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Abstract 106 

Climate change is leading to a species redistributions. In the tundra biome, many 107 

shrub species are expanding into new areas, a process known as shrubification. 108 

However, not all tundra shrub species will benefit from warming. Winner and loser 109 

species (those projected to expand and contract their ranges, and/or those that have 110 

increased or decreased in cover over time), and the characteristics that may determine 111 

success or failure, have not been fully identified. Here, we investigate whether current 112 

range sizes are related to plant trait values and intraspecific trait variation by 113 

combining 17,921 trait records and distribution data from 62 shrub species across 114 

three continents (>30 degrees north). In addition, we determine which traits are 115 

associated with species projected by species distribution models to expand or contract 116 

their ranges under climate change, and species that have undergone past cover 117 

changes over time. Winner and loser shrub species identified from projected range 118 

shifts generally differed from those identified from observed past cover change. We 119 

found that greater variation in seed mass and specific leaf area were related to larger 120 

projected range shifts. Projected winner species generally had greater seed mass 121 

values than ‘no change’ and loser species. However, contrary to our expectations, 122 

traits’ values and variation were not consistently related to current and projected 123 

ranges, and depended upon the future climate scenarios considered in range 124 

projections. There were no clear relationships either between cover change over time 125 

and trait values or variation. Overall, our findings indicate that abundance changes 126 

and projected range shifts will not lead to directional modifications in shrub trait 127 

composition or variation with future warming, since winner and loser species share 128 

relatively similar trait spaces based on commonly measured traits. Future research 129 
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could investigate other morpho-physiological traits underpinning climatic preferences, 130 

which might better predict future range and abundance changes. 131 

 132 

Keywords 133 

Climate change, traits, global change ecology, intraspecific trait variation, range 134 

dynamics, species abundances, species distributions, tundra biome. 135 

 136 
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Introduction  138 

The Arctic is warming at three to four times the rate of the global average (Chylek et 139 

al., 2022; Rantanen et al., 2022), resulting in reported shifts in biodiversity and 140 

changes in ecological processes. In particular, the phenomenon of ‘shrubification’ has 141 

been extensively described across the tundra biome (García Criado et al., 2020; 142 

Martin et al., 2017; Myers-Smith, Forbes, et al., 2011; Naito & Cairns, 2011; Sturm, 143 

Racine, et al., 2001; Tape et al., 2006), with shrub species experiencing faster growth 144 

and reproduction, increases in height (Forbes et al., 2010; Macias-Fauria et al., 2012) 145 

and expanding into new areas (Myers-Smith, Forbes, et al., 2011; Pellissier et al., 146 

2010; Sturm, Racine, et al., 2001). These processes may cause reshuffling of species 147 

compositions and functional diversity, thus affecting ecosystem function for the tundra 148 

region and surrounding vegetation through biotic interactions (Alexander et al., 2015; 149 

Mod et al., 2016; Niittynen et al., 2020). Despite shrubs’ dominance increase over 150 

other functional groups, both increasing and decreasing shrub cover have been 151 

reported at certain sites (Hollister et al., 2005; Maliniemi et al., 2018), and we do not 152 

yet know whether expanding and contracting shrub species share similar traits.  153 

 154 

Shifts in traits at the community level have already been observed, with taller species 155 

spreading in a warming Arctic (Bjorkman, Myers-Smith, et al., 2018). However, the 156 

biome-level relationships between trait values and intraspecific variation for a given 157 

species and its geographic distribution have yet to be quantified for tundra shrub 158 

species. These biome-scale relationships could dictate why some shrub species are 159 

expanding/increasing (winners) and others are contracting/decreasing (losers), and 160 

whether some species are not changing. Different methods to monitor species exist, 161 

but in this study we compare two different scales: past changes in cover over time in 162 
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monitoring plots, and biome-scale projections of species ranges using species 163 

distribution models (SDMs); two metrics that are generally positively related as per the 164 

abundance-range size theory (Gaston & Blackburn, 2008).  165 

 166 

The pattern of species moving polewards and towards higher elevations by tracking 167 

warming temperatures has been discussed for over two decades (Chen et al., 2011; 168 

Hastings et al., 2020; Hickling et al., 2006; Parmesan et al., 1999). Tundra species 169 

distributions are the result of long-term glacial history and inherent Arctic geography. 170 

Palaeoecological evidence indicates shrub expansion into the Arctic during the 171 

warmer Last Interglacial and the Holocene post-glacial period (Birks, 2008; Crump et 172 

al., 2021; Higuera et al., 2008), signalling that rising temperatures are likely to result 173 

in further shrub expansion across the tundra (Gałka et al., 2018). Current range shifts 174 

are mediated by processes derived by climate change including permafrost thaw and 175 

extended season length (Sturm, Holmgren, et al., 2001), and factors like snow cover, 176 

nutrient availability and species interactions, but also by the amount of potential habitat 177 

and species’ colonization capabilities. These, in turn, are determined by reproduction, 178 

dispersal and establishment success – which could favour generalist species with 179 

greater dispersal ability, reproductive rate, and competitive ability to expand into new 180 

areas (Alsos et al., 2007; Angert et al., 2011; Venn et al., 2021). For instance, dwarf 181 

birch (Betula nana) and tall willow (Salix sp.) species are expanding across the tundra 182 

due to their flexible colonization strategy featuring clonal growth and high seed 183 

dispersal capacity, respectively (Andruko et al., 2020; Formica et al., 2014; Myers-184 

Smith, Hik, et al., 2011; Ropars & Boudreau, 2012). Thus, certain traits could most 185 

likely influence whether tundra species will expand or contract under climate change.  186 

 187 
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Plant traits have been widely used to assess species relationships with their 188 

environment (Violle et al., 2007). As traits vary across environmental gradients, they 189 

can be indicators of plant responses to climatic conditions (Díaz et al., 2016; Shipley 190 

et al., 2016; Soudzilovskaia et al., 2013) and represent relevant dimensions of 191 

functional and strategic variation between plant species (Pollock et al., 2012), at both 192 

species and community levels (Bruelheide et al., 2018). Plant traits are linked not only 193 

to environmental responses but also to ecosystem functions like carbon storage and 194 

nutrient cycling (Aubin et al., 2016; Lavorel & Garnier, 2002). Typically, trait-based 195 

analyses use a single mean trait value per species at the global level (Violle et al., 196 

2007), disregarding individual variability information (Betway, Hollister, May, Harris, et 197 

al., 2021; Bolnick et al., 2011; Myers‐Smith, Thomas, et al., 2019; Siefert et al., 2015; 198 

Thomas et al., 2019, 2020). Trait variation between and within populations can be 199 

markedly different (Lamy et al., 2011), and is ultimately driven by differences among 200 

individuals, rather than between species (Siefert et al., 2015). Thus, intraspecific trait 201 

variation (ITV) might have a stronger influence on ecological dynamics than previously 202 

thought (Bolnick et al., 2011; Jessen et al., 2020). However, ITV has not been 203 

extensively accounted for in trait-based ecology (Moran et al., 2016), despite 204 

accounting for 25% of total trait variation within communities, 32% among communities 205 

(Siefert et al., 2015), and 23% of trait variation in tundra biome-wide data (Thomas et 206 

al., 2020).  207 

 208 

Traits that are related to dispersal, colonisation and growth can provide insights into 209 

which species are more likely to expand or contract their ranges as the climate 210 

changes. A trait framework that represents major axes of plant life history variation is 211 

the leaf-height-seed strategy scheme defined by Westoby (1998), which describes a 212 
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plant’s strategy based on its specific leaf area (SLA), plant height and seed mass. 213 

Plant height relates to competitive ability, with tall plants shading out shorter 214 

competitors. SLA is linked to carbon investment per area of light capture, and plants 215 

with greater SLA obtain nutrients more easily. Seed mass is related to dispersal and 216 

colonisation abilities because lighter seeds generally travel further, though larger 217 

seeds tend to have higher germination success and seedling survival (Hamilton et al., 218 

2005). In the tundra, resource economics traits occupy much of the global trait space, 219 

while structural traits such as plant height are relatively more restricted (Thomas et al., 220 

2020; Wright et al., 2004). Nevertheless, shrub species still show large relative 221 

variability, reaching maximum heights of up to 3-4m among the species included in 222 

this study. Since traits can explain species’ responses to biotic and abiotic factors and 223 

influence their competitive ability (Aubin et al., 2016; Lavorel & Garnier, 2002), we 224 

would also expect traits to influence how species’ distributions change in a warming 225 

climate. 226 

 227 

Species Distribution Models (SDMs) have arisen as a flexible tool to quantify current 228 

species ranges and project their potential range shifts by combining species 229 

occurrences with geospatial information on current and future climate variation 230 

(Guisan & Thuiller, 2005; Thuiller et al., 2019). However, SDMs have been criticised 231 

for their failure to incorporate evolutionary history, biotic interactions, or realistic 232 

dispersal. Thus, range projections cannot fully reflect future species distributions in the 233 

same way as collected range change data over time (Dormann, 2007; Pearson & 234 

Dawson, 2003). Moreover, SDMs are correlative methods where the outcomes are 235 

based on statistical relationships among variables and an assumption that species are 236 

currently in equilibrium. Nonetheless, SDMs still provide useful estimates of potential 237 
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future suitable habitat in the absence of observational data (Elith & Leathwick, 2009), 238 

and some SDMs now incorporate dispersal ability and additional parameters such as 239 

morpho-physiological traits and their phenotypic plasticity to improve projections, thus 240 

making more realistic future predictions (Chardon et al., 2020; Cunze et al., 2013; 241 

Fordham et al., 2012; Garzón et al., 2019; Normand et al., 2013; Pollock et al., 2012). 242 

If the processes of survival, reproduction, dispersal and colonisation determine a 243 

plant’s range, then range shifts should be associated with species’ traits related to 244 

these processes. In the warming tundra biome, community composition (Elmendorf et 245 

al., 2012; Myers-Smith, Forbes, et al., 2011; M. D. Walker et al., 2006) and certain 246 

size-related and resource economics traits are changing across time and space 247 

(Bjorkman, Myers-Smith, et al., 2018; Thomas et al., 2020). However, the relationships 248 

between species’ traits and their current range size or potential for range shifts have 249 

not been explored.  250 

 251 

In this study, we combine species trait, range and abundance data to understand 252 

whether median trait values (MTV) and intraspecific trait variation (ITV) are associated 253 

with current range sizes in tundra shrubs. Additionally, we determine which categorical 254 

and continuous traits are associated with species projected to expand or decrease 255 

their ranges, and that have increased or decreased in abundance over time. 256 

Considering the magnitude of observed vegetation changes in tundra ecosystems, 257 

plant traits could be a particularly relevant tool to understand range dynamics across 258 

a warming Arctic. Here, we address the following questions: 259 

 260 

1) Can traits explain current shrub species range sizes? 261 
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Greater height and SLA are linked to competitive ability and resource acquisition (Díaz 262 

et al., 2016), and small-seeded species are associated with longer dispersal and 263 

greater seed production (Hamilton et al., 2005). Thus, we expect taller shrubs with 264 

greater SLA values and lower seed mass to have the largest current range sizes. We 265 

hypothesise that ITV in all three traits is positively related to species’ range sizes, since 266 

they could reflect greater adaptations to environmental variability. Greater genetic or 267 

phenotypic variation could provide more scope for natural selection and adaptation 268 

(Bolnick et al., 2011) and thus potentially increase species’ chances of adapting to 269 

diverse and fluctuating environmental conditions (Kumordzi et al., 2019).   270 

 271 

2) Do traits correspond with projected shrub range shifts and past cover change? 272 

Tundra plant species occurring in warmer climates tend to have greater height and 273 

SLA (Betway, Hollister, May, & Oberbauer, 2021; Bjorkman, Myers-Smith, et al., 274 

2018), and warmer conditions are expected to expand in the near future (Pearson et 275 

al., 2013). Thus, we expect that individuals occupying warmer climatic niches and 276 

having more competitive strategies (greater height and SLA values) and increased 277 

dispersal capacity (small seeds) will occupy larger projected ranges and have 278 

undergone cover increases under a warming climate. We also hypothesise that 279 

species with greater ITV in all three traits will have greater projected ranges as they 280 

are likely to be adapted to a wider climatic niche in their current range, and thus 281 

undergo future range expansion with warming.  282 

 283 

3) Which are the winner and loser shrub species in a warming tundra and what 284 

are their trait combinations? 285 
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Tall plants with wind-dispersed seeds are usually more competitive as they have 286 

facilitated seed dispersal and shade shorter plants (Westoby, 1998). We expect 287 

winners (those projected to expand their ranges or having increased in cover) to be 288 

mainly tall shrubs, given that they are the current dominant life form in warmer niches, 289 

and losers (those projected to contract their ranges) to be mostly dwarf shrubs, which 290 

tend to predominate in the colder part of the climatic niche (D. A. Walker et al., 2005). 291 

We hypothesise that species with greater ITV in all traits will be winners, and vice 292 

versa for losers. Finally, we presume that species that have increased in cover are 293 

also projected to experience range expansions with warming, following the 294 

abundance-range size relationship theory (Gaston & Blackburn, 2008). 295 

 296 

Methods 297 

Definitions and taxonomy 298 

The tundra is defined as the region beyond the elevational and latitudinal treeline 299 

(Berdanier, 2010). We consider shrubs as multi-stemmed woody plants under 5-6 m 300 

in height (Wilson, 1995). We followed the taxonomy outlined in The Plant List 301 

(http://www.theplantlist.org/) at the species level and standardised synonyms 302 

according to this reference. Definitions of the three traits follow Kattge et al., (2020) 303 

which in turn follow Garnier et al., (2017). 304 

 305 

Trait data 306 

We extracted a total of 17,921 trait records from the TRY 5.0 (Kattge et al., 2020) and 307 

the Tundra Trait Team (TTT) databases (Bjorkman, Myers-Smith, et al., 2018) for 308 

three plant size and economics traits related to competitive ability and dispersal (plant 309 

http://www.theplantlist.org/
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height, SLA and seed mass) for 62 shrub species across three continents (Figure 1, 310 

Table S4-S6). From the total, three trait records were from the literature and 192 311 

records were collected by the authors and unpublished thus far. We removed the 312 

observations with values greater than four standard deviations from each species 313 

mean following the protocol outlined in Bjorkman et al. (2018). Functional traits have 314 

been correlated to each other in the literature (Dupré & Ehrlén, 2002; Moles & 315 

Westoby, 2004; Pollock et al., 2012), but we did not find correlations between the traits 316 

in this dataset that might have influenced our statistical outcomes (Table S2.17-19). 317 

 318 

We retained all georeferenced records above 30 degrees north in latitude, as we were 319 

interested in trait variation per species beyond tundra biome values. Trait data from 320 

more southern latitudes could be indicative of the trait changes that tundra species 321 

could experience in a warmer future due to adaptation, phenotypic plasticity or gene 322 

flow (Bjorkman et al. 2018, Thomas et al. 2020). We included non-georeferenced trait 323 

records from databases that we were certain contained records from high-latitude 324 

ecosystems (e.g., if an approximate location/site name was provided). We retained 325 

only records that reported single values and individual means. We kept control and 326 

ambient values only and removed all experimental treatments and herbarium 327 

specimens as we were interested in traits from unmanipulated wild specimens. For 328 

each species-by-trait combination, we only retained those with more than four records, 329 

providing a dataset with 62 species. We calculated ‘trait values’ (MTV) as the median 330 

per species and ‘trait variation’ (ITV) as the standard deviation (SD) of all trait values 331 

per species (Figure 1). We chose SD as a commonly used ITV metric with a more 332 

conservative data distribution than others like the coefficient of variation (COV); 333 

however both metrics were directly proportional (Table S4-S6, Figure S6). We 334 
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compared ITV values using a random sample of five records versus all available 335 

records and found very similar data distributions, thus we opted for including all 336 

available records for ITV calculation (Table S4-S6). We log-transformed the median 337 

and SD values with the natural logarithm because the differences between species 338 

are better characterised on a log-scale (Bjorkman, Myers-Smith, et al., 2018; Thomas 339 

et al., 2020; Westoby, 1998). 340 

 341 

To explore the influence of categorical traits, we obtained data on taxonomic family, 342 

functional group, dispersal mode and deciduousness from a variety of sources 343 

including TRY and online florae combined with expert knowledge (see ‘Online sources 344 

of categorical traits and maximum height’ in Appendix). To group species according to 345 

height, we extracted the potential maximum canopy height per species from online 346 

florae (see Appendix) and assigned the species a category following the classification 347 

in Myers-Smith et al. (2015): dwarf shrubs (< 20 cm), low shrubs (20 - 50 cm), and tall 348 

shrubs (> 50 cm). Maximum canopy height is a relevant method to classify species 349 

given our interest in the height that species could achieve in warming conditions (i.e., 350 

current height of species at sites outside the Arctic), rather than its average 351 

representative height in the Arctic. We used values from online florae rather than 352 

TRY/TTT values to avoid circularity in defining functional groups. This could mean that 353 

online florae values (mostly from the Arctic) would reflect shorter values than TRY/TTT 354 

(which include records outside the Arctic). 355 

 356 

When screening identified duplicate records per species, trait, coordinates and 357 

collector/databases, we consulted the original datasets (when available) to investigate 358 

if potential duplicates were actual values. If both values (i.e., including duplicates) 359 
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appeared in the original dataset, they were considered valid records. We removed 360 

records that were clearly duplicates (n = 129), either because they were found both in 361 

TRY and TTT, or because the original database showed no duplicates. We identified 362 

two mistakes in trait units or coordinates, which we double-checked with the original 363 

data contributors and corrected accordingly.  364 

 365 

Since we only had original seed mass data for 28 species (as opposed to 57 species 366 

for SLA and 52 species for height), we gap-filled seed mass data for an additional 12 367 

species that had data on both height and SLA but no seed mass data. To gap-fill, we 368 

extracted data at the genus level above 60 degrees north (to ensure Arctic 369 

representative records) and for which there were records for over four individuals. We 370 

then calculated the log-transformed median value and the SD at the genus level and 371 

included these 12 values for the gap-filled species (Table S1).  372 

 373 

To account for confidence depending on the number of observations, we calculated 374 

an index value per species-by-trait combination. Species with over 20 observations 375 

were assigned an index value of 1 and gap-filled species or those with five 376 

observations had an index value of 0.5. For species with between 6 and 19 377 

observations, we calculated the index following a linear regression (see below), where 378 

Nobs is the number of observations per species-by-trait combination: 379 

𝐼𝑛𝑑𝑒𝑥 = 0.33 + (
1

30
) ∗ Nobs 380 

We used this index to down-weight species with smaller numbers of records in the 381 

weighted regressions explained below (Christensen 2019, Bürkner 2017). We also 382 

calculated a combined index per species by averaging the individual trait indices 383 

together.  384 
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Range size data 385 

We used projected current range sizes to represent present-day species ranges (see 386 

Appendix). To characterize projected shifts in species range size (hereafter ‘range 387 

shifts’), we used SDM-derived distribution data for 62 species under 24 future climatic 388 

scenarios as calculated by Blach-Overgaard et al. in prep (see ‘Species distribution 389 

modelling’ in Appendix for details). Blach-Overgaard et al. calculated a ‘no dispersal’, 390 

a ‘limited dispersal’ and an ‘unlimited dispersal’ scenarios. A ‘limited dispersal’ 391 

accounts for species-specific future migration rates, which were calculated using 392 

species-specific dispersal capacities in a linear mixed models framework following 393 

Tamme et al. (2014), and estimate how far a species can disperse using dispersal-394 

related traits including plant height and seed size in order to quantify more ecologically 395 

relevant range shifts. A ‘limited dispersal’ scenario incorporates geographical 396 

constraints, while an ‘unlimited dispersal’ climatic scenario (without dispersal rates) 397 

means that species in one continent could spread to another, e.g., North American 398 

species would have available ranges in Europe, and vice versa. Thus, ‘unlimited 399 

dispersal’ scenarios do not consider geographical realities and would likely over-400 

estimate range sizes. We compared the three dispersal scenarios and concluded that 401 

a ‘limited dispersal’ scenario would be the most realistic and thus chose this scenario 402 

as representative of range shifts (Figure S1). We also determined that the potential 403 

circularity on using the ‘limited dispersal’ scenario does not influence the main findings 404 

of this study (see ‘Use of traits in model projections’ in Appendix, Figure 5, Figure S2, 405 

Table S2). 406 

 407 

Projected species range shifts were computed both as relative (%) and absolute (km2), 408 

and ‘range shifts’ only reflect a change in the overall range size over time (not changes 409 
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in the shape or location of the ranges). We refer to ‘range shifts’ when we include both 410 

projected increases and decreases in total range size, and to ‘range expansions’ and 411 

‘range contractions’ when referring to projected range size increases and decreases, 412 

respectively (Figure 1). We log-transformed (with the natural logarithm) and centred 413 

current range sizes as the values were not always normally distributed and included 414 

outliers. Since the projected range shift data included negative values, we first divided 415 

the absolute range changes by a million km2 and the relative range changes by 100, 416 

in order to bring the values closer to zero. We then added a constant value (the 417 

negative minimum value plus one) so all values were positive, and afterwards log-418 

transformed these values. Finally, we centred these values on zero before carrying 419 

out the statistical analysis in order to facilitate convergence (Harrison et al., 2018, 420 

Bolker et al. 2013). 421 

 422 

Classification of winner and loser shrub species 423 

We classified winner and loser shrub species using 1) projected range shifts from the 424 

SDMs (into the years 2070 – 2099) and 2) cover change over time from the 425 

International Tundra Experiment (ITEX) dataset (between 1970 - 2010). For range shift 426 

projections, we calculated the 25%, 50% and 75% quantiles of species’ projected 427 

range shifts across the 24 climatic scenarios (both for absolute and relative range 428 

shifts) and categorised species as winners (if the 25% quantile was above zero), no 429 

change (if any quantile overlapped zero) or losers (if the 75% quantile was below zero). 430 

For cover change over time, we analysed shrub cover change over time from 105 431 

subsites and 30 sites from the ITEX network (Henry and Molau 1997). Based on the 432 

analysis by Bjorkman et al. (2018), individual species’ relative cover change over time 433 

per plot were modelled as ordinal numbers using a Poisson distribution with subsite 434 
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and site as random effects, aggregating after to subsite and species level. Thus, we 435 

obtained slopes of cover change per year for each species-by-site combination. We 436 

defined winner, no change and loser cover categories according to whether these 437 

slopes per species across all sites were positive or negative, and whether the 95% 438 

credible intervals overlapped zero (Figure S3, Table S3).  439 

 440 

Figure 1. Conceptual diagram of the different types of data used in this study and their 441 

relationships. In the current range map, green represents the current distribution of a 442 

species. In the projected range shifts map, different green shades in the map represent 443 

the difference between current and projected ranges. In the cover change over time 444 

drawing, the point-framing grid represents cover change over time. Categories of 445 

winner, no change or loser species were identified following two different methods: 446 

based on future projections of range shifts, and based on past cover change over time. 447 

Current range sizes were modelled with trait values and variation, and projected range 448 

shifts (which could be range expansions or contractions) were modelled as a function 449 
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of trait values and variation. Cover change over time species categories were 450 

modelled with trait values and variation.  451 

 452 

Statistical models: Current range sizes and traits 453 

To understand whether species’ ranges were associated with traits, we fitted weighted 454 

linear regressions per trait of species’ current range sizes as a function of MTV, 455 

weighting each record according to the scoring index described above. We also 456 

modelled current range size as a function of the three traits’ MTV together for those 457 

species which had trait data for all three traits (weighting according to the combined 458 

index), and as a function of three two-way interactions of these three traits. To evaluate 459 

whether range size was explained by categorical traits, we fitted separate models with 460 

current range size as a function of deciduousness (evergreen/deciduous), functional 461 

group (tall/low/dwarf shrub), dispersal mode (berry/wind-dispersed) and taxonomic 462 

family. We modelled MTV as a function of species’ range category (winner, no change, 463 

loser) per trait to identify differences in trait values between the different species 464 

categories. We also modelled categories as a function of all three different traits to 465 

understand whether winners differed in their trait combinations from loser and no 466 

change species (as this was indicated in the PCA analysis described below). To do 467 

this, we fitted an additive weighted binomial model with a Bernoulli distribution by 468 

assigning a value of 0 to loser and no change species, and a value of 1 to winners. 469 

We do not include here the variant of that model with an interaction element since the 470 

model did not converge with that level of complexity. Finally, we fitted similar weighted 471 

regressions as described above, with the same structure but with ITV instead of MTV 472 

(Figure 1, Table S2).  473 

 474 
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Statistical models: Species range shifts and traits 475 

To understand if species’ range shifts were associated with traits, we fitted weighted 476 

linear regressions of relative and absolute range change as a function of MTV per trait, 477 

each with the 25%, 50% and 75% quantile range change (of the 24 climatic scenarios) 478 

as a response variable. We also modelled both median relative and absolute range 479 

shifts as a function of all three traits (using the combined weighting index), and as a 480 

function of their three two-way interactions. To evaluate whether range shifts were 481 

explained by categorical traits, we fitted separate models for absolute and relative 482 

range shifts as a function of deciduousness, functional group, dispersal mode and 483 

family. To understand the processes of range expansion and contraction individually, 484 

we fitted separate weighted regressions for species that are predicted to experience 485 

range ‘gains’ and ‘losses’ (defined as those species whose median range change was 486 

above and below zero, respectively, both for absolute and relative changes). We 487 

modelled median range ‘gains’ and ‘losses’ as a function of trait values per individual 488 

trait, and then as a full model with all three different traits, and their three two-way 489 

interactions, for absolute and relative changes. We fitted similar weighted regressions 490 

as described above, with the same structure but with ITV instead of MTV (Figure 1, 491 

Table S2). Finally, to understand if traits were related to past cover change, we fitted 492 

weighted linear regressions of the slopes of cover change over time (1970 – 2010) as 493 

a function of MTV and ITV, and modelled the slopes of cover change over time as a 494 

function of all three traits (Table S2). We also modelled cover categories (winners, no 495 

change or losers) as a function of the three traits’ MTV and ITV in an additive weighted 496 

binomial model with a Bernoulli distribution similarly to above. 497 

 498 

 499 
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Statistical models: Distribution models 500 

To understand whether species’ absolute and relative ranges were related, we fitted 501 

a linear model of absolute versus relative range shifts. To investigate whether species 502 

with a larger current range were projected to expand more, we modelled future ranges 503 

as a function of current range sizes. We also fitted weighted linear regressions of 504 

current range sizes as a function of category (winner, no change or loser), and with 505 

median range change (both absolute and relative) as a function of category per 506 

individual trait to understand whether species’ trajectories were related to smaller or 507 

larger present and future ranges (Table S2). 508 

 509 

Statistical models: Ordinations and analyses of variance  510 

To identify differences between species groups, we performed two Principal 511 

Component Analyses (PCAs): one for MTV and another for ITV, using the ‘prcomp’ 512 

function in the R ‘stats’ package. We centred and scaled log-transformed trait values 513 

prior to computing the PCA. We used the R package ‘AMR’ (Berends et al., 2021) to 514 

visualize the trait space for the 36 species for which we had data available on all three 515 

traits (including gap-filled species), and plotted the first two component axes. We 516 

extracted the PCA scores per species and used them as response variables in linear 517 

models against current range sizes, absolute and relative range shifts, and cover 518 

change slopes, and we modelled individual PCA scores as a function of winner, loser 519 

or no change range category, both for MTV and ITV, and for range and cover species 520 

categories. 521 

 522 

We performed a permutational multivariate ANOVA test (PERMANOVA) to determine 523 

if the different groups (winners, no change or losers) differed statistically in trait space, 524 
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both for MTV and ITV. We used the ‘adonis’ function in the R package ‘vegan’ 525 

(Oksanen et al., 2020) and specified Euclidian distance with 999 permutations. We 526 

also calculated average distance to centroids per group with the ‘betadisper’ function 527 

in ‘vegan’, and performed an ANOVA test to confirm homogeneity of dispersion among 528 

the groups (p > 0.05). When the ‘adonis’ analysis yielded a significant difference 529 

between categories (p < 0.05), we performed pairwise comparisons between them. 530 

We used the ‘pairwise.perm.manova’ function in the ‘RVAideMemoire’ package 531 

(Hervé, 2020) for 999 permutations and fitted the tests of Pillai, Wilks, Hotelling-532 

Lawley, Roy and Spherical, and specified different methods for p-value adjustment, 533 

including Holm and Bonferroni, and with no p-value adjustment. All tests yielded 534 

similar significance results. We followed the same methods outlined above for the 535 

range and the cover change categories.  536 

 537 

Software and model specifications 538 

We used the software and programming language R version 3.6.2 (R Core Team, 539 

2020) for all analyses. We fitted all Bayesian models using the ‘brms’ package 540 

(Bürkner, 2017) and ran them for as many iterations as necessary to achieve 541 

convergence, which we assessed through examination of the Rhat term and trace plots. 542 

We considered that there was a clear relationship between variables when the 95% 543 

credible intervals of the estimates did not overlap with zero.  544 

  545 
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Results 546 

Plant trait records were represented across three continents (17,921 records). SLA 547 

records were recorded for the most species (n = 5,909 records, n = 57 species). Plant 548 

height records were numerous (n = 11,466 records, n = 52 species) and widespread 549 

geographically, while seed mass records were fewer (n = 546 records, n = 28 species 550 

without and n = 40 species with gap-filled data; Figure 2a, Table S4-6). By definition, 551 

there were differences in plant height values between the different functional groups, 552 

with tall shrubs having greater height values than low and dwarf shrubs (Figure 2b). 553 

In contrast, most of the seed mass median values overlapped across functional 554 

groups, and the heaviest seeds belonged to dwarf shrubs (Figure 2c). Most median 555 

SLA values also overlapped, with both the highest and the lowest median recorded for 556 

low shrubs (Figure 2d). 557 

 558 
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Figure 2. We compiled trait data from shrubs across three continents to test whether 560 

trait values and variation were related to range size, projected range shifts and cover 561 

change. Trait records with no coordinate information are not represented in the map. 562 

a) Location of the geo-referenced trait records in this database, north of 30 degrees 563 

latitude. Polar projection. b) Plant Height values (in m) for 52 species. c) Seed mass 564 

values (in mg) for 40 species. d) SLA values (in mm2/mg) for 57 species. Each 565 

coloured point represents an individual trait value recorded for that specific species. 566 

Coloured points are semi-transparent, with darker colour tones indicating overlaps of 567 

multiple points. Black points indicate the median value per species. Open black circles 568 

indicate the median values of seed mass for gap-filled species. Species are organised 569 

alphabetically within functional groups. 570 

 571 

We did not find any clear relationships nor interactions between current range sizes 572 

and MTV (Figure 3a, b, c), nor between current range sizes and ITV (Figure 3d, e, 573 

f). There were no clear relationships between MTV or ITV and range winner, loser or 574 

no change categories. There were also no differences in current range sizes 575 

depending on species’ dispersal mode, deciduousness, functional group or taxonomic 576 

family, except for Salicaceae species having smaller ranges than the Rosaceae family 577 

(Table S2.29). 578 

 579 

 580 
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 581 

Figure 3. There were no clear relationships between MTV or ITV and current range 582 

sizes. Model outputs of the weighted linear regressions of current species range size 583 

as a function of a) height values b) SLA values, c) seed mass values, d) height 584 

variation, e) SLA variation and f) seed mass variation. MTV are the median per species 585 

and ITV is the SD of trait records. Points are raw values and coloured according to 586 

categorical traits related to each continuous trait. Lines are the predicted model slopes 587 

and the semi-transparent ribbons represent the 95% model credible intervals. Open 588 

circles in c) and f) represent the gap-filled seed mass points calculated from genus 589 
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medians. Labels represent abbreviated species as the top three winners 590 

(Rhododendron tomentosum [previously Ledum palustre], Dasiphora fruticosa and 591 

Myrica gale) and the bottom three losers (Linnaea borealis, Cornus sericea and Dryas 592 

integrifolia). 593 

 594 

The projected range shifts method indicated similar numbers of winner (n = 28, 45.2%) 595 

and loser shrub species (n = 26, 41.9%), and fewer no change species (n = 8, 12.9%) 596 

(Figure 4). Among losers, 11 (42.3%) were dwarf shrubs, five were low shrubs 597 

(19.2%) and 10 were tall shrubs (38.5%). As for no change species, two were dwarf 598 

shrubs (25%), one was a low shrub (12.5%), and five were tall shrubs (62.5%). Among 599 

winners, five were dwarf shrubs (17.9%), four were low shrubs (14.3%), and 19 were 600 

tall shrubs (67.8%). The winner tall shrubs were also the category-by-functional group 601 

combination with the largest number of species in this dataset. All species shared the 602 

same range winner, no change or loser category whether considering absolute 603 

(Figure 4a) or relative range shifts (Figure 4b).  604 

 605 

In absolute range change terms, top winner species were the tall evergreen shrub 606 

Rhododendron tomentosum, and the tall deciduous shrubs Dasiphora fruticosa and 607 

Myrica gale. The bottom losers were the dwarf evergreen shrubs Linnea borealis and 608 

Dryas integrifolia, and the tall deciduous shrub Cornus sericea (Figure 4b). Species’ 609 

current range sizes and species projected range shifts were related (slope = 118.39, 610 

CI = 91.73 to 143.46), and so were median absolute range shifts and median relative 611 

range shifts (slope = 55,658.03, CI = 45,319.41 to 65,975.12). Cover change methods 612 

identified a majority of no change species (n = 19, 52.7%), nine winners (25%), and 613 

eight losers (22.2%) (Table S3). All functional groups were represented in winner, no 614 
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change and loser species. Only 10 species shared the same range and cover 615 

categories, with four winners, one no change and five loser species in common. 616 

 617 

Figure 4. There were similar numbers of winner and loser species on the basis of their 618 

predicted species range change in this database for projected a) absolute and b) 619 

relative range change. Each point represents the median across the 24 predicted 620 

climatic scenarios per species, while the error bars represent the 25% and 75% 621 

quantiles of range change. Species are ordered across the horizontal axis in 622 

descending absolute change median value and coloured according to their functional 623 
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group. Those species whose lower quantile does not overlap zero are considered 624 

winners with expanding ranges, those whose either quantile overlaps zero are 625 

considered to experience no change (also indicated by the vertical grey polygons), 626 

and those whose upper quantile does not overlap zero are considered losers with 627 

contrasting ranges. The horizontal black line represents zero range shift. 628 

 629 

Greater seed mass values were associated with greater median absolute range losses 630 

in the multivariate model (slope = -0.1, CI = -0.2 to -0.01). There was also a positive 631 

interaction between height and SLA for relative median range contractions (slope = 632 

0.6, CI = 0.02 to 1.17), with taller species with greater SLA having greater range 633 

contractions. Shrub species with greater SLA variation had greater absolute range 634 

shifts (75% quantile, slope = 0.68, CI = 0.1 to 1.25, Figure S4a), greater relative range 635 

shifts (25%, median and 75% quantile, Figure S4b, Table S2), and greater relative 636 

range expansions (median, slope = 0.55, CI = 0.08 to 1.03, Figure S4c). A 0.5 637 

mm2/mg SLA variation increase was associated with 18 times greater projected 638 

absolute range shifts, double the relative projected range shifts and more than double 639 

the relative species expansions (Figure S4a, b, c). Species with greater seed mass 640 

variation had greater absolute range shifts in univariate models (25%, median and 641 

75% quantiles, Figure 5f, Table S2). This was also the case when subsetting for wind-642 

dispersed species only (slope = 0.16, CI = 0.02 to 0.29). Note that the median absolute 643 

range shift model was only significant for the model including gap-filled species, but 644 

not for the model without gap-filled species. Greater seed mass variation was related 645 

to median relative range gains (slope = 0.11, CI = 0.01 to 0.21) and absolute range 646 

gains (slope = 0.1, CI = 0.002 to 0.2). Range expansions were ~991,273 km2 larger 647 

for each mg of seed mass variation at lower values, with these relationships saturating 648 
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at higher values of seed mass (Figure S4d). We did not find any other relationships 649 

between the different MTV (Figure 5a, b, c) or ITV (Figure 5d, e) and median species 650 

range changes. We did not find any relationships between MTV or ITV and winner, 651 

loser or no change category. There were also no differences in projected range shifts 652 

depending on species’ dispersal mode, deciduousness or functional group. However, 653 

the Caprifoliaceae family had smaller range shifts than other families, and the 654 

Myricaceae family had greater relative range shifts than Salicaceae. We did not find 655 

any clear relationships between the slope of average cover change over time and MTV 656 

or ITV (Table S2.134-141). 657 

 658 

 659 
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 660 

Figure 5. There were no clear relationships between MTV or ITV and median 661 

projected range shifts, except for seed mass variation. Model outputs of the weighted 662 

linear regressions of median absolute species range change as a function of a) height 663 

values b) SLA values, c) seed mass values, d) height variation, e) SLA variation, and 664 

f) seed mass variation. MTV represent the median per species and ITV is calculated 665 

as SD. Points are raw values and coloured according to categorical traits related to 666 

each continuous trait. Coloured lines are the predicted model slopes and the semi-667 

transparent ribbons represent the 95% model credible intervals. Open circles in c) and 668 



33 
 

f) represent the gap-filled seed mass values. Labels represent abbreviated species as 669 

the top three winners (Rhododendron tomentosum, Dasiphora fruticosa and Myrica 670 

gale) and the bottom three losers (Linnaea borealis, Cornus sericea and Dryas 671 

integrifolia). Horizontal dotted lines indicate the zero range shift after scaling the data. 672 

Species above this line are winners and species below this line are losers.  673 

 674 

In the MTV PCA of range categories, no change species were found across the 675 

spectrum, losers had medium to low SLA and height values, and winners had greater 676 

SLA and height values. PC1 was mainly driven by SLA and seed mass (loadings = 677 

0.65 and 0.6, respectively), and PC2 was driven mostly by height (loading = -0.86). 678 

PC1 explained 44% and PC2 explained 30% of the dataset variation (Figure 6a). We 679 

did not find a significant difference between groups according to the PERMANOVA 680 

analysis (F = 0.182). There were no significant differences between clusters according 681 

to the pairwise comparisons for all tests and p-adjustment methods. We did not find a 682 

relationship between range categories and trait values in our binomial model, though 683 

plant height was marginally significant (Figure 6c).  684 

 685 

In the ITV PCA, no change species occupied a small part of the trait space, with 686 

medium to high seed mass and SLA variation, but medium to low height variation, 687 

while losers occupied a larger part of the trait space. Winners occupied the largest trait 688 

space for all three traits, and those species with higher variability in plant height were 689 

winners. PC1 was mainly driven by seed mass and SLA (loadings = 0.68 and 0.63, 690 

respectively), and PC2 was driven mostly by plant height (loadings = -0.91). PC1 691 

explained 49% and PC2 explained 31% of the variation in the dataset (Figure 6b). We 692 

did not find a significant difference among clusters in the PERMANOVA test (F = 0.4), 693 
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but winner clusters where slightly different to no change clusters (Tukey test of 694 

multivariate dispersions, p = 0.049). Further, in our binomial model greater seed mass 695 

variation was more likely to correspond to winners (slope = 1.47, CI = 0.09 to 3.27; 696 

Figure 6d). PC2 component scores had a negative relationship with relative range 697 

shifts (Table S2.154), but we did not find any other clear relationships when modelling 698 

current range sizes, absolute range changes and relative range changes as a function 699 

of PC1 and PC2 component scores, for either MTV or ITV. We did not find differences 700 

either in winner, loser and no change categories for PC1 and PC2 scores, neither for 701 

MTV nor ITV.  702 

 703 

Species categories based on cover change overlapped largely in the MTV PCA, with 704 

losers having the larger trait space (Figure S5a). PC1 was driven by SLA and seed 705 

mass (loadings = 0.7 and 0.57, respectively), while PC2 was driven mostly by plant 706 

height (loading = -0.8). PC1 explained 41% and PC2 explained 33% of the dataset 707 

variation. In the ITV PCA, clusters of loser and winner species overlapped, though 708 

winners had greater height variation (Figure S5b). PC1 was driven mostly by SLA and 709 

seed mass (loadings = 0.66 and 0.65, respectively), and PC2 by plant height (loading 710 

= -0.92). PC1 explained 55% and PC2 explained 29% of the dataset variation. In both 711 

PCAs, we did not find a significant difference among winner, loser and no change 712 

clusters in the PERMANOVA test, in the binomial models, nor when modelling mean 713 

cover change over time as a function of PC1 and PC2 component scores.   714 

 715 

 716 

 717 

 718 
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 719 

Figure 6. Range winners had slightly different trait values from loser and no change 720 

species. Principal Component Analysis for a) MTV and b) ITV (n = 36). Ellipses and 721 

points are coloured according to species categories. Arrows indicate direction and 722 

weighting of each trait. Ellipses indicate the 68% confidence interval of distributions 723 

per category. c) and d) Effect sizes of the binomial models with category (winners 724 

versus losers and no change) as a function of c) MTV and d) ITV. Mid-points represent 725 

mean posterior estimates and vertical error bars represent the 95% credible intervals 726 
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of the slope estimates. Asterisks indicate relationships between categories and traits 727 

that did not overlap zero (represented by the horizontal dotted line).  728 

 729 

Discussion 730 

Species’ range expansions/contractions and abundance increases/decreases are 731 

forecasted with climate change. In this study, winner species were more likely to have 732 

greater seed mass values, and greater variation in SLA and seed mass compared to 733 

losers, potentially conferring an advantage in a warmer future climate. However, the 734 

relationship of MTV and ITV with projected range shifts was highly dependent on the 735 

range shift quantiles considered per species (Table S2). Contrary to our hypotheses, 736 

specific values of continuous traits (e.g., shorter stature) and groups within categorical 737 

traits could characterize both winner and loser species. Additionally, species projected 738 

through SDMs to expand their ranges are not the same species that have increased 739 

in cover over time, showing a mismatch when employing different assessment 740 

methods. Species’ projected range shifts may have consequences for the future trait 741 

composition of tundra communities (Bjorkman, Myers-Smith, et al., 2018), but not in 742 

mechanistic ways given that winners and losers share moderately similar trait spaces. 743 

 744 

Winners and losers in a warming Arctic 745 

Range winners tended to have greater seed mass values than no change and loser 746 

species, though not in a consistent manner. Plant height, SLA and seed mass are 747 

important response traits which are sensitive to climate change and thus influence 748 

species’ abilities of persisting in and colonise changing habitats (Baruah et al., 2017). 749 

Thus, we expected tall shrubs with greater SLA to be winners due to their increased 750 

competitive ability, but contrary to our expectations, heavier seeds seemed to relate 751 
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to range shifts more than lighter seeds. Plants with lighter seeds tend to disperse 752 

further and produce more seeds (Hamilton et al., 2005; MacLean & Beissinger, 2017), 753 

but larger seeds are more likely to be within berries that are dispersed by animals over 754 

longer distances (Nathan et al., 2008). Moreover, large seeds are at an advantage 755 

when it comes to seedling establishment due to more storage tissue (Hamilton et al., 756 

2005; Moles & Westoby, 2004), thus suggesting seed mass is not a reliable predictor 757 

of range processes. Under climatologically favourable conditions, tall shrubs and those 758 

with greater SLA have a competitive advantage over other species (Gaudet & Keddy, 759 

1988), and the height of tundra plants has increased with warming over the past few 760 

decades (Bjorkman, Myers-Smith, et al., 2018). Tall plants may expand with increasing 761 

solar radiation and rainfall (Moles et al., 2009, Pollock et al., 2012,), but similar climatic 762 

conditions support communities with different MTV, and different climates can support 763 

communities with similar MTV (Bruelheide et al., 2018). Therefore, while macroclimate 764 

might link well with community trait values, individual trait values and ITV could instead 765 

be more affected by microclimate, including factors like topography, soil moisture and 766 

nutrients (Lembrechts et al., 2018; Opedal et al., 2015). While taller species represent 767 

more winners than shorter species, which tended to be losers (Figure 6a), this climate-768 

trait mismatch could mean that tall shrubs will not necessarily take over the landscape, 769 

as frequently reported in tundra projections.  770 

 771 

Surprisingly, only 10 of the 36 shrubs (27.7%) with data on cover change over time 772 

shared the same winner/loser categories as the species range categories, with four 773 

winners, one no change and five loser species in common (Figure 4, Table S2, Figure 774 

S3). This result does not support the generally accepted abundance-range size theory 775 

(Gaston & Blackburn, 2008), but agrees with other studies (Sporbert et al., 2020). A 776 
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potential explanation is that the SDM-derived ranges identify potential future climatic 777 

niches constrained by boundaries set by species-specific migration rates, rather than 778 

the real-world climate responses of tundra shrubs. For instance, a species could be 779 

classified as a winner because of an expanded climatic niche, but as a loser because 780 

of decreased cover change, meaning that its fundamental niche does not track its 781 

potential future climatic niche. Conversely, a species may be classified as a loser 782 

because of a projected range contraction, but be able to persist in situ and adapt to 783 

changing climatic conditions, which SDM projections would not be able to capture. 784 

 785 

The environmental factors affecting broad geographical extents likely differ from those 786 

affecting local scale abundances (Sporbert et al., 2020). Additionally, range shifts are 787 

contingent on geographical context, and species responses might differ depending on 788 

the space available for expansion (e.g. in North America versus Scandinavia). 789 

Moreover, biotic interactions (e.g. competition, herbivory) at local scales dictate the 790 

realization of potential climatic niches (Kaarlejärvi et al., 2017; Maliniemi et al., 2018). 791 

Topography also influences plant growing conditions through numerous geological 792 

and hydrological processes and has been shown to improve SDM predictive ability 793 

(Mod et al., 2016). This complexity highlights the challenges in estimating plant 794 

responses to warming where abundance increases may not translate directly into 795 

range expansions derived from SDM approaches. 796 

 797 

Plant traits are not strongly related to species ranges or abundance 798 

While traits have been extensively linked to predicting plant success, we found that 799 

the traits used in this study were weakly related to the projected range shifts and past 800 

cover change of tundra shrubs (Figure 5). Previous studies have yielded similar 801 
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results: habitat availability was more relevant than selected traits as range shift 802 

predictors for Swiss alpine plants (Angert et al., 2011), seed mass or plant height and 803 

area were not related in herbaceous plants in Swedish forests (Dupré & Ehrlén, 2002), 804 

and neither seed mass nor plant height predicted current species ranges for European 805 

plants (Estrada et al., 2015). Likewise, a global meta-analysis and a systematic review 806 

found no significant effect of traits (apart from habitat breadth and historic range limit) 807 

on range shifts (Beissinger & Riddell, 2021; MacLean & Beissinger, 2017), and indeed 808 

we found a strong positive association between current range sizes and projected 809 

range shifts (Table S2.35). Moreover, there is some evidence of poor trait predictive 810 

ability of long-term ecosystem properties, plant-environment relationships, and vital 811 

rates (Kremer et al., 2014; Salguero‐Gómez et al., 2018; van der Plas et al., 2020). 812 

Together, these results indicate that contrary to our hypotheses and previous studies 813 

(Cornwell & Ackerly, 2010; Veken et al., 2007), these three key plant traits are not 814 

consistently associated with projected climate-induced range shifts. 815 

 816 

Range shifts and cover change were also not defined by categorical traits such as 817 

taxonomy, dispersal mode, deciduousness or functional group (Table S2.126-133). 818 

We expected the Salicaceae or Betulaceae families to be the greatest winners given 819 

their reported increases across tundra ecosystems (Bjorkman, Myers-Smith, et al., 820 

2018; Elmendorf et al., 2012; Myers-Smith, Forbes, et al., 2011), but our family sample 821 

size was potentially too small to detect a taxonomic signal. Although wind-dispersed 822 

(anemochorous) seeds generally have greater migration rates than animal-dispersed 823 

(zoochorous) seeds (Holzinger et al., 2008), we did not find anemochorous species to 824 

have larger current or projected ranges than zoochorous species. Thus, both wind and 825 

animal dispersion might facilitate long-distance dispersal, or other factors like 826 
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vegetative propagation or seed viability might be more relevant in explaining dispersal 827 

(Aubin et al., 2016), but the limited number of species with seed data limits our ability 828 

to make broad generalisations. Deciduous shrubs have been identified as the group 829 

expanding the most with tundra warming due to rapid resource acquisition thanks to 830 

leaf turnover (Elmendorf et al., 2012; Prager et al., 2020), but evergreen shrubs are 831 

also increasing as they seem to be more responsive to warming than originally thought 832 

(Hudson et al., 2011; Vowles & Björk, 2019; Vuorinen et al., 2017), and our analyses 833 

showed no range differences related to species deciduousness. All functional groups 834 

are expected to be represented in a warming tundra (Chapin et al., 1996), and they 835 

represent variation within traits very coarsely, with large overlaps in trait values 836 

between groups (Betway, Hollister, May, & Oberbauer, 2021; Thomas et al., 2019). 837 

These overlaps were thought to be due to ITV, and indeed we found an indication that 838 

species with greater SLA and seed mass variation are projected to expand the most, 839 

suggesting that winner species are more plastic or have greater potential to adapt to 840 

changing environmental conditions due to within-population genetic variation (Bolnick 841 

et al., 2011). However, these results were far from consistent and support the general 842 

finding that tundra species will have highly individualistic and heterogeneous 843 

responses to climate change (Bjorkman et al., 2019; Hollister et al., 2005; Myers-Smith 844 

et al., 2020; Thomas et al., 2019). 845 

 846 

Beyond functional traits 847 

Our initial hypothesis of tundra shrubs showing similar trait responses to climate 848 

change turned out to be too simplistic. This weak relationship between traits and 849 

ranges might be attributable to different factors. First, the species’ projected range 850 

shifts might be related to traits reflecting specific dispersal and colonisation processes 851 
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not captured by the selected traits; thus a different suite of morpho-physiological traits 852 

underpinning climatic preferences might have more explanatory power, such as leaf, 853 

stem and root density, C, N and P contents, and cold hardening (Díaz et al., 2016; 854 

Harrison et al., 2010; Kühn et al., 2021). Similarly, different traits might be more related 855 

to local abundance than to projected range shifts. Second, there are intrinsic 856 

differences in life history and physiology that are not accurately captured with these 857 

particular traits or by one-time measured traits only (Hamilton et al., 2005; Volaire et 858 

al., 2020). Third, SDM range projections may only quantify part of the full species 859 

climatic niche due to the limitations in predictor data (e.g., uncertainties in climate 860 

predictions, lack of soil temperature, moisture or nutrient data) and to potential bias in 861 

the input occurrence data caused by sampling bias, biotic interactions, and long-term 862 

dispersal limitations (Svenning et al., 2011). Fourth, SDM projections were constrained 863 

by species-specific migration rates to avoid overestimating range shifts, but 864 

uncertainties remain regarding the influence of biotic interactions on future range shifts 865 

(Gough, 2006; Pearson & Dawson, 2003; Post et al., 2021; Wisz et al., 2013). 866 

However, in the absence of long-term monitoring studies of traits and range shifts over 867 

time, SDM-derived projections are the best spatial data currently available to test these 868 

questions.  869 

 870 

The relationships among traits and range shifts could be influenced by other factors 871 

not addressed in this study. Phenology change (e.g., extended growing season length) 872 

can buffer climatic impacts or alter species’ survival and reproduction, for example 873 

through greater temperature sensitivity in late-flowering species (Prevéy et al., 2019). 874 

Future studies are needed on phenology as a trait influencing tundra plant responses 875 

to climate change. Heterogeneity is expected in permafrost thawing rates and soil 876 
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deepening across tundra habitats, resulting in different amounts of nutrient availability 877 

and consequent effects in plant trajectories (Mekonnen et al., 2018). Similarly, 878 

examining the influence of microclimate, topography and edaphic conditions could be 879 

an important next step to better understand distribution shifts (Hylander et al., 2015). 880 

Finally, demographic processes not captured by the traits investigated in this study 881 

might be determining the success of species range shifts more directly.  882 

 883 

The filtering role of demographic processes such as survival, fecundity, germination 884 

and establishment might affect range shifts more than traits per se (Hemrová et al., 885 

2017; Normand et al., 2014). Demographic processes might be more relevant than 886 

dispersal in the tundra given the substantial role of microclimate in defining species 887 

reproduction, but they are much harder to measure than traits (Graae et al., 2018). 888 

Although long-distance colonisation is common in the Arctic, multiple successful 889 

recruitment events are needed for a species to expand into a new area (Alsos et al., 890 

2007). Establishment might limit distributions more than dispersal, with establishment 891 

being in turn determined by the number of viable seeds and the environment (Lenoir 892 

et al., 2012). Both environmental conditions and biotic interactions such as herbivory 893 

and both intra- and inter-specific competition can heavily affect demography (Ehrlén 894 

et al., 2016; Gough, 2006). Further research is needed on how demography influences 895 

tundra shrub distributions to understand if demographic rates could prove to be more 896 

powerful predictors of climate change-induced range shifts than dispersal traits 897 

(Hemrová et al., 2017; Salguero‐Gómez et al., 2018). 898 

 899 

We worked under the assumption that MTV and ITV will remain constant over time, 900 

but there is an indication that plant height, leaf area and seed mass will change with 901 
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climate change (Bjorkman, Myers-Smith, et al., 2018; Myers‐Smith, Grabowski, et al., 902 

2019). With repeated tundra trait data being rarely collected over time (Bjorkman, 903 

Myers-Smith, et al., 2018), we included species records outside of the tundra to 904 

account for trait plasticity and the likelihood of tundra trait values shifting in the future 905 

(Thomas et al., 2020). We suggest that the collection of repeated trait data could 906 

improve our understanding of individual and community trait change over time. 907 

Similarly, geographical coverage in TRY/TTT across the Arctic is incomplete (Figure 908 

2a) and trait data were not available for all species with distribution data (Figure 2b, 909 

c, d). Species with no trait data might be precisely those which are endemic or rare, 910 

and potentially experiencing range contractions, leading to an overall under-911 

representation of rare species. Further trait data collection across the Arctic would help 912 

overcome the under-representation of particular traits and species, and enable the 913 

replication of these analyses based on a larger number of morpho-physiological traits.  914 

 915 

With range change data over time not yet available, SDM projections remain the only 916 

current way to estimate range dynamics. Projections provide a proxy for potential 917 

range shifts, and the relationships we found partly reflect the assumptions made when 918 

calculating SDMs. These SDM models did not consider other environmental variables 919 

beyond temperature and precipitation, and we found strong differences in projected 920 

range shifts between the 24 different climatic scenarios. Once range change data over 921 

time becomes available (e.g., through the GLORIA or MIREN networks), the 922 

relationship between observed range shifts and traits could be further explored, and 923 

SDMs can be validated against on-the-ground observations. Additionally, we chose to 924 

examine ranges on the basis of traits because we were interested in the potential 925 
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explanatory power of traits as proxies for species distributions, but the influence of 926 

projected range shifts on MTV and ITV could equally yield interesting results.  927 

 928 

Earth system models (ESMs) assume high uncertainty (Bonan & Doney, 2018) and 929 

usually simplify diverse plant communities using functional types parametrised with 930 

summary trait values (Fisher et al., 2018; Wullschleger et al., 2014). However, our 931 

findings suggest that plant traits poorly explain variation in tundra species distributions, 932 

and that different methods result in different categories of winner and loser tundra 933 

shrub species. While acknowledging that moving beyond broad functional types will 934 

increase model complexity (Fisher et al., 2018), we advocate for ESMs to incorporate 935 

trait variability, together with demographic processes. Progress is already underway 936 

through the definition of Arctic-specific functional groups and the inclusion of certain 937 

traits on Earth Land Models, improving overall projections (Sulman et al., 2021). In 938 

order to more accurately project tundra vegetation shifts, incorporating the real-world 939 

complexity inherent in the diverse tundra shrub responses to a warming climate 940 

remains crucial. 941 

 942 

Conclusions 943 

Our findings indicate that no specific combination of trait values or variation is 944 

associated with winner or loser tundra shrub species under climate change. Contrary 945 

to our expectations, particular trait values or greater trait variation do not necessarily 946 

indicate increased range or abundance shifts, although there was a broadly positive 947 

signal of greater seed mass values with projected range shifts, and greater SLA and 948 

seed mass variation with projected range shifts. Overall, we observed similar values 949 

of height, SLA and seed mass for both range expanding and contracting tundra shrub 950 
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species. Thus, projected range shifts will not lead to directional shifts in shrub trait 951 

composition or variation, as both winner and loser species share a relatively similar 952 

trait space. Additionally, winner and loser species differ when comparing past cover 953 

change over time with projected range shifts. Future research could investigate the 954 

explanatory power of other morpho-physiological traits and address how demographic 955 

processes might mediate tundra shrub range shifts. Our results demonstrate that 956 

tundra shrubs can be equally resilient or vulnerable even with very different 957 

combinations of trait values and variation. Identifying the future winners and losers of 958 

climate change in the tundra biome remains a complex endeavour, but these results 959 

outline that the wide variety of evolutionary strategies that tundra plants employ are 960 

not necessarily reflected in their responses to a warming climate.  961 
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