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Abstract27

1. Assessing the biological relevance of variance components estimated using MCMC-28

based mixed-effects models is not straightforward. Variance estimates are constrained29

to be greater than zero and their posterior distributions are often asymmetric. Different30

measures of central tendency for these distributions can therefore be vary widely, and31

credible intervals cannot overlap zero, making it difficult to assess the size and statistical32

support for among-group variance. Statistical support is often assessed through visual33

inspection of the whole posterior distribution and so relies on subjective decisions for34

interpretation.35

2. We used simulations to demonstrate the difficulties of summarising the posterior36

distributions of variance estimates from MCMC-based models. We then describe different37

methods for generating the expected null distribution (i.e. a distribution of effect sizes38

that would be obtained if there was no among-group variance) that can be used to aid in39

the interpretation of variance estimates.40

3. Through comparing commonly used summary statistics of posterior distributions41

of variance components, we show that the posterior median is predominantly the least42

biased. We further show how null distributions can be used to derive a p-value that43

provides complimentary information to the commonly presented measures of central ten-44

dency and uncertainty. Finally, we show how these p-values facilitate the implementation45

of power analyses within an MCMC framework.46

4. The use of null distributions for variance components can aid study design and47

the interpretation of results from MCMC-based models. We hope that this manuscript48

will make empiricists using mixed models think more carefully about their results, what49

descriptive statistics they present and what inference they can make.50
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Introduction51

Estimating variance components using mixed-effects models is common in ecology and52

evolution (Bolker et al., 2009; Dingemanse & Dochtermann, 2013; Harrison et al., 2018).53

Mixed-effect models are a flexible statistical tool used to study hierarchically structured54

data, including extensions for estimating quantitative genetic parameters (animal models;55

Henderson, 1988; Kruuk, 2004) and comparative analysis (meta-analysis and phylogenetic56

mixed models; Hadfield & Nakagawa, 2010). Markov chain Monte Carlo (MCMC) algo-57

rithms are increasingly used to fit mixed-effects models due to their flexibility and the58

availability of open-source software (e.g. winBUGS (Gilks et al., 1994), JAGS (Plum-59

mer, 2003), MCMCglmm (Hadfield, 2010) and Stan (Stan Development Team, 2022b)).60

MCMC algorithms are a collection of probabilistic simulation methods for generating ob-61

servations from designated statistical distributions and are typically implemented within62

a Bayesian framework (Gelman et al., 2021).63

MCMC methods have many advantages in ecology and evolution. For instance, we are64

commonly interested in derived measures such as a standardised measure of variance (e.g.65

repeatability, heritability and evolvability Nakagawa & Schielzeth, 2010; Houle, 1992).66

These derived measures can be easily estimated using the whole posterior distribution of67

their components, allowing uncertainty to be propagated both within and among analyses.68

In contrast, in a maximum likelihood framework, the methods to estimate the uncertainty69

of derived metrics (using, for example, the delta method) can be laborious and biased with70

small sample sizes (O’Hara et al., 2008). Data in ecological and evolutionary studies are71

also commonly non-Gaussian, for example counts (e.g. number of offspring), binary and72

ratio data (e.g. survival, presence/absence, sex ratio) and categorical data (e.g. colour73

morphs, horn type in sheep). The performance of MCMC algorithms in generalized linear74

mixed-effects models has been found to be superior in terms of accuracy and precision75

compared with Restricted Maximum Likelihood (REML) approaches (O’Hara & Merilä,76

2005; de Villemereuil et al., 2013). Bayesian methods also allow existing information77
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to be incorporated as a prior distribution, although this option has rarely been used in78

ecological or evolutionary studies (Lemoine, 2019).79

Despite these advantages, there are several issues that empiricists face when using80

MCMC mixed-effect models. Here we address the issue that variance estimates and81

their uncertainty can be hard to describe and interpret, especially when trying to assess82

their biological relevance. We highlight two problems that can occur when estimating83

variance components, both of which centre around the difficulty of describing the posterior84

distribution of variance components using summary statistics: (i) finding an appropriate85

measure of central tendency; and (ii) assessing the statistical support for non-zero among-86

group variance. These problems stem from variance estimates being constrained to be87

greater than zero, which in turn means their posterior distributions are often asymmetric.88

In order to describe the posterior distribution, we often present some measure of cen-89

tral tendency alongside some measure of uncertainty (quantile-based intervals or Highest90

Posterior Density (HPD) intervals). The posterior mean, median and mode have all been91

used as measures of central tendency, and recent works have advocated the general use92

of the posterior median (Gelman et al., 2020; McElreath, 2020). There is, however, no93

clear guidance on which measure provides a more appropriate summary statistic for vari-94

ance components, although in our experience the mode and mean are most commonly95

reported. When the posterior distribution of a variance component is far away from zero96

and is symmetric, then the mean, median and mode are approximately equal (Figure 1a)97

and inferences are robust to the choice of central tendency metric. However, when vari-98

ances are small (relative to the total variance) and/or small sample sizes are small (both99

of which often occur in ecology and evolution), the posterior distributions can be close to100

zero. As variances are constrained to be greater than zero, these posterior distributions101

are typically asymmetric and can even be bimodal, with one mode close to 0 and another102

at higher value (e.g. Figure 1b). Consequently, there can be a considerable difference103

between the mean, median and mode, with the mode often lying close to zero (Figure104
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1b). This discrepancy makes it difficult to draw inference about the magnitude of the105

posterior variance estimate.106

The use of the posterior mode is often justified as being the closest to the maximum107

likelihood estimate (MLE) when uninformative priors are used. However, this compari-108

son refers to the joint posterior mode, rather than the marginal mode that is typically109

estimated and reported. In more complex models, the joint and marginal modes may110

differ (Held & Sabanés Bové, 2020, Section 6.5.4), meaning that the marginal mode and111

MLE are no longer the same. As shown in Figure S2, the convergence of the posterior112

mode and MLE also requires the use of uninformative improper priors on the variance,113

which are generally not advised (Gelman et al., 2021), in part because ‘uninformative’114

priors can be uninformative on one scale but not another (e.g. priors on standard devia-115

tion versus variance). Such priors are thus seldom used. The posterior mode is also hard116

to estimate; it is typically done using kernel density estimation and different methods117

may provide quite different estimates (Figure 2), thereby providing an additional source118

of hidden ambiguity. Furthermore, the mode requires a larger number of samples in119

the posterior distribution to be reliably estimated, and will show greater variation be-120

tween models/chains run on the same dataset (Kruschke, 2015). In contrast, the mean is121

strongly affected by extreme values, and so by the long tail of an asymmetric distribution.122

It is also often important to assess statistical support for among-group variance at123

a particular level. Typically 95% credible intervals (CRIs) are presented as a measure124

of uncertainty in parameter estimates derived from MCMC models. As variance com-125

ponents cannot overlap zero, CRIs give no information about the compatibility of the126

estimates with the null hypothesis (no among-group variance). Posterior distributions127

are often inspected visually, as histograms or density plots, in order to assess whether the128

distributions are right skewed with a mass near 0, which is commonly assumed to signify129

that the estimated variance is not different from zero. What is seldom appreciated, how-130

ever, is that the degree of smoothing that is applied in such plots (via the binning interval131
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or bandwidth) can alter these conclusions. This means that the same distribution can be132

seen as uni- or bimodal, or peaking at zero or away from zero depending on the degree133

of smoothing (Figure 2). Such assessments therefore tend to be subjective and lack a134

proper quantitative basis.135

To address this, several methods for generating metrics for assessing the confidence136

in a result (such as p-values) have been suggested in a Bayesian framework (reviewed137

in Makowski et al., 2019a). Two of these, Region of Practical Equivalence (ROPE) and138

Bayes Factors, can be used for variance components. The ROPE approach identifies a139

range of values considered negligible or too small to be of any practical relevance (i.e. the140

Region of Practical Equivalence), and quantifies the proportion of overlap between the141

posterior distribution and the ROPE. This is similar to equivalence testing in a Frequen-142

tist framework, specifically to the two one-sided tests (TOST) approach (Lakens et al.,143

2018). Bayes Factors are analogous to Frequentist likelihood ratios, comparing different144

models (for example with and without the random effects of interest), but unlike likeli-145

hood ratios they incorporate information from the prior distributions of the parameters146

into the comparison of the models and are evaluated using the marginal likelihood rather147

than at the maximum likelihood. Additionally, Bayesian models can also be compared us-148

ing information criteria which aim to provide out-of-sample prediction accuracy, of which149

LOO-CV (Leave-One-Out Cross-Validation; Browne, 2000; Gelman et al., 2014) has been150

suggested as the most suitable alternative for complex hierarchical models (Gelman et al.,151

2021). These different metrics (ROPE, Bayes Factors, LOO-CV) can be used to provide152

a measure of statistical support for estimates of variance components, but their imple-153

mentation is complicated - ROPE requires the definition of a threshold, incorporating154

further subjectivity into the analysis, whilst the computation of Bayes Factors and LOO-155

CV can be challenging, and even not implementable in some commonly used programs156

in ecology and evolution (e.g. MCMCglmm). The use of Bayes Factors and LOO-CV157

is also the topic of active debate (Gronau & Wagenmakers, 2019a,b; Chandramouli &158

Shiffrin, 2019; Vehtari et al., 2019; Navarro, 2019; Gelman et al., 2021). We address these159
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methods further in the discussion.160

Here, we suggest a complementary method to assess statistical support in mixed-161

effect models, which compares the estimated variance components to a null distribution162

in order to inform the statistical inferences made from the model. This involves creating a163

distribution of effect sizes that would be expected under the null hypothesis (no among-164

group variance) and comparing this null distribution with the observed among-group165

variance. This method has several advantages. Null distributions can be used to generate166

a p-value describing the probability that the observed estimate is as or more extreme than167

expected under the null hypothesis. Although often criticised through their association168

with Null Hypothesis Significance Testing (NHST; Wasserstein & Lazar, 2016; Amrhein169

et al., 2017; McShane et al., 2019; Amrhein et al., 2019), p-values have well understood170

and useful properties. When correctly interpreted, these test statistics provide a useful171

tool by providing a continuous measure of statistical support, indicating how inconsistent172

an observed effect size is with a scenario in which there is no among-group variance. In173

contrast to the ROPE method, the creation of a null distribution requires no subjective174

decisions about thresholds and, in contrast to Bayes Factors and LOO-CV, they can be175

implemented using the output from any Bayesian model.176

We present two methods, permutation and simulation, for generating null distributions177

for variance components. When generating a null distribution using permutation, some178

feature of the data or data structure is randomised to produce a new dataset that contains179

the structure of the original dataset, but where there is no relationship between the180

response variable and the variable of interest (the among-group variance in this case).181

This randomization is repeated a large number of times (e.g. 1000) to create many182

different permuted datasets. The same analysis is then carried out on the permuted183

datasets as on the original dataset, and a test statistic of interest (e.g. the estimate of184

among-group variance) is used to create a null distribution of test statistics (Figure 1c,d).185

A (one-tailed) p-value can then be derived as the proportion of permuted datasets with186
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a test statistic greater than or equal to the test statistic observed with the real data set.187

Permutation tests have already been suggested as an alternative to likelihood ratio tests188

for frequentist analyses (Fitzmaurice et al., 2007; Samuh et al., 2012), although they are189

not commonly utilized in ecology and evolution (but see Araya-Ajoy & Dingemanse, 2017;190

Stoffel et al., 2017). Permutation tests are a subclass of nonparametric tests (Pesarin191

& Salmaso, 2010; Lehmann & Romano, 2005) and do not rely on specific probability192

distributions, and so make few assumptions. However, as we show later in the manuscript,193

datasets can be permuted in several different ways when the data structure is complex,194

and the consequences of the choices involved in such cases are often not immediately195

obvious. An alternative method of creating a null distribution is using simulations. This196

process is similar to permutation, but instead of generating permuted datasets we can197

simulate datasets from the observed model parameters (in a similar way to parametric198

bootstrapping), whilst setting the variance in question to zero. Again, the same analysis199

is carried out on the simulated datasets, and the test statistics of interest used to create200

a null distribution. This simulation method makes more assumptions about the data and201

model, but allows for more control of the manipulated features of the simulated datasets202

compared with permutations.203

Finally, a crucial part of designing experiments and statistical analyses is assessing204

the power to detect an effect size of interest. Power is defined as the probability of205

rejecting the null hypothesis (i.e. no among-group variance) for a given effect size at a206

specified alpha level (typically 0.05). Although power typically relates to NHST and the207

often criticized alpha level (Wasserstein & Lazar, 2016; Amrhein et al., 2017; McShane208

et al., 2019; Amrhein et al., 2019), it and analogous metrics (Gelman & Carlin, 2014)209

remain an important tool for study design regardless of statistical philosophy, because210

they provides a quantitative approach to calculating optimal sample sizes and designing211

sampling regimes. Power may also provide a more useful metric than precision when212

considering variance components. As their distributions are bounded at zero, standard213

errors will always decrease when distributions are close to zero (see Supplementary Figure214
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S4). However, the concept of power for variance components in MCMC models is not215

well developed. As null distributions can be used to generate p-values, they also provide216

a convenient way of conducting power analysis.217

Here, we first compare the metrics of central tendency that are commonly used as sum-218

mary statistics of posterior distributions of variance components. We then demonstrate219

the utility of null distributions (i.e. a distribution of effect sizes that would be obtained220

if there was no among-group variance) to generate a complementary p-value statistic and221

aid the interpretation of the variance components, and compare two different methods222

of generating them. Comparison with a null distribution provides a continuous, quanti-223

tative measure of confidence that the observed variance component is larger than what224

might be expected under the null hypothesis, given the data structure and priors used.225

Importantly, we are not advocating that this approach should replace the presentation226

and use of effect sizes (e.g. posterior mean/median/mode) and credible intervals, but227

rather that it should be used as an additional and complementary statistic. Finally, we228

show how null distributions can be used to perform a power analysis within an MCMC229

framework.230

Methods231

All simulations were carried out in R (version 4.1.0, R Core Team, 2022) using the232

squidSim R package (version 0.1.0, Pick, 2022).233

Generation of ‘observed’ datasets234

We generated a series of datasets with known parameters, which we will refer to as our235

‘observed’ datasets. We first simulated Gaussian data with one hierarchical level and236

varied the number of observations per group (2 and 4) and the number of groups (20,237

40 and 80). We simulated a total variance of 1 and varied the among-group variance (0,238
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0.1, 0.2 and 0.4; since the total variance simulated was 1, these are also the respective239

intra-class correlations (ICCs)/repeatabilities). We simulated every combination of these240

parameters (24 parameters sets) and for each set we simulated 500 datasets. We refer241

to these datasets as ‘observed datasets’ to distinguish them from the ‘null datasets’ in242

following sections. Power to detect among-group variance is known to be determined by243

effect size and sample size both within and among groups. We chose these parameter244

values and sample sizes to explore scenarios where power is low (Dingemanse & Dochter-245

mann, 2013) to understand the impact on posterior distributions. These sample sizes246

also correspond to typical experimental designs in behavioral ecology or life history data247

collected on wild populations (Bell et al., 2009).248

We analysed each observed dataset with a linear mixed-effect model specifying group249

level random effects in a Bayesian framework, using Stan with the rstan package (version250

2.21.3, Stan Development Team, 2022a). We specified weakly informative priors on the251

among-group and residual standard deviations (half-Cauchy distribution with scale 2),252

and ran one chain for each model with 5000 iterations and a warm-up period of 2000253

iterations. Across the majority of models (95%) this ensured an effective sample size254

in the posterior distribution of the among group variance of >500. For comparison, we255

also ran REML models using the lmer function of the lme4 package (version 1.1-29 Bates256

et al., 2015), the results of which are shown in the Supplementary Figure S1.257

As a demonstration that our findings hold with more complex data, we additionally258

simulated Bernoulli (binomial with one observation) and Poisson data. Bernoulli data259

were simulated with 80 groups and 4 observations per group. Among-group effects were260

simulated from a Gaussian distribution on the latent scale, with a mean of 0 and among-261

group variances of 0 and 0.2, 0.4 and 0.8. The latent scale response variable was then262

transformed using the inverse logit function to provide the probabilities, and sampled with263

a Bernoulli process. Poisson data were simulated with 80 groups and 2 observations per264

group, with a mean of 2 and a total variance of 0.2 on the latent scale, with among-group265

11



variances of 0, 0.02, 0.04 and 0.08 (ICCs of 0 and 0.1, 0.2 and 0.4 on the latent scale).266

The mean and total variance were chosen based on a literature survey of provisioning267

data in Pick et al. (2023). We took the exponent of the latent scale response variable to268

provide expected values, and sampled them with a Poisson process. We simulated 500269

‘observed’ datasets for each variance, and analysed the data using Generalised Linear270

Mixed Models (GLMMs) as outlined above.271

Comparison of posterior distribution summary statistics272

From the posterior distributions of the among-group variances, we calculated the posterior273

mean, median and mode, and compared these estimates with the true values.274

While calculating the mean and median of the posterior distribution is straightfor-275

ward, there are several ways of estimating the mode of the marginal posterior distribution,276

which involve some (hidden) assumptions. Commonly used functions in R include the277

posterior.mode function in the MCMCglmm package (Hadfield, 2010), the Mode func-278

tion in the ggdist package (Kay, 2022), and the map_estimate function of the bayestestR279

package (Makowski et al., 2019b). Typically these functions estimate the mode by es-280

timating the parameter value at which the kernel density is maximised. Kernel density281

estimation essentially involves fitting a model to the distribution of posterior samples282

to estimate a density function. The maximum of this function (the estimated mode) is283

then calculated over a series of predicted values. One key parameter in kernel density284

estimation is the bandwidth, which describes the amount of smoothing and is analogous285

to the number of breakpoints in a histogram (Figure 2). Common methods generally286

generate the bandwidth using specific algorithms, which are then scaled. MCMCglmm287

scales the bandwidth generated by Silverman’s ‘rule of thumb’ algorithm (nrd0; eqn 3.31288

in Silverman, 1986) by 0.1 (i.e. it is much less smoothed; Figure 2d). In contrast, ggdist289

and bayestestR use the default values of the nrd0 and SJ algorithms (Sheather & Jones,290

1991), respectively (the default bandwidth of the nrd0 algorithm is also used by density291
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function in R; Figure 2a). The impact on the potential inferences caused by the choice292

of scaling is demonstrated in Figure 2, with the degree of smoothing affecting where the293

posterior mode is estimated. To explore this impact of bandwidth, we estimated the294

posterior mode using these two bandwidth scalings (0.1 and 1). The kernel density was295

estimated using the SJ algorithm (Sheather & Jones, 1991), and the mode was estimated296

using 512 predicted values with a cut-off point at zero. These additional parameters all297

differ between commonly used functions, but have much smaller impacts upon the results298

than the bandwidth, and so we hold them constant.299

To ensure that our results, especially on the mode, were not driven by the choice of300

the prior, we ran additional models on a subset of the data (ICC=0.2, N groups=80, N301

within=2) with a range of weaker priors; half-Cauchy priors with scale 5 and 25, and302

uniform priors from 0 to 5 and 0 to 25 on the among-group standard deviation. The303

half Cauchy prior has been recommended for variance components (Gelman, 2006) and304

is commonly used (note it is equivalent to the commonly used parameterisation of the305

parameter expanded priors in MCMCglmm (V=1, nu=1, alpha.mu=0 )). The different306

parametrizations of the half Cauchy and uniform priors resulted in no difference in the307

results (Figure S2). More recently the use of stronger priors has been suggested, for308

example a half normal prior with scale 1. The use of this prior also did not affect309

our results. For demonstration purposes, we also ran models in MCMCglmm specifying310

uninformative improper priors on the variance. Given the simplicity of these models,311

the posterior mode is expected to correspond to the REML estimate. For comparison,312

we also ran a wide uniform prior (U(0,25)) on the variance in Stan. As expected, using313

these uninformative priors on the variance led to a concordance between REML and314

posterior mode, although the strength of this similarity differed between the methods315

used to estimate the mode (Figure S2).316

To compare these different measures of central tendency, we calculated measures of317

bias, precision and accuracy. Because variance components are limited by 0, deviations318
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from the mean or simulated values will be smaller at smaller effect sizes. To account319

for this, we also calculated relative measures. We calculated the bias as 1
n

∑
θ̂i − θ320

(where θ is the true value, θ̂i is the model estimate from ith simulation in a parameter321

set (combination of parameters), and n is the number of simulations). For the non-zero322

effect sizes, we also calculated relative bias as 1
n

∑
θ̂i−θ
θ

, and mean absolute error as323

1
n

∑ |θ̂i−θ|
θ

. Note this is a also relative measure. Mean absolute error is similar to root324

mean squared error, and combines bias and precision. We also calculated the precision325

as 1/

√
1
n

∑
(θ̂i − ¯̂

θ)2, and relative precision as
¯̂
θ/

√
1
n

∑
(θ̂i − ¯̂

θ)2, where
¯̂
θ is the mean of326

the model estimates across all simulations in parameter set. Precision is presented in the327

Supplementary Figure S4.328

Creation of null distributions and p-values329

We created null distributions for each observed dataset using two methods. First, we330

permuted the observed datasets by shuffling the group indices (IDs) to create 100 new331

permuted null datasets (in which among-group variance is expected to be zero), each of332

which was analysed in the same way as the original observed dataset. From each model333

of a permuted null dataset, we extracted the same parameters (the estimates of central334

tendency in the posterior distribution of the among-group variance) as for models fitted335

to the original observed data and created the corresponding null distributions. Second,336

we used simulations to create the null distribution. To do this, we simulated null datasets337

with no among-group variance. To determine the value of the residual variance for our null338

model simulations, we added together the posterior distributions of the among-group and339

residual variance from the model of the original observed dataset, and used the median340

of the resulting distribution. This was done to ensure that the total variance in the341

simulated dataset was the same as in the observed dataset. The choice of the median342

for this step should have little consequence, as this derived distribution will be estimated343

with much less uncertainty and so will be symmetric, meaning that the three measures of344
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central tendency will be equivalent. It is important that any fixed effects, including the345

intercept, are included in the simulations, especially for GLMMs as the expectations will346

affect the stochastic variance on the data scale. Each simulated null dataset was analysed347

in the same way as the original observed dataset, and we extracted the same parameters348

to create the corresponding null distributions.349

Although we recommend using a larger number of permutations/simulations to build350

up a null distribution in empirical studies (e.g. 1000), here we used 100 permutations and351

simulations to generate null distributions for these ‘observed’ datasets in order to reduce352

the computational burden due to the range of parameters we explored (500 simulations353

for 4 variances, with 6 different sample sizes is 12000 Gaussian datasets, for each of which354

we performed 100 permutations and 100 simulations). We then calculated a p-value for355

each original observed dataset, as the proportion of estimates in the null distribution that356

were higher than the estimate from the original observed data. We calculated p-values357

using each central tendency measure, and these are compared in Figure S6.358

Power analysis and comparison with bias and precision359

Using the ‘observed’ datasets described above, we compared two ways by which power360

can be calculated. Power is defined as the probability of rejecting the null hypothesis361

(i.e. no among-group variance in this case) for a given effect size and data structure at a362

specified alpha level (typically 0.05). To do this, we calculated the proportion of observed363

datasets in which the p-value was below a nominal threshold of 0.05. It is worth noting364

that, although power is typically interpreted in the context of NHST, power can also365

be seen as a description of the distribution of p-values expected for a given effect size366

and data structure (it is the cumulative density at 0.05 for a given p-value distribution).367

Other descriptions of the p-value distribution (e.g. the mean) would be simple functions368

of the power (Figure S14). We therefore chose to present power as a description of the369

distribution of p-values as it is conceptually well understood and frequently used rather370
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than due to any philosophical alignment with NHST.371

First, we estimated power using the p-values generated though comparison of the372

observed datasets with their null distributions from both permutation and simulation373

approaches outlined above (‘full’ method). We were also able to calculate the false positive374

rate for this method (the same calculation as with power, but when the simulated value375

is 0). Second, we used the model estimates from the observed datasets with zero among-376

group variance for each data structure (combination of among- and within-group sample377

sizes) as a null distribution, against which the estimates from observed datasets (those378

simulated with among-group variance) could be tested (‘reduced’ method). This method379

of generating p-values is similar to the simulation method of generating null distributions,380

but involves generating one null distribution for all observed datasets with the same data381

structure, instead of null distributions for each observed dataset. It is therefore massively382

less computationally intensive for power analyses, because to explore power within the383

parameter space presented here it only required the running of 12,000 models, rather384

than 1,212,000. It is pointless to calculate a false positive rate for this method, as this385

would involve comparing the null distribution with itself, and so the false positive rate386

would be 5%, by definition.387

As we state above, when power is low (with low effect and samples size combinations)388

we expect these asymmetric posterior distributions, which is where we may expect biases389

in the different measures of central tendency. We therefore looked at how well power390

predicts the relative bias of the different measures of central tendency. As we state in the391

introduction, precision in variance components is a function of the effect size. Effect sizes392

near zero will appear to have lower precision because the distributions are bounded by393

zero. During the review process, it was suggested that we could use relative precision (see394

formula above), which may correct for this dependence. We therefore also compared this395

metric with power, as it may provide an alternative measure to power for study design.396
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Worked example - Random slopes397

As is often the case, the examples presented above are simplistic and empiricists com-398

monly encounter more complex questions and data structures in their studies. Here we399

outline a more realistically complex example where the permutation of datasets require400

some careful decisions.401

Random slope models (where group-specific intercepts and slopes are modelled, also402

known as random regression) provide a good example of this complexity. We will focus403

here on generating a null distribution for the estimate of among-group variance in slopes.404

This estimate is based upon the relationship between the predictor variable and response,405

the distribution of the response variable across groups and the distribution of the predictor406

variable within and across groups. This provides us with four possibilities for permutation407

that can be used to generate null distributions that retain different relationships in the408

observed data set, which are illustrated in Figure S5. The first two are more general to409

variance components, and the second two are specific to random regression models.410

1. Permuting the response variable. This retains data structure and breaks all rela-411

tionships with the response. This is the most unspecific permutation. It will remove412

the effects of all the random factors and predictors on the response variable, and413

would allow for testing multiple components at the same time. It is a full null model414

of all the biological processes described by the model.415

2. Permuting the group identities. This breaks the relationship between the specific416

group and the response and predictors, but retains associations between predictors417

and response (and any other random effects linked to different grouping variables).418

It is therefore a more specific permutation. In the context of random regression419

models, this will remove the effects of both random intercepts and random slopes.420

3. Permuting the predictor. This retains the group data structure, but breaks link be-421

tween predictor and response, and the distribution of the predictor across groups.422
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By breaking the link between predictor and response, there is no relationship that423

can vary between groups (i.e. random slopes). This is an even more specific per-424

mutation, as it removes random slopes specifically.425

4. Permuting the predictor within groups. This is similar to 3) but also retains the dis-426

tribution of the predictor across groups, whilst breaking the link between predictor427

and response within group. This is the most specific permutation.428

Additionally, we can also generate a null distribution through simulation. Here we429

have multiple variance components, and so the simulations can either test one component430

at a time or multiple/all at once. This random regression example can therefore be done in431

two ways, either by simulating no among-group variance in slopes (adding the variance432

generated by the random slopes to the residual to ensure the same total phenotypic433

variance) or simulating no variance in either intercepts or slopes (adding the variance434

generated by both random intercepts slopes to the residual). Below we explore these435

different null distributions using a simulated ‘observed’ and a real data set. They provide436

a useful contrast, as we know exactly what is going on in the simulated dataset, whereas437

true parameters of the real dataset are unknown, and so it has the potential for much438

more complexity.439

To generate our ‘observed’ dataset, we imagined a hypothetical researcher measuring440

the body mass of a bird species at different times of the day. The question of interest441

was to assess whether there is variation among individuals in how temperature affects442

their body mass. The observed dataset was simulated with 300 individuals measured 4443

times each. Body mass and temperature were both normally distributed. Temperature444

was scaled to have a mean of 0 and variance of 1, and has an effect on body mass of 0.2445

for the average individual. The simulated among individual variance in the intercepts446

was 0.2 and the phenotypic variance generated by variation in slopes was 0.1 (with no447

correlation among random slopes and intercepts), while the residual variance was set448

to 0.7 to ensure a total phenotypic variance not explained by the average effect of the449
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environment was 1. Formulas to estimate the total phenotypic variance in random slope450

models can be found in Allegue et al. (2017). There were no systematic differences in the451

average temperature experienced by the different individuals.452

For our example with real data, we used a study on variation in the plastic aggressive453

response to intruders of great tits (Parus major) in a nestbox population in southern454

Germany (Araya-Ajoy & Dingemanse, 2017). Data were collected over a 6-year period455

(2010–2015) for all male birds during their first breeding attempt each year. A taxidermic456

mount of a male great tit was presented on a 1·2 m wooden pole with a playback song 1457

m away from the subject’s nest box. Aggression was measured as the minimum distance458

of the focal male to the mount within a period of 3 min after it had entered a 15 m radius459

around the box (Araya-Ajoy & Dingemanse, 2014). These territorial intrusions were460

performed twice during the egg-laying stage and twice during the egg-incubation stage of461

each focal nest. Therefore, males had repeated measures both within- and among-years.462

The dataset included 2854 aggression tests performed to 1042 breeding attempts of 679463

individuals. The average number of years for which we obtained an individual’s reaction464

norm was 1·4, with 513, 142, 44, 8, 8 and 1 individual(s) sampled for one, two, three, four,465

five or six breeding attempt(s) (years), respectively. On average, we acquired 2·8 (out of466

4) data points for male aggressiveness per breeding attempt (i.e. year), because males did467

not always respond to the territorial intrusion experiment (Araya-Ajoy & Dingemanse,468

2017). Full details of the experimental setup, and assayed behaviours, are provided in469

Araya-Ajoy & Dingemanse (2014).470

Both datasets were analysed using random slope mixed-effects models, specifying the471

environmental predictor (temperature for the simulated example and breeding stage for472

the real example) as a fixed covariate, and random intercepts and environment slopes473

across individuals. Breeding stage (egg-laying versus egg-incubation) was first coded as474

zero (for laying) versus one (for incubation), and subsequently mean centred and stan-475

dardized to standard deviation units (Schielzeth, 2010). We then generated six null dis-476
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tributions of posterior medians for each dataset (four permutations and two simulations),477

as outlined above, with which we compared the estimate of among individual variance in478

slopes from the observed data. Null distributions were generated based upon the analy-479

ses of 1000 null datasets. Models were fitted in a Bayesian framework, using Stan with480

the rstan package (version 2.21.3, Stan Development Team, 2022a). We specified weakly481

informative priors on the among-group and residual standard deviation. We ran three482

chains for the model of the simulated and real observed data with 5,500 iterations and a483

warm-up period of 500 iterations. To decrease computational burden, the models for the484

permuted/simulated data sets were run for only one chain.485

Results486

Comparing summary statistics of the posterior distribution487

When the simulated among-group variance was zero, all summary statistics were upwardly488

biased to some extent (the posterior distribution cannot include 0; Figure 3a; full sampling489

distributions are shown in Figure S3). Predictably, the posterior mean and median from490

datasets with zero variance were considerably more upwardly biased for small sample491

sizes; this was not the case for the mode. The mean was the most biased, as it is heavily492

influenced by the tail of the distribution. Consequently, this upward bias is stronger when493

the uncertainty is high (i.e. when the tail is large). Note, however, that this upward bias494

is also present in Frequentist analyses (see Figure S1), and is not just a feature of Bayesian495

analyses. Consistent with the example shown in Figure 2, the bias in the mode depended496

upon the chosen bandwidth, with higher smoothing showing less bias across the two497

bandwidths tested. Similar patterns were seen in the Poisson and Bernoulli simulations498

(Figure S8).499

When the simulated among-group variance is non-zero, then the mean, median and500

mode all appeared to be consistent estimators, in that any bias occurred only at small501

20



sample and/or effect sizes. The posterior median generally converged on the simulated502

value at lower effect and sample sizes (Figure 3b) with a slight tendency to be biased503

downwards, as compared with the posterior mean, which was upwardly biased, and the504

posterior mode that was biased towards zero (Figure 3b).505

When considering relative precision (Figure 3c), the mean was the most precise esti-506

mator, with both estimates of the mode showing considerably lower precision than either507

median or mean. Similar to the bias, the precision of the different estimators converged508

as sample size and effect size increased.509

When considering the mean absolute error (Figure 3d), a (relative) measure of ac-510

curacy that combines bias and precision, the mean and median were very similar, with511

exception of the lowest sample and effect size combination where the mean was less ac-512

curate. The mode was consistently less accurate than the other measures (Figure 3d),513

although this lower accuracy disappears at higher sample and effect sizes.514

Performance of the null distributions515

A p-value is defined as the probability that an estimate equal to or more extreme than the516

observed estimate would occur under the null hypothesis (i.e. if the true among-group517

variance is zero). When the null hypothesis is true, we expect a uniform distribution518

of p-values (we expect 5% of values to be <= 0.05, 50% to be < 0.5 etc). When the519

null hypothesis is false, we expect smaller p-values to become more likely, in line with520

the power we have to detect an effect. We find exactly these patterns when considering521

the p-values generated by null distributions. Both permutation and simulation methods522

produced a uniform distribution of p-values when applied to datasets where the simulated523

among-group variance was zero (Figures 4), and the distributions of p-values from both524

permutation and simulation methods shift towards zero as the sample size and the mag-525

nitude of the variance increase (Figure 4). Similar patterns were found in the Bernoulli526

and Poisson simulations (Figure S9).527
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Importantly, although the mean, median and mode were often quite different in magni-528

tude (reflecting skew in the posterior distribution), the inference based upon the p-values529

did not differ between the different metrics. There were strong correlations between p-530

values derived with the different central tendency metrics, except when the mode was531

estimated with less smoothing which produced less consistent p-values (see Figures S6532

and S10). P-values were also strongly correlated between null distributions generated533

through simulation and permutation methods (see Figures S7).534

Power analyses and comparison with bias and precision535

When considering the full method of estimating power, both ways of generating null536

distributions (permutation and simulation) gave very similar results (Figure 5), with537

marginally higher power for the permutation method. These power estimates are very538

similar to previous published estimates for Frequentist models (Dingemanse & Dochter-539

mann, 2013). These methods also displayed the expected false positive rates (5%) under540

all simulated conditions where the among-group variances was simulated as zero (black541

points in Figure 5). The reduced method for estimating power, using the same null542

distribution for all datasets with an effect size > 0 within a particular data structure,543

generally gave a similar power to the other methods (Figure 5). As with the p-values,544

power was not particularly sensitive to the measure of central tendency used, the highest545

power being seen in the mode with higher smoothing and the lowest power for the mode546

with the least smoothing (Figure S11).547

As shown in Figure 6, relative bias in all measures of central tendency decreases as548

power increases. This pattern is similar across Gaussian, Poisson and Bernoulli traits.549

Power is also closely related to relative precision (Figure S15) and consequently also to550

relative bias (Figure S16).551
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Random slope worked example552

In both examples (a simulated datasets and a real dataset), the different types of null553

distributions (generated using two different simulations and 4 different permutations;554

Figure S5) provided the same qualitative results, supporting the conclusion that there is555

among-individual variation in slopes (Figure 7). For both of these datasets, permuting556

individual identity created null distributions with a larger mean value of random slope557

variance that the other permutations (see Discussion for an explanation). It is important558

to note that these results should be considered in the context of random regression,559

and may not generalize to other types of model; we address this point further in the560

discussion. We therefore generally recommend exploring the particular consequences of561

using different types of permutations for specific datasets where possible, as this may562

reveal patterns in the data that warrant further exploration.563

Discussion564

Through the use of simulations, we demonstrate the difficulties of summarising the poste-565

rior distributions of variance estimates from MCMC-based models. We describe different566

methods for generating null distributions that provide useful complimentary information567

alongside the presentation of central tendency and uncertainty that are generally re-568

ported. We also show a way in which null distributions could be used to derive a p-value,569

which is a simple addition to the statistics presented when summarizing a posterior dis-570

tribution and also facilitates power analysis. Importantly we show that biases in central571

tendency measures are functions of power.572
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Summary statistics573

Our experience in ecology and evolution is that both posterior mean and mode are com-574

monly, but inconsistently, presented without justification. For fixed effect parameter575

estimates, this is typically inconsequential, as the posteriors are usually symmetrically576

distributed. When estimating variance components, however, our simulations show that577

depending upon the underlying parameter value, both mean and mode can show large578

biases in opposite directions. When posterior distributions are close to zero and there579

is among-group variance, the posterior mode is very biased towards zero, whereas the580

posterior median and mean perform much better. On the other hand, if there is no581

among-group variance, the mode is the least biased. The mode, however, suffers further582

from subjectivity in its estimation. Our simulations also show that the estimation of the583

mode depends on the underlying algorithm. Unfortunately, the method of mode estima-584

tion is rarely justified or even stated in empirical papers. The mode also requires larger585

posterior distributions to be reliably estimated and will show greater variation between586

models/chains (Kruschke, 2015). Given this hidden ambiguity in the estimation of the587

mode, we cautiously recommend the presentation of the posterior median, or both median588

and mean, as a measure of central tendency for variance components. This recommen-589

dation is based upon the median being generally less biased than the mean when power590

is low (Figure 6). Presenting both allows any discrepancy to be seen, showing that the591

distribution is near to zero and not symmetric, further stressing the uncertainty in these592

measures.593

Upward biases in variance components have been seen before when power is low, but594

the dependence on the choice of the central tendency metric has not been highlighted.595

For example, Fay et al. (2022) note overestimation of variance components in Bernoulli596

models, with this overestimation decreasing in size as sample size and effect size increase.597

Fay et al. (2022) use the posterior mean as a summary statistic, and (as we show in598

Supplementary Figure S12) this bias will decrease (although not disappear completely)599
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through the use of a posterior median. This is not just a bias in Bernoulli models, or in600

fact MCMC models (Figure S1), but a general property of variance components estimated601

with low power (Figure 6, or low relative precision - Figure S16).602

We urge some caution in interpreting our results in terms of absolute sample sizes or603

effect sizes alone. Different types of data and data structures will have different amounts604

of information and so power, meaning that the same bias might not result from the605

same sample size or variance in a different context. GLMMs also make this picture more606

complex, as similar variances on the latent scale equate to very different variances and607

so effect sizes on the expected and observed scales, due to the different transformations608

and addition of stochastic variance (de Villemereuil et al., 2018). For example, we find609

a similar range of powers for our Poisson and Bernoulli examples, despite very different610

simulated variances on the latent scale (0.02, 0.04 and 0.08 versus 0.2, 0.4 and 0.8,611

respectively). Similarly, Bonnet & Postma (2015) find very different power to detect the612

same latent scale variances in Bernoulli and Poisson traits. Given the strong relationship613

between these biases and power (or relative precision), considering the potential bias in614

variance estimates in relation to power (or relative precision) may be a productive way615

forward, as this is comparable across models, distributions, effect and sample sizes.616

It is often argued that rather than presenting summary statistics, we should present617

and interpret the whole posterior distribution, which are frequently presented using den-618

sity plots. Again, the underlying parameters of the kernel density estimation are usually619

not presented alongside the density plots, meaning the amount of smoothing is not doc-620

umented. A large degree of smoothing can hide asymmetry and/or bi-modality, and so621

change inferences. We therefore suggest the use of histograms over density plots in the622

presentation of posterior distributions, because although they are subject to the same623

smoothing problems, the degree of smoothing is explicit in the histogram, but hidden in624

the density plot. Alternatively, other plots that explicitly show the raw posterior samples625

(e.g. beeswarm plots) could be used (e.g. Figures 4 and 7).626
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Null distributions627

The null distribution approaches outlined here are relatively easy to use, although com-628

putationally intensive (discussed further in section ‘Computational burden’). They allow629

the quantification of confidence that the estimated group level variance is not simply a630

consequence of the choice of priors and data structure. Importantly, the p-values based631

upon null distributions are not dependent upon which measure of central tendency is632

used. Such inferential statistics comparing the observed estimates with the null distri-633

butions can provide quantitative measures that can be reported alongside the observed634

estimates and uncertainty, and provides a useful tool for assessing the probability that635

variance components are non-zero and thereby supplement visual inspections of poste-636

rior distributions, or comparison of posterior mode, median and mean. Furthermore,637

inferential statistics can serve as an objective and easy-to-communicate assessment of638

the biological relevance of an estimated variance component to the general public and639

policy makers, or for the statistical support of non-zero values for derived statistics like640

heritability, repeatability or evolvability. A common criticism of p-values is that they are641

often misinterpreted. We would therefore recommend readers thinking of using the null642

distribution approach to acquaint themselves with the literature on these topics (some643

useful examples include: Wasserstein & Lazar, 2016; Amrhein et al., 2017; McShane et al.,644

2019; Amrhein et al., 2019). Importantly, p-values cannot demonstrate absence of effect,645

just confidence in difference from the null hypothesis (here there is no among-group vari-646

ance). We believe generating null distributions will help empiricists understand these647

concepts, as they can be used to give a visual representation of what a p-value signifies.648

As we illustrate in our examples of random slopes, there are different ways of per-649

muting datasets, which become more varied as the complexity of the data structure and650

model increase. In our random slope example, we showed how these permutations can651

become increasing specific to target particular components of the model, from permuting652

the response to permuting the environmental predictor within individuals. This example653
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also demonstrates that these different permutations can lead to qualitatively similar re-654

sults, although whether they always or usually do so would require a much broader set of655

simulations than we report here. Interestingly, permuting individual identity created null656

distributions with noticeably larger values of random slope variance. We believe this is657

due to the existence of random slopes in the simulated and real data set generating het-658

erogeneous residuals (i.e. variance in response changed with the environmental predictor)659

that were confounded with random slope variation in the analyses of the null data sets660

(similar effects are also shown in Ramakers et al., 2020). The other permutation meth-661

ods break up the relationship between the predictor and response, and so the average662

estimate for the null distributions was lower. This illustrates how comparing the results663

of the different methods of null distributions generation may provide insights that may664

be used to inform the statistical inferences from estimated variance components.665

The simulations we present here do not directly consider how to test models with666

multiple variance components. In our random slope example, it made little difference667

whether we simulated no variance in random slopes and intercepts or just random slopes.668

However, this will likely differ between model structures. Generating null distributions669

for all components at once (for example by permuting the response variable, or setting670

all random effect variances to 0 in simulations) makes the assumption that the different671

variance components do not affect each other. If this assumption is reasonable (it is672

typically being made when a given model structure is chosen to be appropriate), then673

generating null distributions for all components at once would be reasonable. If there674

is a reason to think that they may affect each other, then null distributions are better675

generated for each random effect at a time.676

In some instances, generating a null distribution using permutations may not be677

possible. For example, in event-history models of survival (where individuals have an678

entry for each time point where they are observed, in a sequence of 0’s for time points679

they survive and a 1 for the time point after which they die). In this case, permuting the680
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individual identifiers would fundamentally alter the data structure, meaning that some681

individuals had multiple deaths. This could be made to work in the context of an animal682

model, where the observed 0’s and 1’s could be interchanged between individuals, so that683

the same between individual structure is maintained, but the link with the pedigree is684

broken. This serves to demonstrate that some care needs to be taken when assessing685

the suitability of permutations and how they impact the data structure on a case-by-686

case basis. Overall, we are not advocating a specific recipe for permutations here - it is687

likely context and question dependent. We instead advocate a simulation approach at688

the planning stage, using simulations to check in advance that the permutation design689

gives desired properties with your likely data structure.690

Generating null distributions through simulation avoids many of the issues with the691

permutation approach, although it may not account so well for the particularities of each692

data set, (for example, the heteroskedasticity in the random regression example above).693

Simulation has the advantage that it allows the structure of the data to be fully retained,694

a more fine-scale alternation of the variances in question, and it makes no additional695

assumptions than those already being made by the statistical model itself. A simulation696

approach also simplifies the simultaneous generation of null distributions for multiple697

variance components whilst retaining the data structure. Reassuringly, in our random698

regression example, the null distributions generated using the simulation method were699

similar to the permutation methods, as well as being similar across the two simulations700

approaches. We therefore cautiously recommend the use of this simulation method, as it701

is the most flexible for complex models.702

These null distribution approaches are, however, computationally intensive and ap-703

plying them can take a long time depending upon the model complexity, the amount of704

data and the available computational resources (for further discussion see section ‘Com-705

putational burden’). MCMC methods are often used for highly complex problems (e.g.706

double hierarchical GLMs; Cleasby et al., 2015), where running a large number of per-707
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mutations may not be an option. The number of permutations/simulations that are run708

affects the precision with which a p-value can be calculated and the minimum p-value709

that can be calculated - a null distribution of 100 can have a minimum p-value of 0.01710

and vary by intervals of 0.01. In addition, stochastic fluctuations in the p-value can have711

a large impact on inference. For this reason, we would recommend a higher number of712

samples in the null distributions than we used here. We remain neutral to the application713

of NHST outside of power analysis, preferring the use of p-values as a continuous measure714

of statistical support. However, if NHST is employed, researchers need to ensure that a715

large number of permutations/simulations is used, to prevent inference being based on a716

handful of rare events. It is worth noting that, although this would not be advisable for717

NHST, we were able to produce meaningful results with 100 simulations, which provided718

information (although much less reliably) of how incompatible the observed variance was719

with the range expected under the null hypothesis.720

Alternative approaches721

A p-value is defined as the probability that an estimate equal to or more extreme than the722

observed estimate would occur under the null hypothesis (i.e. if the true among-group723

variance is zero). It relies upon the distribution of p-values being uniform when the null724

hypothesis is true, a property that is expected to be invariant to sample size (as we show725

in Figure 4). P-values therefore only provide support against the null hypothesis, but726

they do not provide support for the null hypothesis. In contrast to p-values, the ROPE727

value and Bayes Factors aim to additionally assess support for the null hypothesis, and728

therefore depend upon sample size under both the null and alternative hypotheses. These729

alternatives are not always simple to implement, and below we outline some potential730

issues that empiricists may encounter when trying to employ these methods.731

The ROPE (Region of Practical Equivalence) introduces another source of subjectivity732

into the analysis, because it involves an arbitrary threshold that needs to be defined.733
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This is not trivial in the case of variance components, as small variances can have large734

knock-on effects. For example, McFarlane et al. (2015) found that maternal genetic effects735

accounted for 2% of variation in fitness, but this small amount predicted a 56% increase in736

mean lifetime reproductive success in less than 10 generations, which is highly biologically737

meaningful. Bonnet et al. (2022) address this by using simulations to demonstrate the738

biological relevance of the thresholds they use (0.01 and 0.001, for the variances not739

ICC). There is also discussion about whether the overlap of the whole posterior or the740

95% credible interval should be used with ROPE (Makowski et al., 2019a; Schwaferts741

& Augustin, 2020). As with NHST, 95% is also an arbitrary cutoff, and so the ROPE742

would represent the overlap of two arbitrary thresholds. ROPE is often discussed in a743

context where a cost-benefit analysis can be used to work out the minimum effect size744

that warrants the use of a particular intervention, for example of medical interventions745

(Kruschke, 2018). Typically this is not relevant for research in ecology and evolution as,746

in many cases, it is of interest whether variance in a particular component exists, and747

if so, its magnitude becomes relevant (although some would argue that some variance748

always exists, and the magnitude is the more interesting question). We think there749

are clear applications for using ROPE in fields like conservation, where interaction with750

stakeholders requires thresholds over which decisions need to be made, but for many751

empiricists, ROPE requires more subjective decisions to be made and justified.752

Bayes Factors can be used to test the ‘significance’ of parameters in Bayesian mixed-753

effect models. However, the calculation of Bayes Factors that allow inferences to be754

made about variance components is not straightforward. They require large posterior755

distributions for stable estimation (Schad et al., 2022). They also depend on the marginal756

likelihoods of the two models which are sensitive to prior specification (Gelman et al.,757

2021; Navarro, 2019; Schad et al., 2022), even when there is little or no visible effect on the758

posteriors. Furthermore, there is some ambiguity in which models should be compared759

and what questions they answer (van Doorn et al., 2021) (note the similar problem with760

generating null distributions in the random slope example above). Using Bayes Factors761
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as a measure of posterior odds also assumes equal probability of the two models, and it is762

not clear whether this is a reasonable assumption as some would argue that among-group763

variance always exists.764

Additionally, Bayesian models can also be compared using information criteria, in765

particular DIC (Deviance Information Criteria Spiegelhalter et al., 2002), WAIC (Widely766

Applicable Information Criteria Watanabe, 2010) and LOO-CV (Leave-One-Out Cross-767

Validation Browne, 2000; Gelman et al., 2014), which aim to provide out-of-sample pre-768

diction accuracy. Generally, the information criteria are generated for two models, and769

the difference between them is used for model comparison. DIC is known to have several770

problems which in part come from being based on a point estimate (Plummer, 2008).771

DIC is also known to provide poor estimates when posterior distributions are not well772

described by their means (Gelman et al., 2021). WAIC addresses these issues by using the773

whole posterior. However, some assumptions of WAIC have been shown not to hold for774

hierarchical models with weak priors (Gelman et al., 2014; Millar, 2018). This suggests775

that LOO-CV may be the most suitable information criteria for this purpose. It is also776

important whether these information criteria are generated using marginal or conditional777

likelihoods (Millar, 2018; Merkle et al., 2019; Ariyo et al., 2020) - although the use of the778

marginal likelihood may be more appropriate for comparing hierarchical models, many779

software packages only (e.g. MCMCglmm) or by default (e.g. BUGS, JAGS, Stan) give780

the conditional likelihood. As with other information criteria, it is also hard to interpret781

what a meaningful difference between models is.782

The use of both LOO-CV and Bayes Factors for complex models is currently the783

subject of intense debate. Regardless of the various intricacies of this debate, perhaps784

a more constraining factor is that Bayes Factors and LOO-CV are not implementable785

in all programs, including those commonly used for variance component estimation in786

ecology and evolution (i.e. MCMCglmm). Our approach provides an alternative to these787

methods, which is easily implemented and allows straightforward interpretation.788
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Power analysis and possible alternatives789

Power analysis is controversial as it relies on NHST. NHST is controversial because its790

misuse has been connected to scientific misconduct and the replication crisis (Wasserstein791

& Lazar, 2016; Amrhein et al., 2017; McShane et al., 2019; Amrhein et al., 2019). These792

issues relate to the use of p-values after data collection and analysis. Power analysis,793

however, serves a clear purpose in aiding experimental design, and is typically conducted794

pre-analysis, and so is perhaps not subject to the same criticisms. Suggested alternatives,795

such as Type M and Type S error, also rely upon calculation of p-values and definition796

of an arbitrary alpha value, and are both a simple function of power (Gelman & Carlin,797

2014). Type S error (proportion of significant estimates that have the opposite sign) is not798

relevant for variance components. Type M (absolute relative bias of significant estimates)799

gives some additional information but, unlike power, it is affected by the measure of800

central tendency that is chosen (Figure S13). Power can also be seen as a description801

of the distribution of p-values expected for a given effect size and data structure. Other802

descriptions of this distribution (e.g. the mean) would be simple functions of the power803

(Figure S14), but the common use of this metric makes it more widely understood.804

An alternative to power would be to design studies around a desired level of precision805

in estimates. Although this works for unbounded parameters, precision is difficult to806

interpret for variance components, and SE will decrease as true value gets closer to zero,807

not because precision increases, but because it is limited by zero (see Figure S4). Here808

we show that relative precision (the inverse of the coefficient of variance of the sampling809

distribution), is strongly related to power (Figure S15), and optimizing this value may810

provide an alternative target for planning optimal experimental designs. It is important811

to note that, unlike power, the relative precision is highly dependent on the measure of812

central tendency used. We would therefore suggest that power still provides a suitable813

metric for designing studies to estimate variance components.814

We show two methods of power analysis based upon null distributions. The first815
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(full method) involves generating p-values for each simulated dataset by generating a816

null distribution for that dataset. This method is highly computationally intensive as it817

involves running a certain number of simulations multiplied by the number of permuta-818

tions/simulations models, which could realistically be one million models per parameter.819

Our alternative method (reduced method) is to generate a single null distribution for820

each data structure, and generate p-values by comparing the parameter estimates from821

the simulated datasets to this single null distribution. This method gives similar results822

to the full approach and is massively less computationally intensive (requiring running823

2000 models rather than a million for each set of parameters). The disadvantage is that824

the false positive rate cannot be calculated.825

Even if power is not the intended use (or there is an objection to arbitrary alpha826

values), these simulations can serve an extremely useful purpose before studies are con-827

ducted. First, these simulations allow an empiricist to consider the distribution of p-values828

expected under a given effect size and design (note that power is essentially a descrip-829

tions of the shape of this distribution). Second, the null distribution of point estimates830

can be considered - this enables the distribution of effect sizes that can occur under the831

null hypothesis to be visualised. Even if an empiricist does not want to calculate a p-832

value, creating a null distribution is still a powerful way of inspecting the distribution833

of estimates that would be generated with no among-group variance, and would serve to834

encourage caution in how results that lie within that distribution are interpreted.835

Computational burden836

As noted above, null distribution approaches are computationally intensive. When model837

complexity and/or sample sizes are high, applying them can take a long time, and may838

prohibit their use. There are several points in this regard that are worth noting.839

First, these computational constraints will become increasingly less problematic with840

advances in computing and software. For example, the introduction of Stan has led to a841
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large decrease in computation time for many MCMC models, and the increased availabil-842

ity of computer clusters at universities means that the models for the null distribution843

can be run in parallel. Second, the mean and median require far lower effective sample844

size than credible intervals to be well estimated (Vehtari et al., 2021). As only a mea-845

sure of central tendency is needed from the ‘null’ models, these could be run for much846

shorter times than the model on the original data, where much more resolution would be847

needed in order to estimate credible intervals. Third, computational burden also exists848

with other metrics. The generation of Bayes Factors and LOO-CV require much larger849

posterior distributions to be reliably estimated (1-2 orders of magnitude larger; Vehtari850

et al., 2017; Gronau et al., 2020), and two models need to be run for comparison. There851

are then further computationally expensive steps in the generations of these metrics from852

the models. Finally, our suggested method for power analysis will realistically be the853

least computationally expensive. Whereas Bayes Factors and LOO-CV require running854

two models with large posteriors, we show that the same null distribution can be used for855

all simulated datasets with the same data structure, with models needing to be run for856

considerably less time. The relative precision can also be calculated which is less com-857

putationally intensive than power from null distributions, but perhaps slightly harder to858

interpret and varies with the measure of central tendency. As noted above, the genera-859

tion of a null distribution for a particular data structure is also a useful exercise in itself.860

Overall, the computational burden of generating a null distribution is, therefore, perhaps861

not so high when compared to other alternatives.862

There will be cases in which none of these methods (null distributions, Bayes Factors863

or LOO-CV) will be feasible for computational reasons. Are there any less computation-864

ally expensive alternatives? The ROPE method provides a clear advantage here as it865

requires no additional computationally expensive steps to generate, although as outlined866

above, it may not be so obvious how to apply it with variance components. We realised867

when considering the relative precision as a metric for the sampling distributions that for868

an individual posterior distribution this metric (mean/SD) is analogous to a z-ratio. In-869
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terpretation in this context is a little strange, and z-ratios are typically used to represent870

the potential overlap of the uncertainty of a parameter estimate with 0, which cannot oc-871

cur here. However, this kind of method is used with variance components in Frequentist872

models that report the SEs of the variance components (e.g. when estimating genetic873

variance/heritability in ASReml (Butler et al., 2017)). Ultimately, we are looking for a874

usable statistic to describe the support for a difference between the variance component875

estimate and 0. These metrics would be considerably less computationally intensive to876

generate than a p-value from a null distribution, but may give similar information about877

the model estimates. Comparing them for individual models shows this appears to be878

true; the z-ratio correlates strongly with p-value (Figure S17a). This statistic (posterior879

mean/posterior SD) may therefore provide some inferences about the posterior distri-880

bution of variance components, although it is much more conservative than a p-value881

generated from null distributions (Figure S17b). Whilst this may provide an interest-882

ing solution to the problems of computational power, use of the z-ratio requires further883

exploration before being implemented.884

Recommendations885

1. We advocate using the posterior median as a measure of central tendency for poste-886

rior distributions of variance components from MCMC-based models. Our results887

show that the median is the least biased estimate, but will overestimate variances888

when power is low. Reporting multiple measures of central tendency allows any889

asymmetry in the posterior to be made obvious.890

2. We advocate reporting of smoothing values in kernel estimation. Kernel density891

estimation is commonly used for estimating the posterior mode and creating density892

plots. The parameters used in this estimation are seldom reported, but can have893

a large impact on interpretation. We advise the reporting of parameters in the894

kernel density estimation, or the use of more explicit methods of plotting posterior895
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distributions, such as histograms.896

3. We recommend using null distributions for inference. Null distributions provide a897

way of putting the observed parameter estimates into a context expected under an898

explicitly defined null hypothesis (i.e. no among-group variance). Null distributions899

can be created in multiple ways, but they are most easily controlled when generated900

using simulations. As with many aspects of statistical analysis, there are many901

decisions relating to generating null distributions that may have an affect on the902

results. Therefore, these methods should be defined pre-analysis, in order to reduce903

researcher degrees of freedom (Simmons et al., 2011).904

4. We also advocate for using a null distribution to estimate power. As well as aiding905

post-hoc inference, null distributions can be used for power analysis. We provide906

details of a method for doing so that does not present a large computational burden.907
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O’Hara, R.B. & Merilä, J. (2005) Bias and precision in QST esti-1099

mates: Problems and some solutions. Genetics, 171, 1331–1339.1100

https://dx.doi.org/10.1534/genetics.105.044545.1101

Pesarin, F. & Salmaso, L. (2010) Permutation Tests for Complex Data. John Wiley &1102

Sons, Ltd, first edition.1103

Pick, J.L. (2022) squidSim: a flexible simulation tool for linear mixed models. R package1104

version 0.1.0.1105

Pick, J.L., Khwaja, N., Spence, M.A., Ihle, M. & Nakagawa, S. (2023) Counter culture:1106

causes, extent and solutions of systematic bias in the analysis of behavioural counts.1107

PeerJ, 11, e15059. Publisher: PeerJ Inc., https://dx.doi.org/10.7717/peerj.15059.1108

Plummer, M. (2003) Jags: A program for analysis of bayesian graphical models using1109

gibbs sampling. 3rd International Workshop on Distributed Statistical Computing (DSC1110

2003); Vienna, Austria, 124.1111

Plummer, M. (2008) Penalized loss functions for Bayesian model comparison. Biostatis-1112

tics, 9, 523–539. https://dx.doi.org/10.1093/biostatistics/kxm049.1113

R Core Team (2022) R: A Language and Environment for Statistical Computing. R1114

Foundation for Statistical Computing, Vienna, Austria.1115

44



Ramakers, J.J.C., Visser, M.E. & Gienapp, P. (2020) Quantifying individual variation1116

in reaction norms: Mind the residual. Journal of Evolutionary Biology, 33, 352–366.1117

https://dx.doi.org/10.1111/jeb.13571.1118

Samuh, M.H., Grilli, L., Rampichini, C., Salmaso, L. & Lunardon, N. (2012)1119

The Use of Permutation Tests for Variance Components in Linear Mixed Mod-1120

els. Communications in Statistics - Theory and Methods, 41, 3020–3029.1121

https://dx.doi.org/10.1080/03610926.2011.587933.1122

Schad, D.J., Nicenboim, B., Bürkner, P.C., Betancourt, M. & Vasishth, S. (2022) Work-1123

flow techniques for the robust use of bayes factors. Psychological Methods, pp. No1124

Pagination Specified–No Pagination Specified. Place: US Publisher: American Psy-1125

chological Association, https://dx.doi.org/10.1037/met0000472.1126

Schielzeth, H. (2010) Simple means to improve the interpretability of regres-1127

sion coefficients. Methods in Ecology and Evolution, 1, 103–113. eprint:1128

https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.2041-210X.2010.00012.x,1129

https://dx.doi.org/10.1111/j.2041-210X.2010.00012.x.1130

Schwaferts, P. & Augustin, T. (2020) Bayesian decisions using regions of practical equiv-1131

alence (rope): Foundations.1132

Sheather, S.J. & Jones, M.C. (1991) A Reliable Data-Based Bandwidth Selection Method1133

for Kernel Density Estimation. Journal of the Royal Statistical Society Series B1134

(Methodological), 53, 683–690.1135

Silverman, B.W. (1986) Density Estimation for Statistics and Data Analysis. Chapman1136

and Hall, London.1137

Simmons, J.P., Nelson, L.D. & Simonsohn, U. (2011) False-Positive Psychology: Undis-1138

closed Flexibility in Data Collection and Analysis Allows Presenting Anything as Sig-1139

nificant. Psychological Science, 22, 1359–1366. Publisher: SAGE Publications Inc,1140

https://dx.doi.org/10.1177/0956797611417632.1141

45



Spiegelhalter, D.J., Best, N.G., Carlin, B.P. & Van Der Linde, A. (2002)1142

Bayesian measures of model complexity and fit. Journal of the Royal1143

Statistical Society: Series B (Statistical Methodology), 64, 583–639.1144

eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/1467-9868.00353,1145

https://dx.doi.org/10.1111/1467-9868.00353.1146

Stan Development Team (2022a) RStan: the R interface to Stan. R package version1147

2.21.3.1148

Stan Development Team (2022b) Stan modeling language users guide and reference man-1149

ual. Version 2.3.1150

Stoffel, M.A., Nakagawa, S. & Schielzeth, H. (2017) rptR: Repeatability estimation and1151

variance decomposition by generalized linear mixed-effects models. Methods in Ecology1152

and Evolution, 8, 1639–1644. https://dx.doi.org/10.1111/2041-210X.12797.1153

van Doorn, J., Aust, F., Haaf, J.M., Stefan, A.M. &Wagenmakers, E.J. (2021) Bayes Fac-1154

tors for Mixed Models. Computational Brain & Behavior, pp. 1–13. Company: Springer1155

Distributor: Springer Institution: Springer Label: Springer Publisher: Springer Inter-1156

national Publishing, https://dx.doi.org/10.1007/s42113-021-00113-2.1157

Vehtari, A., Gelman, A. & Gabry, J. (2017) Practical Bayesian model evaluation using1158

leave-one-out cross-validation and WAIC. Statistics and Computing, 27, 1413–1432.1159

https://dx.doi.org/10.1007/s11222-016-9696-4.1160

Vehtari, A., Gelman, A., Simpson, D., Carpenter, B. & Bürkner, P.C. (2021) Rank-1161

Normalization, Folding, and Localization: An Improved Rˆ for Assessing Convergence1162

of MCMC (with Discussion). Bayesian Analysis, 16, 667–718. Publisher: International1163

Society for Bayesian Analysis, https://dx.doi.org/10.1214/20-BA1221.1164

Vehtari, A., Simpson, D.P., Yao, Y. & Gelman, A. (2019) Limitations of “Limitations of1165

Bayesian Leave-one-out Cross-Validation for Model Selection”. Computational Brain1166

& Behavior, 2, 22–27. https://dx.doi.org/10.1007/s42113-018-0020-6.1167

46



Wasserstein, R.L. & Lazar, N.A. (2016) The ASA Statement on p-Values:1168

Context, Process, and Purpose. The American Statistician, 70, 129–133.1169

https://dx.doi.org/10.1080/00031305.2016.1154108.1170

Watanabe, S. (2010) Asymptotic Equivalence of Bayes Cross Validation and Widely Ap-1171

plicable Information Criterion in Singular Learning Theory. Journal of Machine Learn-1172

ing Research, 11, 3571–3594.1173

47



Figures1174

Posterior Samples

0.0 0.2 0.4 0.6 0.8 1.0

0.183 (0.161) 
 [0.063,0.33]

a)

Permuted Posterior Means

0.0 0.2 0.4 0.6 0.8 1.0

P <0.001

c)

Posterior Samples

0.0 0.2 0.4 0.6 0.8 1.0

0.275 (0.013) 
 [0.002,0.755]

b)

Permuted Posterior Means

0.0 0.2 0.4 0.6 0.8 1.0

P = 0.054

d)

Figure 1: Posterior distributions of variance estimates for two different scenarios (a and b) and their
respective null distributions (c and d) generated using permutations. Example a) shows a symmetric
posterior distribution far away from zero with close agreement between the posterior mean (red lines) and
mode (blue line), whilst b) shows an asymmetric posterior distribution close to zero, with clear divergence
between the posterior mean and mode. Examples c) and d) show null distributions of posterior means
generated through permuting the datasets, and corresponding p-values, of a) and b), respectively. The
values given in a) and b) correspond to mean (mode) [CRIs]. Both datasets were simulated from Gaussian
distributions with among-group variances of 0.2, but with differing sample sizes; a) with 80 groups and
4 observations per group; b) with 40 groups and 2 observations per group.
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Figure 2: The effect of bandwidth choice on the estimation of the posterior mode. Top row shows kernel
densities of the same posterior distribution, estimated with different bandwidth scalings, from 1 in a)
to 0.1 in d). Red lines shows the posterior modes estimated from that scaling. Bottom row shows the
equivalent histograms for comparison.
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Figure 3: Bias (a), relative bias (b), relative precision (c) and mean absolute error (d) of posterior mean,
median and mode of variance components from linear mixed effects models run on data simulated with
a Gaussian distribution varying in among group variance (ICC - 0, 0.1, 0.2, and 0.4) and sample size
within (2 or 4) and among (20, 40, 80) groups. Each point is based on the estimates from 500 datasets.
Two posterior modes were estimated: mode-1 and mode-0.1 with more and less smoothing, respectively
(see text for more details). Mean absolute error is also a relative measure, being standardised by the
simulated value (see text for more details).
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Figure 4: Distributions of p-values for the among-group variance, estimated used linear mixed effects
models run on data simulated with a Gaussian distribution, varying in among-group variance (ICC -
0, 0.1, 0.2, and 0.4) and sample size among groups (20, 40, 80), with 500 datasets per combination.
P-values were estimated using the posterior median and null distributions generated through simulations.
a) shows a within group sample size of 2, and b) a within group sample size of 4.
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Figure 5: Comparisons of power and false positive rate (FPR) calculated using permutation (perm),
simulation (sim) or a global null distribution (the ‘reduced’ method in the main text). For each within-
group sample size of a) 2 and b) 4, we show results for four among-group variances (0 (representing
FPR), 0.1 ,0.2 and 0.4) and three among-group sample sizes (20, 40 and 80), with 500 datasets per
combination. All datasets were simulated with a Gaussian distribution. Power/FPR was calculated
using posterior medians.
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Figure 6: Relationships between power and relative bias, the latter being estimated across different mea-
sures of central tendency. Power was calculated using null distributions generated using the simulation
method and the posterior median. Each point is based on 500 datasets, simulated with either a Gaus-
sian, Bernoulli or Poisson distribution, with varying effect and sample sizes. Mean and 95% confidence
intervals of the the relative bias are shown.
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Supplementary Materials1175

Supplementary Methods1176

Simulations based on Fay et al. (2022)1177

We simulated datasets based on Fay et al. (2022), but ran simplified models (univariate1178

instead of bivariate), as the purpose was simply to demonstrate the effect of different1179

measures of central tendency on the bias in these models. We simulated data with the1180

same parameters of one set of simulation in Fay et al. (2022) - fast life history and1181

low heterogeneity. We simulated the probability of survival as 0.5 and probability of1182

reproduction as 0.7, standard deviations on the latent scale of 0.2 for both survival and1183

reproduction and a correlation of 0.6 between the two. We simulated 100 datasets from1184

sample sizes of 250, 500, 1000, 2000, 4000 individuals. For each simulated dataset we ran1185

a binomial GLMM, with random effects of individual identity using Stan with the rstan1186

package (version 2.21.3 Stan Development Team, 2022a). We specified weakly informative1187

priors on the among-group standard deviations (half-Cauchy distribution with scale 2),1188

and ran one chain for each model with 7500 iterations and a warm-up period of 20001189

iterations. We then estimated the posterior mean, median and 2 modes as in the main1190

text.1191
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Supplementary Figures1192
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Figure S1: Bias of Frequentist estimates of the among group variance alongside bias in the posterior mean,
median and mode, estimated used linear mixed effects models run on data simulated with a Gaussian
distribution, varying in among-group variance (ICC - 0, 0.1, 0.2, and 0.4) and sample size within (2
or 4) and among (20, 40, 80) groups. Two posterior modes were estimated; mode-1 and mode-0.1 with
more and less smoothing, respectively (see text for more details).
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Figure S2: Impact of prior choice on measures of central tendency. ’C’ represents half Cauchy priors,
’N’ normal priors, ’U’ uniform priors, and ’Improper’ uninformative improper prior. Red lines shows
simulated values. Blue points show the mean of the REML estimates across simulations, purple points
shows means of different point estimates from across the 100 simulations with priors on the variance,
and orange points shows means of different point estimates from across the 100 simulations with priors
on the SD. Data was simulated from a Gaussian distribution, with a among-group variance of 1, with 80
groups and 2 observation within a group.
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Figure S3: Sampling distributions of posterior mean, median and mode estimated using linear mixed models, from data simulated with a Gaussian
distribution, varying in among-group variance (ICC - 0, 0.1, 0.2, and 0.4) and sample size within (2 or 4) and among (20, 40, 80) groups, with 500
datasets per ICC and sample size combination. Red lines show the simulated value and orange points the mean of the sampling distributions.
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Figure S4: Precision increases with sample size, but decreases with effect size. The different panels show
the precision of posterior mean, median and mode of variance components estimated using linear mixed
models, from data simulated with a Gaussian distribution, varying in among-group variance (ICC - 0,
0.1, 0.2, and 0.4) and sample size within (2 or 4) and among (20, 40, 80) groups, with 500 datasets
per ICC and sample size combination. Two posterior modes were estimated; mode-1 and mode-0.1 with
more and less smoothing, respectively (see text for more details).
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Figure S5: Illustration of the different permutation designs that can be used for a random regression
analysis. The colours highlight what variables are permuted within each permutation.
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Figure S6: Comparison of p-values generated with different measures of central tendency estimated using
linear mixed models, using null distributions generated from both simulation and permutation methods.
Data were simulated with a Gaussian distribution.
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Figure S7: Comparisons of p-values generated from null distribution using permutation and simulation
methods across all measures of central tendency estimated using linear mixed models. Data were simulated
with a Gaussian distribution.
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Figure S8: Sampling distributions of posterior mean, median and mode estimated using GLMMs, from
data simulated with a) Bernoulli and b) Poisson distributions, varying in among-group variance, with
500 datasets per variance. Red lines show the simulated value and blue points and error bars show mean
and 95% confidence intervals of the sampling distributions.
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Figure S9: Distributions of p-values for the among group variance estimated used GLMMs run on data
simulated with a) Bernoulli and b) Poisson distributions, varying in among-group variance, with 500
datasets per combination. P-values were estimated using the posterior median and null distributions
generated through simulations.
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Figure S10: Comparisons of p-values generated with different measures of central tendency estimated
using GLMMs, using null distributions generated by simulation. The left column shows comparison
from data generated and analysed with a Bernoulli distribution and the right column with a Poisson
distribution.
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Figure S11: Comparisons of power and false positive rate (FPR) generated using different measures of
central tendency. For each within-group sample size of a) 2 and b) 4, we show results for four among-
group variances (0 (representing FPR), 0.1 ,0.2 and 0.4) and three among-group sample sizes (20, 40
and 80), with 500 datasets per combination. All datasets were simulated with a Gaussian distribution.
Power/FPR was calculated using null distributions generated using the simulation method.
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Figure S12: Mean posterior mean, median and mode of variance components from GLMMs, analysing
simulated survival data with increasing number of individuals. Simulations were based upon Fay et al.
(2022) - see Supplementary Methods for more details of parameterisation.
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Figure S13: Type M error and power from posterior mean, median and mode calculated using null
distribution generated through simulation. Colours represent simulated ICCs, red - 0.1, blue - 0.2, and
orange - 0.4.
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Figure S14: Relationships between power and false positive rate (FPR) and a) mean and b) variance in
p-values. Power/FPR was calculated using null distributions generated using the simulation method and
the posterior median. Each point is based on 500 datasets, simulated with either a Gaussian, Bernoulli
or Poisson distribution, with varying effect and sample sizes.
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Figure S15: Relationships between Power/false positive rate (FPR) and relative precision, the latter
being estimated across different measures of central tendency. Power/FPR was calculated using null
distributions generated using the simulation method and the posterior median. Each point is based on
500 datasets, simulated with either a Gaussian, Bernoulli or Poisson distribution, with varying effect
and sample sizes.
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Figure S16: Relationships between relative bias and relative precision, estimated across different measures
of central tendency. Each point is based on 500 datasets, simulated with either a Gaussian, Bernoulli or
Poisson distribution, with varying effect and sample sizes. Mean and 95% confidence intervals of the the
relative bias are shown.
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Figure S17: a) Relationship between z-ratio (posterior mean/posterior SD) and p-value. Grey lines
represent p = 0.05 and z = 1.64, the later being equivalent to the z-ratio that would give p = 0.05 on a
one-sided test. b) Relationship between power derived from z-ratio and and power derived from p-values.
Power was calculated for the z-ratios as the proportion of datasets where z > 1.64. Each point is based on
500 datasets. All datasets were simulated with a Gaussian distribution, with varying effect and sample
sizes.
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