⟨s⟩ is bounded from below by 1/n where n is the number of species in the community. 683 
To demonstrate this, consider an ensemble of maximally dissimilar replicate communities. Such 684 
an ensemble contains only replicate communities with a single species, and every species is 685 
represented equally among all replicates. In other words, fraction 1/n of replicates have only 686 
species 1, fraction 1/n have only species 2, etc. Thus, two randomly sampled replicate 687 
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communities are maximally distinct (sij = 0) with probability 1–1/n and they are maximally similar 688 
(sij = 1) with probability 1/n, which implies that ⟨s⟩ = 1/n. 689 

Community repeatability under demographic noise. Community evolution under 690 
demographic noise alone, without selection or ecological interactions, is equivalent to the 691 
neutral Wright-Fisher model. We instantiated each replicate of each community with frequencies 692 
observed at generation 70, the time point by which the communities reached their ecological 693 
equilibria, with a total size N = 105. Communities were propagated across generations using 694 
multinomial sampling. 1000 such simulations were conducted for each replicate of each 695 
community for 330 generations. For each simulation of each replicate, we estimated the relative 696 
species abundances at the respective sampling time points from samples of 100 random 697 
individuals. For each community composition, we then calculated ⟨s(t)⟩ as described above and 698 
thereby obtained the null distribution of this statistic. We then calculated an empirical two-tailed 699 
P-value for the observed ⟨s(t)⟩ for each community at each sampling time point after generation 700 
70. We found that every community composition had at least one time point where the observed 701 
⟨s(t)⟩ had an empirical P-value < 0.05 after Benjamini-Hochberg correction (across all 702 
communities and time points), indicating that no community evolved in a manner consistent with 703 
demographic noise alone. 704 

Statistical analysis. We conducted repeated-measures ANOVA analysis to test for significant 705 
changes in the repeatability of community evolution over time and between communities. This 706 
analysis was conducted using the anova_test function using the rstatix package in R. For this 707 
analysis, the within-subjects variable was defined to be each unique pair of replicate cultures for 708 
which we estimated sij(t). Time effects other than for trios as generation 0-400 are reported after 709 
Greenhouse–Geisser sphericity correction. The results of this analysis are shown in Table 1. 710 

Communities with significant increases in repeatability were identified as follows. For each 711 
community, we first found a time point where the minimum of ⟨s(t)⟩ was achieved, excluding the 712 
final time point. We then conducted pairwise t-tests between this time point of the minimum and 713 
the final time point. Communities with P < 0.05 after the Benjamini-Hochberg correction were 714 
considered to have a significant systematic change in their repeatability, and then communities 715 
where the minimum of ⟨s(t)⟩ was achieved at the final time point were excluded. 716 

# Species Generations Time effect Composition effect 

2 0–400 F = 5.4, DF = 2216 
P = 7×10–11 

F = 5.79, DFn = 36, DFd = 410 
P = 3×10–20 

2 70–400 F = 4.3, DF = 1928 
P = 0.025 

F = 5.57, DFn = 37, DFd = 447 
P = 6×10–20 

3 0–400 F = 0.87, DFn = 8, DFd = 120 
P = 0.545 

F = 2.4, DFn = 1, DFd = 15 
P = 0.143 

3 70–400 F = 2.97, DF = 53.46 
P = 0.006 

F = 0.43, DFn = 1, DFd = 18 
P = 0.521 

Table 1. Results of the repeated-measures ANOVA for the repeatability of community evolution in 717 
Meroz et al data.  718 
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