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Abstract27

1. Assessing the biological relevance of variance components estimated using MCMC-28

based mixed-effects models is not straightforward. Variance estimates are constrained29

to be greater than zero and their posterior distributions are often asymmetric. Different30

measures of central tendency for these distributions can therefore vary widely, and credible31

intervals cannot overlap zero, making it difficult to assess the size and statistical support32

for among-group variance. Statistical support is often assessed through visual inspection33

of the whole posterior distribution and so relies on subjective decisions for interpretation.34

2. We use simulations to demonstrate the difficulties of summarising the posterior35

distributions of variance estimates from MCMC-based models. We then describe different36

methods for generating the expected null distribution (i.e. a distribution of effect sizes37

that would be obtained if there was no among-group variance) that can be used to aid in38

the interpretation of variance estimates.39

3. Through comparing commonly used summary statistics of posterior distributions40

of variance components, we show that the posterior median is predominantly the least41

biased. We further show how null distributions can be used to derive a p-value that42

provides complementary information to the commonly presented measures of central ten-43

dency and uncertainty. Finally, we show how these p-values facilitate the implementation44

of power analyses within an MCMC framework.45

4. The use of null distributions for variance components can aid study design and46

the interpretation of results from MCMC-based models. We hope that this manuscript47

will make empiricists using mixed models think more carefully about their results, what48

descriptive statistics they present and what inference they can make.49

3



Introduction50

Estimating variance components using mixed-effects models is common in ecology and51

evolution (Bolker et al., 2009; Dingemanse & Dochtermann, 2013; Harrison et al., 2018).52

Mixed-effect models are a flexible statistical tool used to study hierarchically structured53

data, with extensions facilitating quantitative genetic (animal models; Henderson, 1988;54

Kruuk, 2004) and comparative (meta-analysis and phylogenetic mixed models; Hadfield55

& Nakagawa, 2010) analyses. Markov chain Monte Carlo (MCMC) algorithms are in-56

creasingly used to fit mixed-effects models due to their flexibility and the availability57

of open-source software (e.g. winBUGS (Gilks et al., 1994), JAGS (Plummer, 2003),58

MCMCglmm (Hadfield, 2010) and Stan (Stan Development Team, 2022b)). MCMC al-59

gorithms are a collection of probabilistic simulation methods for generating observations60

from designated statistical distributions and are typically implemented within a Bayesian61

framework (Gelman et al., 2021).62

MCMC methods have many advantages. Derived metrics (such as standardised mea-63

sures of variance like repeatability, heritability and evolvability; Nakagawa & Schielzeth,64

2010; Houle, 1992) can be easily estimated using the posterior distributions of their com-65

ponents, propagating uncertainty within and among analyses. In contrast, in a maximum66

likelihood framework, the methods to estimate the uncertainty of derived metrics (for ex-67

ample, the delta method) can be laborious and biased with small sample sizes (O’Hara68

et al., 2008). Data in ecological and evolutionary studies are also commonly non-Gaussian,69

for example counts (e.g. number of offspring), binary and ratio data (e.g. survival, pres-70

ence/absence, sex ratio) and categorical data (e.g. colour morphs). The performance of71

MCMC algorithms in generalized linear mixed-effects models (GLMMs) has been found72

to be superior in terms of accuracy and precision compared with Restricted Maximum73

Likelihood (REML) approaches (O’Hara & Merilä, 2005; de Villemereuil et al., 2013).74

Bayesian methods also allow existing information to be incorporated as a prior distribu-75

tion, although this has rarely been used in ecological or evolutionary studies (Lemoine,76
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2019).77

Despite these advantages, empiricists face several issues when using MCMC mixed-78

effect models. Here we focus on the difficulties of describing and interpreting variance79

estimates and their uncertainty. We highlight two problems, both of which centre around80

the difficulty of describing the posterior distribution of variance components using sum-81

mary statistics: (i) finding an appropriate measure of central tendency; and (ii) assessing82

the statistical support for non-zero among-group variance. These problems arise as vari-83

ance estimates are constrained to be greater than zero, and so their posterior distributions84

are often asymmetric.85

When describing posterior distributions, we typically present some measure of cen-86

tral tendency alongside some measure of uncertainty (quantile-based intervals or Highest87

Posterior Density (HPD) intervals). The posterior mean, median and mode have all been88

used as measures of central tendency, and recent works have advocated the general use89

of the posterior median (Gelman et al., 2020; McElreath, 2020). There is, however, no90

clear guidance on which measure provides an appropriate summary statistic for variance91

components; in our experience the mode and mean are most commonly reported. When92

the posterior distribution of a variance component is far away from zero and is symmetric,93

then the mean, median and mode are approximately equal (Figure 1a) and inferences are94

robust to the choice of central tendency metric. However, when variances are small (rel-95

ative to the total variance) and/or sample sizes are small (both common in ecology and96

evolution), the posterior distributions can be close to zero. As variances are constrained97

to be greater than zero, these posterior distributions are typically asymmetric and can98

even be bimodal, with one mode close to zero (e.g. Figure 1b). Consequently, there can99

be a considerable difference between the mean, median and mode (Figure 1b), making it100

difficult to draw inferences about the magnitude of the posterior variance estimate.101

The use of the posterior mode is often justified as being the closest to the maximum102

likelihood estimate (MLE) when uninformative priors are used. However, this compari-103
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son refers to the joint posterior mode, rather than the marginal mode that is typically104

estimated and reported. In more complex models, the joint and marginal modes may105

differ (Held & Sabanés Bové, 2020, Section 6.5.4), meaning that the marginal mode and106

MLE are no longer the same. As shown in Figure S1, the convergence of the posterior107

mode and MLE also requires the use of uninformative improper priors on the variance,108

which are generally not advised (Gelman et al., 2021), in part because ‘uninformative’109

priors can be uninformative on one scale but not another (e.g. priors on standard devi-110

ation versus variance). The posterior mode is also hard to estimate; it is typically done111

using kernel density estimation and different methods may provide quite different esti-112

mates (Figure 2), thereby providing another source of hidden ambiguity. Furthermore,113

the mode requires a larger number of samples in the posterior distribution to be reli-114

ably estimated, and will show greater variation between models/chains run on the same115

dataset (Kruschke, 2015). In contrast, the mean is strongly affected by extreme values,116

and so by the long tail of an asymmetric distribution.117

It is also often important to assess statistical support for among-group variance at118

a particular level. Typically 95% credible intervals (CRIs) are presented as a measure119

of uncertainty in parameter estimates derived from MCMC models. As variance com-120

ponents cannot overlap zero, CRIs give no information about the compatibility of the121

estimates with a null hypothesis (e.g. no among-group variance). Posterior distributions122

are commonly inspected visually as density plots; a right skewed distribution with a mass123

near 0 is often assumed to signify that the estimated variance is not different from zero.124

What is seldom appreciated, however, is that the degree of smoothing that is applied in125

such plots (via the binning interval or bandwidth) can alter these conclusions. The same126

distribution can be seen as uni- or bimodal, or peaking at zero or away from zero depend-127

ing on the degree of smoothing (Figure 2). Such assessments are therefore subjective and128

lack a proper quantitative basis.129

To address this, several metrics for assessing the confidence in a result (such as p-130
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values) have been suggested in a Bayesian framework (reviewed in Makowski et al.,131

2019a). Two of these, Region of Practical Equivalence (ROPE) and Bayes Factors, can132

be used for variance components. The ROPE approach identifies a range of values consid-133

ered too small to be of any practical relevance (i.e. the Region of Practical Equivalence),134

and quantifies the proportion of overlap between the posterior distribution and the ROPE.135

This is similar to equivalence testing in a frequentist framework, specifically to the two136

one-sided tests approach (Lakens et al., 2018). Bayes Factors are analogous to frequentist137

likelihood ratios, comparing different models (for example with and without the random138

effects of interest). Unlike likelihood ratios, they incorporate information from the prior139

distributions of the parameters into the comparison of the models, and are evaluated using140

the marginal likelihood rather than at the maximum likelihood. Additionally, Bayesian141

models can be compared using information criteria which aim to provide out-of-sample142

prediction accuracy, of which LOO-CV (Leave-One-Out Cross-Validation; Browne, 2000;143

Gelman et al., 2014) has been suggested as the most suitable for complex hierarchical144

models (Gelman et al., 2021). These metrics (ROPE, Bayes Factors, LOO-CV) can be145

used to provide a measure of statistical support for estimates of variance components,146

but their implementation is complicated. ROPE requires the definition of a threshold,147

incorporating further subjectivity into the analysis, whilst the computation of Bayes Fac-148

tors and LOO-CV can be challenging, and even not implementable in some commonly149

used programs in ecology and evolution (e.g. MCMCglmm). The use of Bayes Factors150

and LOO-CV is also the topic of active debate (Gronau & Wagenmakers, 2019a,b; Chan-151

dramouli & Shiffrin, 2019; Vehtari et al., 2019; Navarro, 2019; Gelman et al., 2021). We152

address these metrics further in the discussion.153

Here, we suggest a complementary method to assess statistical support in mixed-154

effect models, which compares variance estimates to a null distribution in order to aid155

statistical inference. This involves creating a distribution of effect sizes that would be156

expected under the null hypothesis (no among-group variance), and comparing this null157

distribution with the observed among-group variance. This method has several advan-158
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tages. Null distributions can be used to generate a p-value describing the probability159

that the observed estimate is as or more extreme than expected under the null hypothe-160

sis. Although often criticised through their association with Null Hypothesis Significance161

Testing (NHST; Wasserstein & Lazar, 2016; Amrhein et al., 2017; McShane et al., 2019;162

Amrhein et al., 2019), p-values have well understood and useful properties. When cor-163

rectly interpreted, these statistics provide a continuous measure of statistical support,164

indicating how inconsistent an observed effect size is with a scenario in which there is165

no among-group variance. In contrast to ROPE, creating null distributions requires no166

subjective decisions about thresholds and, in contrast to Bayes Factors and LOO-CV,167

they can be implemented using the output from any mixed model.168

We present two methods, permutation and simulation, for generating null distribu-169

tions for variance components. To generate a null distribution using permutation, some170

feature of the data is randomised to produce a new dataset with the structure of the171

original dataset, but with no relationship between the response variable and the vari-172

able of interest. This randomization is repeated a large number of times to create many173

different permuted datasets. The same analysis is then carried out on the permuted174

datasets as on the original dataset, and a test statistic of interest (e.g. the estimate of175

among-group variance) is used to create a null distribution of test statistics (Figure 1c,d).176

A (one-tailed) p-value can then be derived as the proportion of permuted datasets with177

a test statistic greater than or equal to the test statistic observed with the real data178

set. Permutation tests have already been suggested as an alternative to likelihood ratio179

tests for frequentist analyses (Fitzmaurice et al., 2007; Samuh et al., 2012), although180

they are not commonly utilized in ecology and evolution (but see Araya-Ajoy & Dinge-181

manse, 2017; Stoffel et al., 2017). Permutation tests are a subclass of nonparametric182

tests (Pesarin & Salmaso, 2010; Lehmann & Romano, 2005) and do not rely on specific183

probability distributions, and so make few assumptions. However, as we show later in184

the manuscript, datasets can be permuted in several different ways when the data struc-185

ture is complex, and the consequences of the choices involved in such cases are often186
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not immediately obvious. An alternative method of creating a null distribution is using187

simulations. This process is similar to permutation, but instead of generating permuted188

datasets we can simulate datasets from the observed model parameters (similar to para-189

metric bootstrapping), whilst setting the variance in question to zero. Again, the same190

analysis is carried out on the simulated datasets, and the test statistics of interest used191

to create a null distribution. This simulation method makes more assumptions about the192

data and model, but allows for more control of the manipulated features of the simulated193

datasets compared with permutations.194

Finally, a crucial part of designing experiments and statistical analyses is assessing195

the power to detect an effect size of interest. Power is defined as the probability of reject-196

ing the null hypothesis for a given effect size at a specified alpha level. Although power197

typically relates to NHST and the often criticized alpha level (Wasserstein & Lazar, 2016;198

Amrhein et al., 2017; McShane et al., 2019; Amrhein et al., 2019), it remains an impor-199

tant tool for study design regardless of statistical philosophy, by providing a quantitative200

approach to calculating optimal sample sizes and designing sampling regimes. Power may201

also provide a more useful metric than precision when considering variance components.202

As their distributions are bounded at zero, standard errors will always decrease when203

distributions are close to zero (see Figure S2). The concept of power for variance com-204

ponents in MCMC models is not well developed, however. As null distributions can be205

used to generate p-values, they provide a convenient way of conducting power analysis.206

Here, we first compare the metrics of central tendency that are commonly used as207

summary statistics of posterior distributions of variance components. We then demon-208

strate the utility of null distributions to generate a complementary p-value statistic and209

aid the interpretation of the variance components, and compare two methods of generat-210

ing them. Null distributions can provide a continuous, quantitative measure of confidence211

that the observed variance component is larger than what might be expected under the212

null hypothesis (no among-group variance), given the data structure and priors used.213
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Importantly, we are not advocating that this approach should replace the presentation214

and use of effect sizes and credible intervals, but rather that it should be used as an215

additional and complementary statistic. Finally, we show how null distributions can be216

used to perform power analysis within an MCMC framework.217

Methods218

All simulations were carried out in R (version 4.1.0; R Core Team, 2022) using the219

squidSim R package (version 0.1.0; Pick, 2022).220

Generation of ‘observed’ datasets221

We generated a series of datasets with known parameters, which we will refer to as our222

‘observed’ datasets (to distinguish them from the ‘null datasets’ in following sections).223

We first simulated Gaussian data with one hierarchical level and varied the number of224

observations per group (2 and 4) and the number of groups (20, 40 and 80). We sim-225

ulated a total variance of 1 and varied the among-group variance (0, 0.1, 0.2 and 0.4;226

also representing the intra-class correlations (ICCs)/repeatabilities). We simulated every227

combination of these parameters (24 parameters sets) and for each set we simulated 500228

‘observed’ datasets. Power to detect among-group variance is known to be determined229

by effect size and sample size both within and among groups. We chose these parameter230

values and sample sizes to explore scenarios where power is low (Dingemanse & Dochter-231

mann, 2013) to understand the impact on posterior distributions. These sample sizes232

also correspond to typical experimental designs in behavioral ecology or life history data233

collected on wild populations (Bell et al., 2009).234

We analysed each ‘observed’ dataset with a linear mixed-effect model specifying group235

level random effects in a Bayesian framework, using Stan with the rstan package (version236

2.21.3; Stan Development Team, 2022a). We specified weakly informative priors on the237
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among-group and residual standard deviations (half-Cauchy distribution with scale 2; a238

commonly used and recommended prior for variance components (Gelman, 2006)), and239

ran one chain for each model with 5000 iterations and a warm-up period of 2000 iterations.240

This ensured an effective sample size in the posterior distribution of the among group241

variance of >500 across the majority of models (95%). For comparison, we also ran242

REML models using the lmer function of the lme4 package (version 1.1-29; Bates et al.,243

2015), the results of which are shown in Figure S3. To ensure that our results were not244

affected by the choice of the prior, we ran additional models on a subset of the data with245

a range of different priors (see Supplementary Materials). Changing the prior on the246

among-group standard deviation did not affect our results, whilst using uninformative247

priors on the among-group variance led to a concordance between REML estimates and248

posterior mode, as might be expected (Figure S1).249

As a demonstration that our findings hold with more complex data, we additionally250

simulated Bernoulli (binomial with one observation) and Poisson data. Bernoulli data251

were simulated with 80 groups and 4 observations per group. Among-group effects were252

simulated from a Gaussian distribution on the latent scale, with a mean of 0 and among-253

group variances of 0 and 0.2, 0.4 and 0.8. The latent scale response variable was then254

transformed using the inverse logit function to provide the probabilities, and sampled with255

a Bernoulli process. Poisson data were simulated with 80 groups and 2 observations per256

group, with a mean of 2 and a total variance of 0.2 on the latent scale, with among-group257

variances of 0, 0.02, 0.04 and 0.08 (ICCs of 0 and 0.1, 0.2 and 0.4 on the latent scale).258

The mean and total variance were chosen based on a literature survey of provisioning259

data in Pick et al. (2023). We took the exponent of the latent scale response variable to260

provide expected values, and sampled them with a Poisson process. We simulated 500261

‘observed’ datasets for each variance, and analysed the data using GLMMs as outlined262

above.263
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Comparison of posterior distribution summary statistics264

From the posterior distributions of the among-group variances, we calculated the posterior265

mean, median and mode, and compared these estimates with the true values.266

While calculating the mean and median of the posterior distribution is straightfor-267

ward, estimating the posterior mode involves some (hidden) assumptions. Typically the268

mode is estimated using kernel density estimation, which involves fitting a model to the269

distribution of posterior samples to estimate a density function. The maximum of this270

function is then calculated over a series of predicted values, to give the estimated mode.271

One key parameter in kernel density estimation is the bandwidth, which describes the272

amount of smoothing and is analogous to the number of breakpoints in a histogram. As273

shown in Figure 2, with the degree of smoothing can affect where the posterior mode is274

estimated. To explore this further, we estimated the posterior mode using two bandwidth275

scalings (0.1 and 1; low and high smoothing, respectively), which are the defaults in two276

commonly used R functions for estimating the mode (MCMCglmm (Hadfield, 2010) and277

the ggdist and bayestestR packages (Kay, 2022; Makowski et al., 2019b), respectively).278

Further details about the differences between these functions are presented in the Supple-279

mentary Materials. In both cases, the kernel density was estimated using the SJ algorithm280

(Sheather & Jones, 1991), and the mode was estimated using 512 predicted values with281

a cut-off point at zero.282

To compare these different measures of central tendency, we calculated measures of283

bias, precision and accuracy. Because variance components are limited by 0, deviations284

from the mean or simulated values will be smaller at smaller effect sizes. To account for285

this, we also calculated relative measures. We calculated the bias as 1
n

∑
θ̂i − θ (where286

θ is the true value, θ̂i is the model estimate from ith simulation in a parameter set, and287

n is the number of simulations). For the non-zero effect sizes, we also calculated relative288

bias as 1
n

∑
θ̂i−θ
θ

, and mean absolute error as 1
n

∑ |θ̂i−θ|
θ

. Note this is a also relative289

measure. Mean absolute error is similar to root mean squared error, and combines bias290
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and precision. We also calculated the precision as 1/

√
1
n

∑
(θ̂i − ¯̂

θ)2, and relative precision291

as
¯̂
θ/

√
1
n

∑
(θ̂i − ¯̂

θ)2, where
¯̂
θ is the mean of the model estimates across all simulations292

in a parameter set. Precision is presented in Figure S2.293

Creation of null distributions and p-values294

We created null distributions for each ‘observed’ dataset using two methods to gener-295

ate ‘null datasets’. First, we permuted the ‘observed’ datasets by shuffling the group296

indices (IDs) to create 100 new permuted null datasets per ‘observed’ dataset, in which297

among-group variance is expected to be zero. Second, we used simulations to create 100298

null datasets with the same data structure but no among-group variance for each ‘ob-299

served’ dataset. To determine the value of the residual variance for these simulations,300

we added together the posterior distributions of the among-group variance and residual301

variance from the models of each original ‘observed’ dataset, and used the median of302

the resulting distributions. This ensured that the total variance in the simulated null303

datasets was the same as in the ‘observed’ datasets. The choice of the median for this304

step should have little consequence, as this derived distribution will be estimated with305

much less uncertainty and so will be symmetric, meaning that the three measures of306

central tendency will be equivalent. It is important that any fixed effects, including the307

intercept, are included in the simulations, especially for GLMMs as the expectations will308

affect the stochastic variance on the data scale. Each of these null datasets was analysed309

with the same model as the original ‘observed’ dataset, and the same parameters (the310

central tendency estimates of the posterior distribution of the among-group variance)311

were extracted to create the corresponding null distributions. Although we recommend312

using null distributions with more samples for empirical studies (e.g. 1000), here we used313

100 permutations/simulations for each ‘observed’ datasets in order to reduce the compu-314

tational burden (500 simulations for 24 parameter sets is 12000 Gaussian datasets, each315

with 100 permutations and 100 simulations). We calculated a p-value for each ‘observed’316
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dataset, as the proportion of estimates in the null distribution that were higher than the317

estimate from that ‘observed’ data. We calculated p-values using each central tendency318

measure, which are compared in Figure S4.319

Power analysis and comparison with bias and precision320

Power is defined as the probability of rejecting the null hypothesis (no among-group321

variance in this case) for a given effect size and data structure at a specified alpha level322

(typically 0.05). Although power is typically interpreted in the context of NHST, power323

can also be seen as a description of the distribution of p-values expected for a given324

effect size and data structure (it is the cumulative density at 0.05 for a given p-value325

distribution). Other descriptions of the p-value distribution (e.g. the mean) would be326

simple functions of the power (Figure S5). We chose to present power as a description327

of the distribution of p-values as it is conceptually well understood and frequently used328

rather than because of any philosophical alignment with NHST.329

Using the ‘observed’ datasets described above, we compared two ways by which power330

can be calculated. In both methods, power was calculated for the parameter sets where331

the true value was greater than zero, as the proportion of ‘observed’ datasets in which the332

p-value was below a nominal threshold of 0.05. In the first (‘full’) method, we used the333

p-values generated above, through comparison of the ‘observed’ datasets with their null334

distributions from both permutation and simulation approaches. In the second (‘reduced’)335

method, we generated p-values by using model estimates from the ‘observed’ datasets with336

zero among-group variance for each data structure (combination of among- and within-337

group sample sizes) as a null distribution, against which the estimates from ‘observed’338

datasets simulated with among-group variance could be compared. This method of gener-339

ating p-values is similar to the simulation method of generating null distributions, but uses340

one null distribution for all ‘observed’ datasets with the same data structure, instead of341

null distributions for each ‘observed’ dataset. It is therefore massively less computation-342
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ally intensive for power analyses; exploring power within the parameter space presented343

here required 12,000 models, rather than 1,212,000.344

We were also able to calculate the false positive rate for the ‘full’ method in the345

same way as power, using the parameter sets where the simulated value was zero. It was346

pointless to calculate a false positive rate for the ‘reduced’ method; by comparing the347

null distribution with itself, the false positive rate is, by definition, 5%.348

As stated above, posterior distributions are expected to be asymmetric when power is349

low, which is also when we expect biases in the different measures of central tendency. We350

therefore examined how well power predicts the relative bias of the different measures of351

central tendency. During the review process, it was suggested that we could use relative352

precision to account for the appearance of higher precision in effect sizes near zero. We353

therefore also compared this metric with power, as it may provide an alternative measure354

to power for study design.355

Worked example - Random slopes356

Empiricists commonly encounter more complex questions and data structures in their357

studies than we have presented above. Here we outline a more realistically complex358

example where the permutation of datasets require some careful decisions.359

Random slope models (where group-specific intercepts and slopes are modelled, also360

known as random regression) provide a good example of this complexity. We will focus361

here on generating a null distribution for the estimate of among-group variance in slopes.362

This estimate is based upon the relationship between the predictor variable and response,363

the distribution of the response variable across groups and the distribution of the predictor364

variable within and across groups. This structure provides four ways to generate null365

distributions via permutation that retain different relationships in the observed dataset366

(illustrated in Figure S6). The first two are general to variance components, and the367
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second two are specific to random regression models.368

1. Permuting the response variable. This is the most unspecific permutation. It retains369

data structure and breaks all relationships with the response, removing the effects370

of all random factors and predictors, and allows for testing multiple components at371

the same time. It is a full null model of all biological processes described by the372

model.373

2. Permuting the group identities. This is a more specific permutation. It breaks the374

relationship between a specific group and both the response and other predictors,375

and retains associations between predictors and response (including any other ran-376

dom effects linked to different grouping variables). It will remove the effects of377

both random intercepts and random slopes associated with the grouping factor in378

question.379

3. Permuting the predictor. This is even more specific, targeting random slopes specif-380

ically. It retains the group data structure, but breaks link between predictor and381

response, and the distribution of the predictor across groups. By breaking the link382

between predictor and response, there is no relationship that can vary between383

groups (i.e. random slopes).384

4. Permuting the predictor within groups. This is the most specific permutation. It385

is similar to 3) but retains the distribution of the predictor across groups, whilst386

breaking the link between predictor and response within group.387

We can also generate null distributions through simulation. Here we have multiple388

variance components (intercepts and slopes), and so the simulations can either test one389

component at a time or both together. In this example, we can either simulate no390

among-group variance in slopes (adding the variance generated by the random slopes391

to the residual to ensure the same total phenotypic variance), or simulate no variance392

in either intercepts or slopes (adding the variance generated by both random intercepts393
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slopes to the residual). We explore these six null distributions using a simulated and394

a real dataset. They provide a useful contrast between a dataset where we know the395

true values, and one where the true values are unknown with the potential for greater396

complexity.397

To generate our simulated dataset, we imagined a hypothetical researcher who wants398

to test whether there is variation among individuals in how temperature affects their399

body mass. The dataset was simulated with 300 individuals measured 4 times each.400

Body mass and temperature were both normally distributed. Temperature was scaled401

to have a mean of 0 and variance of 1, and has an effect on body mass of 0.2 for the402

average individual. The simulated among individual variance in the intercepts was 0.2403

and the phenotypic variance generated by variation in slopes was 0.1 (with no correlation404

among random slopes and intercepts), while the residual variance was set to 0.7 to ensure405

a total phenotypic variance not explained by the average effect of the environment was 1.406

Formulas to estimate the total phenotypic variance in random slope models can be found407

in Allegue et al. (2017). There were no systematic differences in the average temperature408

experienced by the different individuals.409

For our real data example, we employed a study on the aggressive response of great410

tits (Parus major) to intruders in a nestbox population in southern Germany (Araya-411

Ajoy & Dingemanse, 2017). Data were collected over a 6-year period (2010–2015) for all412

males during their first breeding attempt each year. A male great tit model was presented413

with a playback song 1m away from the subject’s nest box. Aggression was measured414

as the minimum distance of the focal male to the model (Araya-Ajoy & Dingemanse,415

2014). Territorial intrusions were performed twice during the egg-laying stage and twice416

during the egg-incubation stage of each focal nest, with males responding, on average,417

to 2.8 out of the 4 intrusions. Males were also sampled across years, with an average418

of 1.4 reaction norms per male. In total there was 2854 aggression tests performed to419

1042 breeding attempts of 679 individuals. Full details are provided in Araya-Ajoy &420
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Dingemanse (2014); Araya-Ajoy & Dingemanse (2017).421

Both datasets were analysed using random slope mixed-effects models, specifying422

the environmental predictor (temperature and breeding stage, respectively) as a fixed423

covariate, and random intercepts and environment slopes across individuals. Breeding424

stage was coded as zero (for egg-laying) versus one (for incubation), and then mean425

centred and standardized to standard deviation units (Schielzeth, 2010). We generated426

six null distributions of posterior medians for each dataset (four permutations and two427

simulations), as outlined above, with which we compared the estimate of among individual428

variance in slopes from the observed data. Null distributions were generated based upon429

the analyses of 1000 null datasets. Models were fitted in a Bayesian framework, using Stan430

with the rstan package (version 2.21.3, Stan Development Team, 2022a). We specified431

weakly informative priors on the among-group and residual standard deviation. We ran432

three chains for the models of the simulated and real observed datasets, and a single433

chain the models for the null datasets, all with 5,500 iterations and a warm-up period of434

500 iterations.435

Results436

Comparing summary statistics of the posterior distribution437

When the simulated among-group variance was zero, all summary statistics were upwardly438

biased to some extent as the posterior distribution cannot include 0 (Figure 3a; full439

sampling distributions are shown in Figure S7). Predictably, the posterior mean and440

median from datasets with zero variance were considerably more upwardly biased for441

small sample sizes then the mode, with the mean being the most biased. Note that this442

upward bias was also present in frequentist analyses (see Figure S3), and was not just a443

feature of Bayesian analyses.444
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When the simulated among-group variance was non-zero, then the mean, median and445

mode all appeared to be consistent estimators, in that any bias occurred only at small446

sample and/or effect sizes. The posterior median generally converged on the simulated447

value at lower effect and sample sizes (Figure 3b) with a slight tendency to be biased448

downwards, as compared with the posterior mean, which was upwardly biased, and the449

posterior mode that was biased towards zero (Figure 3b). Consistent with Figure 2,450

the bias in the mode depended upon the chosen bandwidth, with the higher smoothing451

bandwidths showing less bias. We found similar overall patterns in the Poisson and452

Bernoulli simulations (Figure S8).453

In terms of relative precision (Figure 3c), the mean was the most precise estimator,454

with both estimates of the mode showing considerably lower precision than either median455

or mean. Similar to the bias, the precision of the different estimators converged as sample456

size and effect size increased.457

In terms of mean absolute error (Figure 3d), a (relative) measure of accuracy that458

combines bias and precision, the mean and median were very similar, with exception of459

the lowest sample and effect size combination where the mean was less accurate. The460

mode was consistently less accurate than the other measures (Figure 3d), although this461

lower accuracy disappeared at higher sample and effect sizes.462

Performance of the null distributions463

A p-value is defined as the probability that an estimate equal to or more extreme than the464

observed estimate would occur under the null hypothesis (i.e. if the true among-group465

variance is zero). When the null hypothesis is true, we expect a uniform distribution of466

p-values (we expect 5% of values to be ≤ 0.05, 50% to be ≤ 0.5 etc). When the null467

hypothesis is false, we expect smaller p-values to become more likely, in line with the468

power we have to detect an effect. We find exactly these patterns when considering the469

p-values generated by null distributions. Both permutation and simulation methods pro-470
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duced a uniform distribution of p-values when the simulated among-group variance was471

zero (Figures 4), and the distributions of p-values from both permutation and simulation472

methods shift towards zero as the sample size and the magnitude of the variance increase473

(Figure 4). We found similar results in the Bernoulli and Poisson simulations (Figure474

S9).475

Importantly, although the mean, median and mode were often quite different in magni-476

tude (reflecting skew in the posterior distribution), the inference based upon the p-values477

did not differ between the different metrics. There were strong correlations between p-478

values derived with the different central tendency metrics, except when the mode was479

estimated with less smoothing which produced less consistent p-values (see Figures S4480

and S10). P-values were also strongly correlated between simulation and permutation481

methods (see Figures S11).482

Power analyses and comparison with bias and precision483

When we used the full method of estimating power, both ways of generating null distribu-484

tions (permutation and simulation) gave very similar results (Figure 5), with marginally485

higher power for the permutation method. These power estimates were very similar to486

previous published estimates for frequentist models (Dingemanse & Dochtermann, 2013).487

When the among-group variances was simulated as zero, these methods displayed the488

expected false positive rates of 5% (black points in Figure 5). The reduced method for489

estimating power, using the same null distribution for all datasets with an effect size > 0490

within a particular data structure, generally showed similar power to the other methods491

(Figure 5). As with the p-values, power was not particularly sensitive to the measure of492

central tendency used, the highest power being seen in the mode with higher smoothing493

and the lowest power for the mode with the least smoothing (Figure S12).494

As shown in Figure 6, relative bias in all measures of central tendency decreased as495

power increased. This pattern was similar across Gaussian, Poisson and Bernoulli traits.496
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Power was also closely related to relative precision (Figure S13) and consequently also to497

relative bias (Figure S14).498

Random slope worked example499

In both the simulated and real datasets, the different types of null distributions (generated500

using two simulations and four permutations; Figure S6) provided the same qualitative501

results, supporting the conclusion that there was among-individual variation in slopes502

(Figure 7). For both of these datasets, permuting individual identity created null distri-503

butions with a larger mean value of random slope variance that the other permutations.504

Note that these results should be considered in the context of random regression, and may505

not generalize to other types of model (see discussion). We therefore generally recom-506

mend exploring the particular consequences of different types of permutations for specific507

datasets where possible, as this may reveal patterns in the data that warrant further508

exploration.509

Discussion510

We demonstrate the difficulties of summarising the posterior distributions of variance511

estimates from MCMC-based models. We describe different methods for generating null512

distributions that provide useful complementary information alongside the presentation513

of central tendency and uncertainty that are generally reported. We also show a way in514

which null distributions could be used to derive a p-value, which is a simple addition to the515

statistics presented when summarizing a posterior distribution and also facilitates power516

analysis. Importantly we show that biases in central tendency measures are functions of517

power.518
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Summary statistics519

Our experience in ecology and evolution is that both posterior mean and mode are com-520

monly, but inconsistently, presented without justification. For fixed effect parameter521

estimates, this is typically inconsequential, as the posteriors are usually symmetrically522

distributed. For estimates of variance components, however, our simulations show that523

depending upon the underlying parameter value, both mean and mode can show large524

biases in opposite directions. When posterior distributions were close to zero and there525

was among-group variance, the posterior mode was very biased towards zero, whereas the526

posterior median and mean performed better. On the other hand, if there was no among-527

group variance, the mode was the least biased. The mode, however, is more subjective528

as its estimation depends on the choice of underlying algorithm (results shown here),529

it requires larger posterior distributions for reliable estimation, and will show greater530

variation between models/chains (Kruschke, 2015). Unfortunately, the method of mode531

estimation is rarely justified or even stated in empirical papers. Therefore, we cautiously532

recommend the presentation of the posterior median, or both median and mean, as a533

measure of central tendency for variance components. This recommendation is based534

upon the median being generally less biased than the mean when power is low (Figure535

6). Presenting both allows any discrepancy to be seen, which would indicate that the536

distribution is near to zero and not symmetric, and further emphasize the uncertainty in537

these measures.538

Upward biases in variance components have been seen before when power is low, but539

the dependence on the choice of the central tendency metric has not been highlighted.540

For example, Fay et al. (2022) note overestimation of variance components in Bernoulli541

models, with this overestimation decreasing in size as sample size and effect size increase.542

Fay et al. (2022) use the posterior mean as a summary statistic, and (as we show in543

Figure S15) this bias will decrease (although not disappear completely) through the use544

of a posterior median. This is not just a bias in Bernoulli models, or in fact MCMC545
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models (Figure S3), but a general property of variance components estimated with low546

power (Figure 6, or low relative precision - Figure S14).547

We urge caution in interpreting our results in terms of absolute sample sizes or effect548

sizes alone. Different types of data and data structures will contain different amounts of549

information and so vary in power, meaning that the same bias might not result from the550

same sample size or variance in a different context. GLMMs make this more complex, as551

similar variances on the latent scale can equate to different variances and so different effect552

sizes on the expected and observed scales, depending on the link function and the form553

of stochastic variance (de Villemereuil et al., 2018). For example, we found a comparable554

range of powers for our Poisson and Bernoulli examples, despite very different simulated555

variances on the latent scale (0.02, 0.04 and 0.08 versus 0.2, 0.4 and 0.8, respectively).556

Similarly, Bonnet & Postma (2015) found very different power to detect the same latent557

scale variances in Bernoulli and Poisson traits. Given the strong relationship between558

these biases and power (or relative precision), considering the potential bias in variance559

estimates in relation to power (or relative precision) may be a productive way forward,560

as this is comparable across models, distributions, effect and sample sizes.561

It is commonly argued that rather than presenting summary statistics, we should562

present and interpret the whole posterior distribution, typically portrayed using density563

plots. However, the underlying parameters of the kernel density estimation are not given564

alongside density plots, meaning the amount of smoothing is unknown. A large degree565

of smoothing can hide asymmetry and/or bi-modality, and so change inferences. We566

therefore suggest the use of histograms over density plots in the presentation of posterior567

distributions, because although histograms are subject to the same smoothing problems,568

the degree of smoothing is at least explicit. Alternatively, other plots that explicitly show569

the raw posterior samples can used (e.g. beeswarm plots; Figures 4 and 7).570
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Null distributions571

The null distribution approaches outlined here are relatively easy to use, although compu-572

tationally intensive (see section ‘Computational burden’). They allow the quantification573

of confidence that the estimated group level variance is not simply a consequence of the574

choice of priors and data structure. Importantly, the p-values based upon null distribu-575

tions are not dependent upon which measure of central tendency is used. Such inferential576

statistics comparing the observed estimates with the null distributions can provide quan-577

titative measures that can be reported alongside the observed estimates and uncertainty,578

and provides a useful tool for assessing the probability that variance components are non-579

zero and thereby supplement visual inspections of posterior distributions, or comparison580

of posterior mode, median and mean. Furthermore, inferential statistics can serve as an581

objective and easy-to-communicate assessment of the biological relevance of an estimated582

variance component to the general public and policy makers, or for the statistical support583

of non-zero values for derived statistics like heritability, repeatability or evolvability. A584

common criticism of p-values is that they are often misinterpreted. We therefore recom-585

mend those using the null distribution approach to acquaint themselves with the relevant586

literature (useful examples include: Wasserstein & Lazar, 2016; Amrhein et al., 2017;587

McShane et al., 2019; Amrhein et al., 2019). Importantly, p-values cannot demonstrate588

absence of effect, just confidence in difference from the null hypothesis. We believe gen-589

erating null distributions will help empiricists understand these concepts, as they give a590

visual representation of what p-values signify.591

Increasing the complexity of the data structure and model will create more ways to592

permute datasets. In our random slope examples, we showed how these permutations can593

become increasing specific to target particular components of the model, from permuting594

the response to permuting the environmental predictor within individuals. Here, these595

different permutations led to qualitatively similar results, although whether they always596

or usually do so would require a much broader set of simulations. Interestingly, permut-597
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ing individual identity created null distributions with noticeably larger values of random598

slope variance. We believe this is due to the existence of random slopes generating het-599

erogeneous residuals (i.e. variance in response changed with the environmental predictor)600

that were confounded with random slope variation in the analyses of the null data sets601

(similar effects were also shown in Ramakers et al., 2020), whereas the other permutation602

methods broke up the relationship between the predictor and response. Comparing the603

results of the different methods of null distributions generation may provide insights that604

help inform statistical inference or highlight the need for further exploration.605

The bulk of the simulations presented here do not directly consider how to assess606

multiple variance components. In our random slope examples, it made little difference607

whether we simulated no variance in random slopes and intercepts or just random slopes.608

However, this may differ between model structures. Generating null distributions for609

all components at once (for example by permuting the response variable, or setting all610

random effect variances to 0 in simulations) makes the assumption that the different611

variance components do not affect each other. If this assumption is reasonable (it is612

typically being made when a given model structure is chosen to be appropriate), then613

generating null distributions for all components at once would be reasonable. If there614

is a reason to think that they may affect each other, then null distributions are better615

generated for each random term at a time.616

In some instances, generating a null distribution using permutations may not be617

possible. For example, in event-history models of survival (where individuals have a a618

sequence of 0/1 (survived/died) for each time point where they are observed), permuting619

the individual identifiers would fundamentally alter the data structure, meaning that some620

individuals had multiple deaths. However, this could work in the context of an animal621

model, where 0’s and 1’s could be interchanged between individuals, retaining the same622

structure across individuals, but breaking the link with the pedigree. This demonstrates623

that the suitability of permutations and how they impact the data structure needs to624
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be carefully assessed on a case-by-case basis. Overall, we are not advocating a specific625

recipe for permutations - it is likely context and question dependent. We instead advocate626

a simulation approach at the planning stage to check in advance that the permutation627

design gives desired properties with your likely data structure.628

Generating null distributions through simulation avoids many of the issues with the629

permutation approach, although it may not account so well for the particularities of each630

dataset, (for example, the heteroskedasticity in the random regression examples above).631

Simulations allow the structure of the data to be fully retained, allow a more fine-scale632

alternation of the variances in question, and make no additional assumptions than those633

already made by the statistical model. A simulation approach also simplifies the simulta-634

neous generation of null distributions for multiple variance components whilst retaining635

the data structure. Reassuringly, in our random regression examples, the null distribu-636

tions generated using two simulation methods were similar, and the results were similar637

to those obtained using the permutation methods. We therefore cautiously recommend638

the use of this simulation method, as it is the most flexible for complex models.639

These null distribution approaches are computationally intensive and the suitability640

of their application will depend upon the model complexity, the amount of data and641

the available computational resources (see section ‘Computational burden’). MCMC642

methods are often used for highly complex problems (e.g. double hierarchical GLMs;643

Cleasby et al., 2015), where generating a large number of samples for a null distribution644

may not be an option. The number of samples affects the minimum p-value that can be645

calculated and its precision - a null distribution with 100 samples can have a minimum646

p-value of 0.01 and vary by intervals of 0.01. In addition, stochastic fluctuations in the647

p-value can have a large impact on inference. For this reason, we would recommend648

a higher number of samples in the null distributions than we used here. We remain649

neutral to the application of NHST, preferring the use of p-values as a continuous measure650

of statistical support. However, if NHST is employed, researchers must ensure that a651
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large number of samples is used, to prevent inference being based on a handful of rare652

events. Note that, although not advisable for NHST, we were able to produce meaningful653

results with 100 simulations, which provided information (although much less reliably)654

of how incompatible the observed variance was with the range expected under the null655

hypothesis.656

Alternative approaches657

Use of a p-value relies upon the distribution of p-values being uniform when the null658

hypothesis is true, a property that is expected to be invariant to sample size (as we659

show in Figure 4). P-values therefore only provide support against the null hypothesis;660

they do not provide support for the null hypothesis. In contrast to p-values, the ROPE661

value and Bayes Factors aim to additionally assess support for the null hypothesis, and662

therefore depend upon sample size under both the null and alternative hypotheses. These663

alternatives are not always simple to implement, and below we outline some potential664

issues that empiricists may encounter.665

The ROPE (Region of Practical Equivalence) introduces another source of subjec-666

tivity into the analysis through defining an arbitrary threshold. This is not trivial for667

variance components, as small variances can have large knock-on effects. For example,668

McFarlane et al. (2015) found that maternal genetic effects accounted for 2% of variation669

in fitness, which predicted a 56% increase in mean lifetime reproductive success under670

10 generations. Bonnet et al. (2022) employed a ROPE approach, using simulations to671

demonstrate the biological relevance of the thresholds they use. ROPE is often discussed672

in a context where a cost-benefit analysis can be used to work out the minimum effect673

size that warrants the use of a particular (e.g. medical) intervention (Kruschke, 2018).674

Whilst there are clear applications for using ROPE in fields like conservation, where in-675

teraction with stakeholders requires thresholds over which decisions are made, for many676

empiricists, ROPE requires more subjective decisions to be made and justified.677
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Bayes Factors can be used to test the ‘significance’ of parameters in Bayesian mixed-678

effect models. However, the calculation of Bayes Factors is not straightforward. They679

require large posterior distributions for stable estimation (Schad et al., 2022). They680

also depend on the marginal likelihoods of the two models which are sensitive to prior681

specification (Gelman et al., 2021; Navarro, 2019; Schad et al., 2022), even when there is682

little or no visible effect on the posteriors. Using Bayes Factors as a measure of posterior683

odds also assumes equal probability of the two models, and it is not clear whether this684

is a reasonable assumption as some would argue that some among-group variance always685

exists.686

Bayesian models can also be compared using information criteria, in particular DIC687

(Deviance Information Criteria; Spiegelhalter et al., 2002), WAIC (Widely Applicable688

Information Criteria; Watanabe, 2010) and LOO-CV (Leave-One-Out Cross-Validation;689

Browne, 2000; Gelman et al., 2014), which aim to provide out-of-sample prediction accu-690

racy. DIC has several problems which in part come from being based on a point estimate691

(Plummer, 2008), and provides poor estimates when posterior distributions are not well692

described by their means (Gelman et al., 2021). WAIC addresses these issues by using693

the whole posterior. However, some assumptions of WAIC do not hold for hierarchical694

models with weak priors (Gelman et al., 2014; Millar, 2018). LOO-CV may, therefore,695

be the most suitable information criteria for this purpose. It is also important whether696

these information criteria are generated using marginal or conditional likelihoods (Mil-697

lar, 2018; Merkle et al., 2019; Ariyo et al., 2020) - although the marginal likelihood may698

be more appropriate for comparing hierarchical models, many software packages only699

(MCMCglmm) or by default (BUGS, JAGS, Stan) provide the conditional likelihood.700

The use of both LOO-CV and Bayes Factors for complex models is currently the701

subject of intense debate. Regardless of the various intricacies of this debate, perhaps702

a more constraining factor is that Bayes Factors and LOO-CV are not implementable703

in all programs, including those commonly used for variance component estimation in704
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ecology and evolution (i.e. MCMCglmm). Our approach provides an alternative to these705

methods, which is easily implemented and allows straightforward interpretation.706

Power analysis and possible alternatives707

Power analysis is controversial because of its link to NHST, and the misuse of NHST has708

been linked to scientific misconduct and the replication crisis (Wasserstein & Lazar, 2016;709

Amrhein et al., 2017; McShane et al., 2019; Amrhein et al., 2019). Whilst these criticisms710

relate to the use of p-values after data collection and analysis, power analysis is typically711

conducted pre-analysis, and serves a clear purpose in aiding experimental design. Power712

can also be seen as a description of the distribution of p-values expected for a given effect713

size and data structure. Other descriptions of this distribution (e.g. the mean) would be714

simple functions of the power (Figure S5), but the common use of this metric makes it715

more widely understood. One suggested alternative, Type M error (absolute relative bias716

of significant estimates), also relies upon calculation of p-values and an arbitrary alpha717

value, and is a simple function of power (Gelman & Carlin, 2014). Unlike power, Type M718

error is affected by the measure of central tendency that is chosen (Figure S16). Another719

alternative to power is to design studies around a desired level of precision in estimates.720

Although this works for unbounded parameters, precision is difficult to interpret for721

variance components, because it increases as the true value gets closer to zero due to the722

constraint at zero (see Figure S2). Using relative precision (the inverse of the coefficient of723

variation of the sampling distribution) avoids this problem. It is strongly related to power724

(Figure S13), and so optimizing this value may provide an alternative target for planning725

optimal experimental designs. The relative precision is, however, also highly dependent726

on the measure of central tendency used. We would therefore suggest that power still727

provides a suitable metric for designing studies to estimate variance components.728

We show two methods of power analysis based upon null distributions. The first (full)729

method involved generating p-values by creating a null distribution for each ‘observed’730
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dataset. This method is highly computationally intensive as it involves running a certain731

number of simulations multiplied by the number of permutations/simulations models,732

which could realistically be one million models per parameter. Our alternative (reduced)733

method involved generating p-values by comparing the parameter estimates from the734

‘observed’ datasets to a single null distribution for each data structure. Whilst the two735

methods estimated similar power, the reduced method was massively less computationally736

intensive (requiring running 2000 models rather than a million for each set of parameters).737

The disadvantage is that a false positive rate cannot be calculated.738

Even if power is not the intended use, these simulations can still serve an extremely739

useful purpose before studies are conducted. First, these simulations allow an empiricist740

to consider the distribution of p-values expected under a given effect size and design741

(power is essentially a description of the shape of this distribution). Second, the null742

distribution of point estimates can be visualised. Even if an empiricist does not want743

to calculate a p-value, creating a null distribution is a powerful way of considering the744

distribution of estimates that would be generated with no among-group variance, and745

would serve to encourage caution in how results that lie within that distribution are746

interpreted.747

Computational burden748

Null distribution approaches can be computationally intensive. When model complexity749

and/or sample sizes are high, applying them can take a long time, and may prohibit750

their use. There are several points in this regard that are worth noting. First, these751

computational constraints will become increasingly less problematic with advances in752

computing and software. For example, the introduction of Stan has led to a considerable753

decrease in computation time for many MCMC models, and the increased availability754

of computer clusters means that null distribution can be generated in parallel. Second,755

the mean and median require far lower effective sample size than credible intervals to756
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be well estimated (Vehtari et al., 2021). ‘Null’ models can therefore be run for much757

shorter times than the original model, as only the mean/median is needed. Third, other758

metrics are also computationally expensive. For example, the generation of Bayes Factors759

and LOO-CV requires running two models with much larger posterior distributions (1-760

2 orders of magnitude larger; Vehtari et al., 2017; Gronau et al., 2020), followed by761

additional computationally expensive steps. Finally, our suggested method will be the762

most efficient for power analysis. Whereas each Bayes Factors and LOO-CV require two763

models with large posteriors, in our method the same null distribution can be used for764

all simulated datasets with the same data structure, requiring models with much smaller765

posteriors. Relative precision is even less computationally intensive to generate, but766

perhaps slightly harder to interpret. Overall, the computational burden of generating a767

null distribution is perhaps not so high when compared to other alternatives.768

There will be cases in which none of these methods (null distributions, Bayes Factors or769

LOO-CV) will be feasible for computational reasons. Are there any less computationally770

expensive alternatives? The ROPE method provides a clear advantage here as it requires771

no additional computationally expensive steps to generate, although it may be difficult772

to apply with variance components. We realised when considering the relative precision773

as a metric for the sampling distributions that for an individual posterior distribution774

this metric (mean/SD) is analogous to a z-ratio. Interpretation in this context is a775

little strange, and z-ratios are typically used to represent the potential overlap of the776

uncertainty of a parameter estimate with 0, which cannot occur here. However, this kind777

of method is used with variance components in frequentist models that report the SEs of778

the variance components (e.g. when estimating genetic variance/heritability in ASReml779

(Butler et al., 2017)). Ultimately, we are looking for a usable statistic to describe the780

support for a difference between the variance component estimate and 0. These metrics781

would be considerably less computationally intensive to generate than a p-value from a782

null distribution, but may give similar information about the model estimates. Comparing783

them for individual models shows this appears to be true; the z-ratio correlates strongly784
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with p-value (Figure S17a). This statistic (posterior mean/posterior SD) may therefore785

provide some inferences about the posterior distribution of variance components, although786

it is much more conservative than a p-value generated from null distributions (Figure787

S17b). Whilst this may provide an interesting solution to the problems of computational788

power, use of the z-ratio requires further exploration before being implemented.789

Recommendations790

1. We advocate using the posterior median as a measure of central tendency for poste-791

rior distributions of variance components from MCMC-based models. Our results792

show that the median is the least biased estimate, but will overestimate variances793

when power is low. Reporting multiple measures of central tendency allows any794

asymmetry in the posterior to be made obvious.795

2. We advocate reporting of smoothing values in kernel estimation. Kernel density796

estimation is commonly used for estimating the posterior mode and creating density797

plots. The parameters used in this estimation are seldom reported, but can have798

a large impact on interpretation. We advise the reporting of parameters in the799

kernel density estimation, or the use of more explicit methods of plotting posterior800

distributions, such as histograms.801

3. We recommend using null distributions for inference. Null distributions provide a802

way of putting the observed parameter estimates into a context expected under an803

explicitly defined null hypothesis (i.e. no among-group variance). Null distributions804

can be created in multiple ways, but they are most easily controlled when generated805

using simulations. As with many aspects of statistical analysis, there are many806

decisions relating to generating null distributions that may have an affect on the807

results. Therefore, these methods should be defined pre-analysis, in order to reduce808

researcher degrees of freedom (Simmons et al., 2011).809
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4. We also advocate for using a null distribution to estimate power. As well as aiding810

post-hoc inference, null distributions can be used for power analysis. We provide811

details of a method for doing so that does not present a large computational burden.812
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Figure 1: Posterior distributions of variance estimates for two different scenarios (a and b) and their
respective null distributions (c and d) generated using permutations. Example a) shows a symmetric
posterior distribution far away from zero with close agreement between the posterior mean (red lines) and
mode (blue line), whilst b) shows an asymmetric posterior distribution close to zero, with clear divergence
between the posterior mean and mode. Examples c) and d) show null distributions of posterior means
generated through permuting the datasets, and corresponding p-values, of a) and b), respectively. The
values given in a) and b) correspond to mean (mode) [CRIs]. Both datasets were simulated from Gaussian
distributions with among-group variances of 0.2, but with differing sample sizes; a) with 80 groups and
4 observations per group; b) with 40 groups and 2 observations per group.
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Figure 2: The effect of bandwidth choice on the estimation of the posterior mode. Top row shows kernel
densities of the same posterior distribution, estimated with different bandwidth scalings, from 1 in a)
to 0.1 in d). Red lines shows the posterior modes estimated from that scaling. Bottom row shows the
equivalent histograms for comparison.
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Figure 3: Bias (a), relative bias (b), relative precision (c) and mean absolute error (d) of posterior mean,
median and mode of variance components from linear mixed effects models run on data simulated with
a Gaussian distribution varying in among group variance (ICC - 0, 0.1, 0.2, and 0.4) and sample size
within (2 or 4) and among (20, 40, 80) groups. Each point is based on the estimates from 500 datasets.
Two posterior modes were estimated: mode-1 and mode-0.1 with more and less smoothing, respectively
(see text for more details). Mean absolute error is also a relative measure, being standardised by the
simulated value (see text for more details).
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Figure 4: Distributions of p-values for the among-group variance, estimated used linear mixed effects
models run on data simulated with a Gaussian distribution, varying in among-group variance (ICC -
0, 0.1, 0.2, and 0.4) and sample size among groups (20, 40, 80), with 500 datasets per combination.
P-values were estimated using the posterior median and null distributions generated through simulations.
a) shows a within group sample size of 2, and b) a within group sample size of 4.
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Figure 5: Comparisons of power (in colour) and false positive rate (FPR, in black) calculated using
permutation (perm), simulation (sim) or a global null distribution (the ‘reduced’ method in the main
text). For each within-group sample size of a) 2 and b) 4, we show results for four among-group variances
(0 (representing FPR), 0.1 ,0.2 and 0.4) and three among-group sample sizes (20, 40 and 80), with 500
datasets per combination. All datasets were simulated with a Gaussian distribution. Power/FPR was
calculated using posterior medians.
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Figure 6: Relationships between power and relative bias, the latter being estimated across different mea-
sures of central tendency. Power was calculated using null distributions generated using the simulation
method and the posterior median. Each point is based on 500 datasets, simulated with either a Gaus-
sian, Bernoulli or Poisson distribution, with varying effect and sample sizes. Mean and 95% confidence
intervals of the the relative bias are shown.
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Supplementary Materials1065

Supplementary Methods1066

Impact of prior choice on measures of central tendency1067

To ensure that our results, especially on the mode, were not driven by the choice of1068

the prior, we ran additional models on a subset of the data (ICC=0.2, N groups=80, N1069

within=2) with a range of weaker priors; half-Cauchy priors with scale 5 and 25, and1070

uniform priors from 0 to 5 and 0 to 25 on the among-group standard deviation. The1071

half Cauchy prior has been recommended for variance components (Gelman, 2006) and1072

is commonly used (note it is equivalent to the commonly used parameterisation of the1073

parameter expanded priors in MCMCglmm (V=1, nu=1, alpha.mu=0 )). The different1074

parametrizations of the half Cauchy and uniform priors resulted in no difference in the1075

results (Figure S1). More recently the use of stronger priors has been suggested, for1076

example a half normal prior with scale 1. The use of this prior also did not affect1077

our results. For demonstration purposes, we also ran models in MCMCglmm specifying1078

uninformative improper priors on the variance. Given the simplicity of these models,1079

the posterior mode is expected to correspond to the REML estimate. For comparison,1080

we also ran a wide uniform prior (U(0,25)) on the variance in Stan. As expected, using1081

these uninformative priors on the variance led to a concordance between REML and1082

posterior mode, although the strength of this similarity differed between the methods1083

used to estimate the mode (Figure S1).1084
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Methods of posterior mode estimation1085

Commonly used functions for estimating the mode of the marginal posterior distribution1086

in R include the posterior.mode function in the MCMCglmm package (Hadfield, 2010),1087

the Mode function in the ggdist package (Kay, 2022), and the map_estimate function1088

of the bayestestR package (Makowski et al., 2019b). Typically these functions estimate1089

the mode by estimating the parameter value at which the kernel density is maximised.1090

Kernel density estimation involves fitting a model to the distribution of posterior samples1091

to estimate a density function. The maximum of this function (the estimated mode) is1092

then calculated over a series of predicted values. One key parameter in kernel density1093

estimation is the bandwidth, which describes the amount of smoothing and is analogous1094

to the number of breakpoints in a histogram (Figure 2). Common methods generally1095

generate the bandwidth using specific algorithms, which are then scaled. MCMCglmm1096

scales the bandwidth generated by Silverman’s ‘rule of thumb’ algorithm (nrd0; eqn 3.311097

in Silverman, 1986) by 0.1 (i.e. it is much less smoothed; Figure 2d). In contrast, ggdist1098

and bayestestR use the default values of the nrd0 and SJ algorithms (Sheather & Jones,1099

1991), respectively (the default bandwidth of the nrd0 algorithm is also used by density1100

function in R; Figure 2a). The impact on the potential inferences caused by the choice1101

of scaling is demonstrated in Figure 2, with the degree of smoothing affecting where the1102

posterior mode is estimated. To explore this impact of bandwidth, we estimated the1103

posterior mode using these two bandwidth scalings (0.1 and 1). The kernel density was1104

estimated using the SJ algorithm (Sheather & Jones, 1991), and the mode was estimated1105

using 512 predicted values with a cut-off point at zero. These additional parameters differ1106

between commonly used functions, but have much less impact than the bandwidth, and1107

so we held them constant.1108
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Simulations based on Fay et al. (2022)1109

We simulated datasets based on Fay et al. (2022), but ran simplified models (univariate1110

instead of bivariate), as the purpose was simply to demonstrate the effect of different1111

measures of central tendency on the bias in these models. We simulated data with the1112

same parameters of one set of simulation in Fay et al. (2022) - fast life history and1113

low heterogeneity. We simulated the probability of survival as 0.5 and probability of1114

reproduction as 0.7, standard deviations on the latent scale of 0.2 for both survival and1115

reproduction and a correlation of 0.6 between the two. We simulated 100 datasets from1116

sample sizes of 250, 500, 1000, 2000, 4000 individuals. For each simulated dataset we ran1117

a binomial GLMM, with random effects of individual identity using Stan with the rstan1118

package (version 2.21.3 Stan Development Team, 2022a). We specified weakly informative1119

priors on the among-group standard deviations (half-Cauchy distribution with scale 2),1120

and ran one chain for each model with 7500 iterations and a warm-up period of 20001121

iterations. We then estimated the posterior mean, median and 2 modes as in the main1122

text.1123
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Supplementary Figures1124
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Figure S1: Impact of prior choice on measures of central tendency. ’C’ represents half Cauchy priors,
’N’ normal priors, ’U’ uniform priors, and ’Improper’ uninformative improper prior. Red lines shows
simulated values. Blue points show the mean of the REML estimates across simulations, purple points
show means of different point estimates from across the 100 simulations with priors on the variance, and
orange points show means of different point estimates from across the 100 simulations with priors on the
SD. Data was simulated from a Gaussian distribution, with a among-group variance of 1, with 80 groups
and 2 observation within a group.

54



0
10

20
30

40
50

60
70

P
re

ci
si

on
0 0.1 0.2 0.4ICC

20 40 80 20 40 80 20 40 80 20 40 80 20 40 80 20 40 80 20 40 80 20 40 80

2 4 2 4 2 4 2 4

N among

N within

mean
median
mode−1
mode−0.1

Figure S2: Precision increases with sample size, but decreases with effect size. The different panels show
the precision of posterior mean, median and mode of variance components estimated using linear mixed
models, from data simulated with a Gaussian distribution, varying in among-group variance (ICC - 0,
0.1, 0.2, and 0.4) and sample size within (2 or 4) and among (20, 40, 80) groups, with 500 datasets
per ICC and sample size combination. Two posterior modes were estimated; mode-1 and mode-0.1 with
more and less smoothing, respectively (see text for more details).
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median and mode, estimated used linear mixed effects models run on data simulated with a Gaussian
distribution, varying in among-group variance (ICC - 0, 0.1, 0.2, and 0.4) and sample size within (2
or 4) and among (20, 40, 80) groups. Two posterior modes were estimated; mode-1 and mode-0.1 with
more and less smoothing, respectively (see text for more details).
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Figure S4: Comparison of p-values generated with different measures of central tendency estimated using
linear mixed models, using null distributions generated from both simulation and permutation methods.
Data were simulated with a Gaussian distribution.
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Figure S5: Relationships between power and false positive rate (FPR) and a) mean and b) variance in
p-values. Power/FPR was calculated using null distributions generated using the simulation method and
the posterior median. Each point is based on 500 datasets, simulated with either a Gaussian, Bernoulli
or Poisson distribution, with varying effect and sample sizes.
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Figure S6: Illustration of the different permutation designs that can be used for a random regression
analysis. The colours highlight what variables are permuted within each permutation.
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Figure S7: Sampling distributions of posterior mean, median and mode estimated using linear mixed models, from data simulated with a Gaussian
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Figure S8: Sampling distributions of posterior mean, median and mode estimated using GLMMs, from
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Figure S9: Distributions of p-values for the among group variance estimated used GLMMs run on data
simulated with a) Bernoulli and b) Poisson distributions, varying in among-group variance, with 500
datasets per combination. P-values were estimated using the posterior median and null distributions
generated through simulations.
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Figure S10: Comparisons of p-values generated with different measures of central tendency estimated
using GLMMs, using null distributions generated by simulation. The left column shows comparison
from data generated and analysed with a Bernoulli distribution and the right column with a Poisson
distribution.
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Figure S11: Comparisons of p-values generated from null distribution using permutation and simulation
methods across all measures of central tendency estimated using linear mixed models. Data were simulated
with a Gaussian distribution.
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Figure S12: Comparisons of power (in colour) and false positive rate (FPR, in black) generated using
different measures of central tendency. For each within-group sample size of a) 2 and b) 4, we show results
for four among-group variances (0 (representing FPR), 0.1 ,0.2 and 0.4) and three among-group sample
sizes (20, 40 and 80), with 500 datasets per combination. All datasets were simulated with a Gaussian
distribution. Power/FPR was calculated using null distributions generated using the simulation method.

65



0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

Mean

Power / FPR

R
el

at
iv

e 
P

re
ci

si
on

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

Median

Power / FPR

R
el

at
iv

e 
P

re
ci

si
on

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

Mode−1

Power / FPR

R
el

at
iv

e 
P

re
ci

si
on

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

Mode−0.1

Power / FPR

R
el

at
iv

e 
P

re
ci

si
on

Gaussian
Poisson
Bernoulli
ICC > 0
ICC = 0

Figure S13: Relationships between Power/false positive rate (FPR) and relative precision, the latter
being estimated across different measures of central tendency. Power/FPR was calculated using null
distributions generated using the simulation method and the posterior median. Each point is based on
500 datasets, simulated with either a Gaussian, Bernoulli or Poisson distribution, with varying effect
and sample sizes.
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Figure S14: Relationships between relative bias and relative precision, estimated across different measures
of central tendency. Each point is based on 500 datasets, simulated with either a Gaussian, Bernoulli or
Poisson distribution, with varying effect and sample sizes. Mean and 95% confidence intervals of the the
relative bias are shown.
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Figure S15: Mean posterior mean, median and mode of variance components from GLMMs, analysing
simulated survival data with increasing number of individuals. Simulations were based upon Fay et al.
(2022) - see Supplementary Methods for more details of parameterisation.
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Figure S16: Type M error and power from posterior mean, median and mode calculated using null
distribution generated through simulation. Colours represent simulated ICCs, red - 0.1, blue - 0.2, and
orange - 0.4.
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Figure S17: a) Relationship between z-ratio (posterior mean/posterior SD) and p-value. Grey lines
represent p = 0.05 and z = 1.64, the later being equivalent to the z-ratio that would give p = 0.05 on a
one-sided test. b) Relationship between power derived from z-ratio and and power derived from p-values.
Power was calculated for the z-ratios as the proportion of datasets where z > 1.64. Each point is based on
500 datasets. All datasets were simulated with a Gaussian distribution, with varying effect and sample
sizes.
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