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5 Département des Sciences Biologiques, Université du Québec à Montréal, Montréal,12
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Abstract27

1. Assessing the biological relevance of variance components estimated using MCMC-28

based mixed-effects models is not straightforward. Variance estimates are constrained29

to be greater than zero and their posterior distributions are often asymmetric. Different30

measures of central tendency for these distributions can therefore be very different, and31

credible intervals cannot overlap zero, making it difficult to assess the the size and statis-32

tical support for among-group variance. This is often done through visual inspection of33

the whole posterior distribution, and so relies on subjective decisions for interpretation.34

2. We use simulations to demonstrate the difficulties of summarising the posterior35

distributions of variance estimates from MCMC-based models. We then describe different36

methods for generating the expected null distribution (i.e. a distribution of effect sizes37

that would be obtained if there was no among-group variance) that can be used to aid in38

the interpretation of variance estimates.39

3. Through comparing commonly used summary statistics of posterior distributions of40

variance components, we showed that the posterior median is predominantly the least bi-41

ased. We further show how null distributions can be used to derive a p-value that provides42

complimentary information to the commonly presented measures of central tendency and43

uncertainty. Finally we show how these p-values can facilitates the implementation of44

power analyses within an MCMC framework.45

4. The use of null distributions for variance components can aid study design and the46

interpretation of results from MCMC-based models. We hope that this manuscript will47

make empiricists using mixed models think more carefully about their results, what they48

present and what inference they can make.49
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Introduction50

Estimating variance components using mixed-effects models is common in ecology and51

evolution (Bolker et al., 2009; Harrison et al., 2018). Mixed-effect models are a flexible52

statistical tool used to study hierarchically structured data, including extensions for esti-53

mating quantitative genetic parameters (animal models; Henderson, 1988; Kruuk, 2004)54

and comparative analysis (meta-analysis and phylogenetic mixed models; Hadfield & Nak-55

agawa, 2010). Markov chain Monte Carlo (MCMC) algorithms are increasingly used to56

fit mixed-effects models, due to their flexibility and availability of open-source software57

(e.g. winBUGS (Gilks et al., 1994), JAGS (Plummer, 2003), MCMCglmm (Hadfield,58

2010), Stan (Stan Development Team, 2022b)). MCMC algorithms are a collection of59

probabilistic simulation methods for generating observations from designated statistical60

distributions and are typically implemented within a Bayesian framework (Gelman et al.,61

2013).62

MCMC methods have many advantages in ecology and evolution. For instance, we are63

commonly interested in derived measures such as a standardised measure of variance (e.g.64

repeatability, heritability and evolvability Nakagawa & Schielzeth, 2010; Houle, 1992).65

These derived measures can be estimated using the whole posterior distribution of their66

components, allowing uncertainty to be propagated both within and among analyses. In67

contrast, in a maximum likelihood framework, the methods to estimate the uncertainty of68

derived metrics (such as the delta method) can be biased with small sample sizes (O’Hara69

et al., 2008). Data in ecological and evolutionary studies are also commonly non-Gaussian,70

for example counts (e.g. number of offspring), binary and ratio data (e.g. survival,71

presence/absence, sex ratio) and categorical data (e.g. colour morphs, horn type in72

sheep). The performance of MCMC algorithms in generalized linear mixed-effects models73

has been found to be superior in terms of accuracy and precision compared with Restricted74

Maximum Likelihood (REML) approaches (O’Hara & Merilä, 2005; de Villemereuil et al.,75

2013). Bayesian methods also allow existing information to be incorporated as a prior76
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distribution, although this has rarely been used in ecological or evolutionary studies77

(Lemoine, 2019).78

Despite these clear advantages, there are several issues that empiricists face when79

using MCMC mixed-effect models. Here we address the issue that variance estimates and80

their uncertainty can be hard to describe and interpret, especially when trying to assess81

their biological relevance. We highlight two problems that can occur when estimating82

variance components, both of which centre around the difficulty of describing the posterior83

distribution of variance components using summary statistics: (i) finding an appropriate84

measure of central tendency; and (ii) assessing the statistical support for non-zero among-85

group variance. These problems stem from variance estimates being constrained to be86

greater than zero and that their posterior distributions are often asymmetric.87

In order to describe the posterior distribution, we often present some measure of cen-88

tral tendency alongside some measure of uncertainty (quantile-based intervals or Highest89

Posterior Density (HPD) intervals). The posterior mean, median and mode have all been90

used as measures of central tendency, and more recent works have suggested the general91

use of the posterior median (Gelman et al., 2020; McElreath, 2020). There is, however,92

no clear guidance on which measure provides a more appropriate summary statistic for93

variance components, although in our experience the mode and mean are most commonly94

reported. When the posterior distribution of a variance component is far away from zero95

and is symmetric, then the mean, median and mode are approximately equal (Figure96

1a) and inferences are robust to the choice of central tendency metric. However, when97

variances are small (relative to the total variance) and/or there are small sample sizes98

(both of which often occur in ecology and evolution), the posterior distributions can be99

close to zero. As variances are constrained to be greater than zero, these posterior dis-100

tributions are typically asymmetric and can even be bimodal. Consequently, there can101

be a considerable difference between the mean, median and mode, with the mode often102

lying close to zero (Figure 1b). This discrepancy makes it is difficult to draw inference103
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about the magnitude of the posterior variance estimate.104

Use of the posterior mode is often justified as being the closest to the maximum like-105

lihood estimate (MLE) when uninformative priors are used. However, this comparison106

refers to the joint posterior mode, rather than the marginal mode that is typically esti-107

mated and reported. In more complex models, the joint and marginal modes may differ108

(Held & Sabanés Bové, 2020, Section 6.5.4), meaning that the marginal mode and MLE109

are no longer the same. As shown in Figure S2, the convergence of the posterior mode110

and MLE also requires the use of uninformative improper priors, which are generally not111

advised (Gelman et al., 2013) and are thus seldom used. The posterior mode is also hard112

to estimate; it is typically done using kernel density estimation and different methods113

may provide quite different estimates (Figure 2), thereby providing an additional source114

of hidden ambiguity. Furthermore, the mode requires a larger number of samples in115

the posterior distribution to be reliably estimated, and will show greater variation be-116

tween models/chains run on the same dataset (Kruschke, 2015). In contrast, the mean is117

strongly affected by extreme values, and so by the long tail of an asymmetric distribution.118

It is also often important to assess statistical support for among-group variance at a119

particular level. Typically 95% credible intervals (CRIs) are presented as a measure of120

uncertainty in parameter estimates derived from MCMC model fits. As variance com-121

ponents cannot overlap zero, CRIs give no information about the compatibility of the122

estimates with the null hypothesis (no among-group variance). Posterior distributions123

are often inspected visually, as histograms or density plots, in order to assess whether the124

distributions are biased towards zero, which is commonly assumed to signify that the es-125

timated variance is not different from zero. What is seldom appreciated, however, is that126

the degree of smoothing that is applied in such plots (via the binning interval or band-127

width) can alter these conclusions. This means that the same distribution can be seen128

as uni- or bimodal, or peaking at zero or away from zero (Figure 2). Such assessments129

therefore tend to be highly subjective and lack a proper quantitative basis.130
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To address this, several methods for generating metrics for assessing the confidence131

in a result (such as p-values) have been suggested in a Bayesian framework (reviewed132

in Makowski et al., 2019a). Two of these, Region of Practical Equivalence (ROPE) and133

Bayes factors, can be used for variance components. The ROPE approach identifies a134

range of values considered negligible or too small to be of any practical relevance (i.e. the135

Region of Practical Equivalence), and quantifies the proportion of overlap between the136

posterior distribution and the ROPE. This is similar to equivalence testing in a Frequen-137

tist framework, specifically to the two one-sided tests (TOST) approach (Lakens et al.,138

2018). Bayes factors are analogous to Frequentist likelihood ratios, comparing different139

models (for example with and without the random effects of interest), but unlike likeli-140

hood ratios they incorporate information from the prior distributions into the comparison141

of the models (Morey et al., 2016). Both of these metrics can be used to provide a mea-142

sure of statistical support for estimates of variance components, but their implementation143

is complicated - ROPE requires the definition of a threshold, incorporating further sub-144

jectivity into the analysis, whilst the computation of Bayes factors can be challenging,145

and even not implementable in some commonly used programs (e.g. MCMCglmm). We146

discuss these two methods further in the discussion.147

Here we suggest a complementary method to assess statistical support in mixed-effect148

models, which compares the estimated variance components to a null distribution in149

order to inform the statistical inferences made from the model. This involves creating a150

distribution of effect sizes that would be expected under the null hypothesis (no among-151

group variance) and comparing this null distribution with the observed among-group152

variance. This method has several advantages. Null distributions can be used to generate153

a p-value describing the probability that the observed estimate is as or more extreme than154

expected under the null hypothesis. Although often criticised through their association155

with Null Hypothesis Significance Testing (NHST; Wasserstein & Lazar, 2016; Amrhein156

et al., 2017; McShane et al., 2019; Amrhein et al., 2019), p-values have well understood157

and useful properties. When correctly interpreted, these test statistics provide a useful158
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tool by indicating how inconsistent an observed effect size is with a scenario in which159

there is no among-group variance. In contrast to the ROPE method, the creation of160

a null distribution requires no subjective decisions about thresholds and, in contrast to161

Bayes Factors, they can be implemented using the output from any Bayesian model.162

We present two methods, permutation and simulation, for generating null distributions163

for variance components. When generating a null distribution using permutation, some164

feature of the data or data structure is randomised to produce a new dataset that contains165

the structure of the original dataset, but where there is no relationship between the166

response variable and the variable of interest (the among-group variance in this case).167

This randomization is repeated a large number of times (e.g. 1000) to create many168

different permuted datasets. The same analysis is then carried out on the permuted169

datasets as on the original dataset, and a test statistic of interest (e.g. the estimate of170

among-group variance) is used to create a null distribution of test statistics (Figure 1c,d).171

A (one-tailed) p-value can then be derived as the proportion of permuted datasets with172

a test statistic greater than or equal to the test statistic observed with the real data set.173

Permutation tests have already been suggested as an alternative to likelihood ratio tests174

for frequentist analyses (Fitzmaurice et al., 2007; Samuh et al., 2012), although they are175

not commonly utilized in ecology and evolution (but see Araya-Ajoy & Dingemanse, 2017;176

Stoffel et al., 2017). Permutation tests are a subclass of nonparametric tests (Pesarin177

& Salmaso, 2010; Lehmann & Romano, 2005) and do not rely on specific probability178

distributions, and so make few assumptions. However, as we show later in the manuscript,179

datasets can be permuted in several different ways when the data structure is complex,180

and the consequences of the choices involved in such cases are often not immediately181

obvious. An alternative method of creating a null distribution is using simulations. This182

process is similar to permutation, but instead of generating permuted datasets we can183

simulate datasets from the observed model parameters (in a similar way to parametric184

bootstrapping), whilst setting the variance in question to zero. This simulation method185

makes more assumptions about the data and model, but allows for more control of the186
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manipulated features of the simulated datasets compared with permutations.187

Finally, a crucial part of designing experiments and statistical analyses is assessing188

the power to detect an effect size of interest. Power is defined as the probability of189

rejecting the null hypothesis (i.e. no among-group variance) for a given effect size at190

a specified alpha level (typically 0.05), and so is dependent upon the generation of p-191

values. Although power relates to NHST and the often criticized alpha level (Wasserstein192

& Lazar, 2016; Amrhein et al., 2017; McShane et al., 2019; Amrhein et al., 2019), it193

and analogous metrics (Gelman & Carlin, 2014) remain an important tool for study194

design regardless of statistical philosophy, and this is because it provides a quantitative195

approach to calculating optimal sample sizes and designing sampling regimes. Power may196

also provide a more useful metric than precision when considering variance components.197

As their distributions are bounded at zero, standard errors will always decrease when198

distributions are close to zero (see Supplementary Figure S4). However, the concept199

of power for variance components in MCMC models is not well developed. As null200

distributions can be used to generate p-values, they also provide a convenient way of201

conducting power analysis.202

Here, we first compare commonly used summary statistics of posterior distributions203

of variance components. We then demonstrate the utility of null distributions (i.e. a204

distribution of effect sizes that would be obtained if there was no among-group variance)205

to generate a complementary p-value statistic and aid the interpretation of the variance206

components. Comparison with a null distribution provides a quantitative measure of207

confidence that the observed variance component is larger than what might be expected208

under the null hypothesis, given the data structure and priors used. Importantly, we209

are not advocating that this approach should replace the presentation and use of ef-210

fect sizes (e.g. posterior mean/median/mode) and credible intervals, but rather that it211

should be used as an additional and complementary statistic. Finally, we show how null212

distributions can be used to perform a power analysis within an MCMC framework.213
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Methods214

Generation of Simulated Datasets215

Simulated datasets were generated out in R (version 4.1.0 R Core Team, 2022) using216

the squidSim R package (version 0.1.0 Pick, 2022). We first simulated Gaussian data217

with one hierarchical level and varied the number of observations per group (2 and 4)218

and the number of groups (20, 40 and 80). We simulated a total variance of 1 and219

varied the among-group variance (0, 0.1, 0.2 and 0.4; since the total variance simulated220

was 1, these are also the respective intra-class correlations (ICCs)/repeatabilities). We221

simulated every combination of these parameters (24 parameters sets) and for each set we222

simulated 500 datasets. Power to detect among-group variance is known to be determined223

by effect size and sample size both within and among groups. We deliberately chose these224

parameter values and sample sizes to explore scenarios where power is low (Dingemanse &225

Dochtermann, 2013) to understand the impact on posterior distributions. These sample226

sizes also correspond to typical experimental designs in behavioral ecology or life history227

data collected on wild populations (Bell et al., 2009).228

We analysed each simulated dataset with a linear mixed-effect model specifying group229

level random effects in a Bayesian framework, using Stan with the rstan package (version230

2.21.3 Stan Development Team, 2022a). We specified weakly informative priors on the231

among-group and residual standard deviations (half-Cauchy distribution with scale 2),232

and ran one chain for each model with 5000 iterations and a warm-up period of 2000233

iterations. Across the majority of models (95%) this ensured an effective sample size234

in the posterior distribution of the among group variance of >500. For comparison, we235

also ran REML models using the lmer function of the lme4 package (version 1.1-29 Bates236

et al., 2015), the results of which are shown in the Supplementary Figure S1.237

As a demonstration that our findings hold with more complex data, we simulated238

Bernoulli data (binomial with one observation) with 80 groups and 4 observations per239
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group. Among-group effects were simulated from a Gaussian distribution on the latent240

scale, with among-group variances of 0 and 0.2. The latent scale response variable was241

then transformed using the inverse logit function to provide the probabilities, and sampled242

with a Bernoulli process. We simulated 100 datasets for each variance, and analysed the243

data as outlined above.244

Comparison of Posterior Distribution Summary Statistics245

From the posterior distributions of the among-group variances, we calculated the posterior246

mean, median and mode, and compared these estimates with the simulated values.247

While calculating the mean and median of the posterior distribution is straightfor-248

ward, there are several ways of estimating the mode of the marginal posterior distribution,249

which involve some (hidden) assumptions. Commonly used functions in R include the250

posterior.mode function in the MCMCglmm package (Hadfield, 2010), the Mode func-251

tion in the ggdist package (Kay, 2022), and the map_estimate function of the bayestestR252

package (Makowski et al., 2019b). Typically these functions estimate the mode by es-253

timating the parameter value at which the kernel density is maximised. Kernel density254

estimation essentially involves fitting a model to the distribution of posterior samples255

to estimate a density function. The maximum of this function (the estimated mode) is256

then calculated over a series of predicted values. One key parameter in kernel density257

estimation is the bandwidth, which essentially describes the amount of smoothing and258

is analogous to the number of breakpoints in a histogram (Figure 2). Common meth-259

ods generally scale bandwidth generated by specific algorithms. MCMCglmm scales the260

bandwidth generated by Silverman’s ‘rule of thumb’ algorithm (nrd0; eqn 3.31 in Sil-261

verman, 1986) by 0.1 (i.e. it is much less smoothed; Figure 2d). In contrast, ggdist262

and bayestestR use the default values of the nrd0 and SJ algorithms (Sheather & Jones,263

1991), respectively (the default bandwidth of the nrd0 algorithm is also used by density264

function in R; Figure 2a). The impact on the potential inferences caused by the choice265
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of scaling is demonstrated in Figure 2, with the degree of smoothing affecting where the266

posterior mode is estimated. To explore this impact of bandwidth, we estimated the267

posterior mode using these two bandwidth scalings (0.1 and 1). The kernel density was268

estimated using the SJ algorithm (Sheather & Jones, 1991), and the mode was estimated269

using 512 predicted values with a cut point at zero. These additional parameters all differ270

between commonly used functions, but have much smaller impacts upon the results than271

the bandwidth, and so we hold them constant here.272

To ensure that our results, especially on the mode, were not driven by the choice of273

the prior, we ran additional models on a subset of the data (ICC=0.2, N groups=80,274

N within=2) with a half-Cauchy prior with scale 5 and 25, and uniform priors from 0275

to 5 and 0 to 25 on the among-group standard deviation. The half Cauchy prior has276

been recommend for variance components (Gelman, 2006) and is commonly used (note277

it is equivalent to the parameter expanded priors in MCMCglmm). For demonstration278

purposes, we also ran models in MCMCglmm specifying uninformative improper priors.279

Given the simplicity of these models, the posterior mode is expected to correspond to the280

REML estimate. The different parametrizations of the half Cauchy and uniform priors281

resulted in no difference in the results (Figure S2). As expected, using an uninformative282

improper prior led to a concordance between REML and posterior mode, although the283

strength of this similarity differed between the different methods used to estimate the284

mode (Figure S2).285

To compare these different measures of central tendency, we calculated the bias as286

1
n

∑
θ̂i−θ (where θ is the true simulated value, θ̂i is the model estimate from ith simulation287

in a parameter set, and n is the number of simulations). For the non-zero effect sizes,288

we also calculated relative bias 1
n

∑
θ̂i−θ
θ

and absolute relative bias 1
n

∑ |θ̂i−θ|
θ

. We also289

calculated the precision as 1/
√

1
n

∑
(θ̂i − θ̄)2, which we present in the Supplementary290

Figure S4.291
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Creation of null distributions and p-values292

We created null distributions for each simulated dataset using two methods. First, we293

permuted the datasets by shuffling the group indices (IDs) to create 100 new datasets,294

each of which was analysed in the same way as the original dataset. From each permuted295

dataset, we extracted the same parameters (the estimates of central tendency in the296

posterior distribution of the among-group variance) as for models fitted to the original297

data and created the corresponding null distributions. Second, we used simulations to298

create the null distribution. To do this, we simulated datasets with no among-group299

variance. To ensure the same total variance we added the posteriors of the among-group300

and residual variances of the original model, and we used the median of the resulting301

distribution as our inputted value for the simulated residual variance in the null model.302

The choice of the median for this step should have little consequence, as this derived303

distribution will be estimated with much less uncertainty and so will be symmetric,304

meaning that the three measures of central tendency will be equivalent. Each simulated305

null dataset was analysed in the same way as the original dataset, and we extracted the306

same parameters to create the corresponding null distributions.307

Although we recommend using a larger number of permutations/simulations to build308

up a null distribution in empirical studies (e.g. 1000), here we used 100 permutations and309

simulations to generate null distributions for these simulated datasets in order to reduce310

the computational burden (500 simulations for 4 variances, with 6 different sample sizes is311

12000 datasets, for each of which we performed 100 permutations and 100 simulations).312

We then calculated a p-value for each original dataset, as the proportion of estimates313

in the null distribution that were higher than the estimate from the original data. We314

calculated p-values using each central tendency measure, and these are compared in315

Figure S5.316
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Power analysis317

Using the simulated datasets outlined above, we compared two ways by which power can318

be calculated. Power is defined as the probability of rejecting the null hypothesis (i.e. no319

among-group variance in this case) for a given effect size and data structure at a specified320

alpha level (typically 0.05). To do this, we calculated the proportion of datasets in which321

the p-value was below a nominal threshold of 0.05. It is worth noting that, although322

power has a superficial connection with NHST, power can also be seen as a description323

of the distribution of p-values expected for a given effect size and data structure. Other324

descriptions of this distribution (e.g. the mean) would be simple functions of the power.325

We therefore chose to present power as a description of the distribution of p-values as it326

is conceptually well understood and frequently used, rather than due to any philosophical327

alignment with NHST.328

First, we estimated power using the p-values generated though comparison with the329

null distributions from both permutation and simulation approaches outlined above (‘full’330

method). We were also able to calculate the false positive rate for this method (essentially331

the power when the simulated value is 0). Second, we used the model estimates from the332

simulated datasets with zero among-group variance for each data structure (combination333

of among- and within-group sample sizes) as a null distribution, against which the es-334

timates from simulated datasets with among-group variance could be tested (‘reduced’335

method). This method of estimating power is similar to the simulation method of gen-336

erating null distributions, but involves generating one null distribution for all datasets337

with the same data structure, instead of null distribution for each dataset. It is therefore338

massively less computationally intensive for power analyses, because to explore power339

within the parameter space presented here it only required the running 12,000 models,340

rather than 1,212,000. It is not possible to calculate a false positive rate for this method,341

as this would involve comparing the null distribution with itself, and so the false positive342

rate would be 5%, by definition.343
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Results344

Comparing summary statistics of the posterior distribution345

When the simulated among-group variance was zero, all summary statistics were up-346

wardly biased to some extent (the posterior distribution cannot include 0; Figure 3a).347

Predictably, the posterior mean and median from datasets with zero variance were con-348

siderably more upwardly biased for small sample sizes, in contrast to the mode. The349

mean was the most biased as it is heavily influenced by the tail of the distribution. Con-350

sequently, this upward bias is stronger when the uncertainty is high (i.e. when the tail is351

large). Note, however, that this upward bias is also present in Frequentist analyses (see352

Figure S1), and is not just a feature of Bayesian analyses.353

When the simulated among-group variance is non-zero, then the mean, median and354

mode all appeared to be consistent estimators, in that any bias occurred only at small355

sample and/or effect sizes. The posterior median generally converged on the simulated356

value at lower effect and sample sizes (Figure 3b), as compared with the posterior mean,357

which was upwardly biased, and the posterior mode that was biased towards zero (Figure358

3b).359

When considering the absolute relative bias (Figure 3c), the mean and median show360

very similar levels of bias, with exception of the lowest sample and effect size combination361

where the mean was more biased. This suggests that although the mean is more likely to362

be upwardly biased, the magnitude of the bias is similar in the two measures. However,363

the mode is consistently more biased than the other measures (Figure 3c), although364

this bias disappears at higher sample and effect sizes. Following the example shown in365

Figure 2, the bias in the mode depends upon the bandwidth that was used, with higher366

smoothing showing less bias across the two bandwidths tested. We found similar patterns367

in our Bernoulli simulations (Figure 5a).368
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Performance of the null distributions369

As expected, both permutation and simulation methods produced a uniform distribution370

of p-values when applied to datasets where the simulated among-group variance was zero371

(Figures 4). The distribution of p-values from both tests then shifts towards zero as the372

sample size and the magnitude of the variance increase (Figure 4). Similar patterns were373

found in the Bernoulli simulations (Figure 5b).374

Importantly, although the mean, median and mode were often quite different in magni-375

tude (reflecting skew in the posterior distribution), the inference based upon the p-values376

did not differ between the different metrics. There were strong correlations between p-377

values estimated with the different metrics, with the exception of the mode estimated378

with less smoothing (see Figures S5 and S7). P-values were also strongly correlated379

between null distributions generated through simulation and permutation methods (see380

Figures S6 and S8).381

Power analyses382

When considering the full method of estimating power, both ways of generating null383

distributions (permutation and simulation) gave very similar results (Figure 6), with384

marginally higher power for the permutation method. These power estimates are very385

similar to previous published estimates for Frequentist models (Dingemanse & Dochter-386

mann, 2013). These methods also displayed the expected false positive rates (5%) under387

all simulated conditions (black points in Figure 6). The reduced method for estimating388

power, using the same null distribution for all simulation datasets within a particular389

data structure, generally gave a similar power to the other methods (Figure S9).390

As with the p-values, power was not particularly sensitive to the measure of central391

tendency used, the highest power being seen in the mode with higher smoothing and the392

lowest power with the mode with less smoothing (Figure S9).393
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Worked example - Random slopes394

As is often the case, the examples presented above are simplistic and empiricists com-395

monly encounter more complex questions and data structures in their studies. Here we396

outline a more realistically complex example where the permutation of datasets require397

some careful decisions.398

Random slope models (where group-specific intercepts and slopes are modelled, also399

known as random regression) provide a good example of this complexity. We will fo-400

cus here on generating a null distribution for the estimate of among-group variance in401

slopes. This estimate is based upon the relationship between the predictor variable and402

response, the distribution of the response variable across groups, and the distribution of403

the predictor variable within and across groups. This provides us with four possibilities404

for permutation: 1) permuting the response variable (retains data structure and breaks405

all relationships with response); 2) permuting the predictor (retains the group data struc-406

ture, breaks link between predictor and response, and the distribution of the predictor407

across groups); 3) permuting the group identities (breaks the group data structure, but re-408

tains link between predictor and response); and 4) permuting the predictor within groups409

(retains the group data structure and the distribution of the predictor across groups, but410

breaks link between predictor and response). Additionally, we can also generate a null411

distribution through simulation, where we can simply simulate no among-group variance412

in slopes, adding the variance generated by the random slopes to the residual to ensure413

the same total phenotypic variance. Below we explore these different null distributions414

using a simulated and a real data set. Null distributions were generated based upon the415

analyzes of 100 null datasets.416
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Simulated dataset417

We imagined a hypothetical researcher measuring the body mass of a bird species at418

different times of the day with the aim of studying how temperature affects body mass.419

The question of interest was to asses whether there is variation among individuals in420

how temperature affects their body mass. The (simulated) observed data set consisted of421

300 individuals measured 4 times each. Body mass and temperature were both normally422

distributed. Temperature was scaled to have a mean of 0 and variance of 1, and has an423

effect on body mass of 0.2 for the average individual. The simulated among individual424

variance in the intercepts was 0.2 and the phenotypic variance generated by variation425

in slopes was 0.1 (with no correlation among random slopes and intercepts), while the426

residual variance was set to 0.7 to ensure a total phenotypic variance not explained by427

the average effect of the environment was 1. Formulas to estimate the total phenotypic428

variance in random slope models can be found in Allegue et al. (2017) There were no429

systematic differences in the average temperature experienced by the different individuals.430

Real world dataset431

For our example with real data, we used a study on variation in the plastic aggressive432

response to intruders of great tits (Parus major) in a nestbox population in southern433

Germany (Araya-Ajoy & Dingemanse, 2017). Aggressiveness data were collected over a434

6-year period (2010–2015) for all male birds during their first breeding attempt each year.435

The aggression test started when a taxidermic mount of a male great tit was presented on436

a 1·2 m wooden pole with a playback song 1 m away from the subject’s nest box. They437

subsequently recorded the behaviour of the focal male for a period of 3 min after it had438

entered a 15 m radius around the box. Simulated territorial intrusions were performed439

twice during the egg-laying stage and twice during the egg-incubation stage of each focal440

nest. Therefore, males had repeated measures both within- and among-years.441
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We analysed 2854 aggression tests performed to 1042 breeding attempts of 679 in-442

dividuals. The average number of years for which we obtained an individual’s reaction443

norm was 1·4, with 513, 142, 44, 8, 8 and 1 individual(s) sampled for one, two, three, four,444

five or six breeding attempt(s) (years), respectively. On average, we acquired 2·8 (out of445

4) data points for male aggressiveness per breeding attempt (i.e. year), because males446

did not always respond to the territorial intrusion experiment (Araya-Ajoy & Dinge-447

manse, 2017). Details of the experimental setup, and assayed behaviours, are provided in448

Araya-Ajoy & Dingemanse (2014). For the purpose of this paper, we used the subject’s449

minimum distance to the mount as a measure of aggressiveness because previous work450

implies that this behaviour represents a reliable predictor of the intensity of an aggressive451

response in both stages of breeding (Araya-Ajoy & Dingemanse, 2014).452

Random slope methods453

Both datasets were analysed using random slope mixed-effects models, specifying the en-454

vironmental predictor (temperature for the simulated example and breeding stage for the455

real example) as a fixed covariate, and random intercepts and environment slopes across456

individuals. We then generated 5 null distributions (4 permutations and 1 simulation),457

as outlined above, with which we compared the estimate of among individual variance in458

slopes from the observed data. Breeding stage (egg-laying versus egg-incubation) was first459

coded as zero (for laying) versus one (for incubation), and subsequently mean centred and460

standardized to standard deviation units. Models were fitted in a Bayesian framework,461

using Stan with the rstan package (version 2.21.3 Stan Development Team, 2022a). We462

specified weakly informative priors on the among-group and residual standard deviation.463

We ran three chains for the model of the simulated and real observed data with 5,500464

iterations and a warm-up period of 500 iterations. To decrease computational burden,465

the models for the permuted/simulated data sets were run for only one chain. We then466

generated five null distributions of posterior medians for each dataset, using the methods467
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described above.468

Random slope results469

The different types of null distributions provided the same qualitative results, support-470

ing the conclusion regarding among-individual variation in slopes, in both the real and471

simulated datasets (Fig 7). For these datasets, permuting individual identity created472

null distributions with a larger mean value of random slope variance (see Discussion for473

an explanation). It is important to note that these results relate only to this specific474

example and may not generalize to other studies. We therefore recommend exploring the475

particular consequences of using different types of permutations for specific datasets, if a476

reader wishes to use a permutation method.477

Discussion478

Through the use of simulations, we demonstrate the difficulties of summarising the poste-479

rior distributions of variance estimates from MCMC-based models. We describe different480

methods for generating null distributions that provide useful complimentary informa-481

tion alongside the presentation of central tendency and uncertainty that are generally482

reported. We also show a way in which null distributions could be used to derive a p-483

value, which is an easy addition to the statistics presented when summarizing a posterior484

distribution and also facilitates power analysis.485

Summary statistics486

Our experience in ecology and evolution is that both posterior mean and mode are com-487

monly, but inconsistently, presented without justification. For fixed effect parameter488

estimates, this is typically inconsequential, as the posteriors are usually symmetrically489
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distributed. When estimating variance components, however, our simulations show that490

depending upon the underlying parameter value, both of these measures can show large491

biases in opposite directions. When posterior distributions are close to zero and there492

is among-group variance, the posterior mode is very biased towards zero, whereas the493

posterior median and mean perform much better. On the other hand, if there is no494

among-group variance, the mode is by far the least biased. The mode, however, suffers495

further from subjectivity in its estimation. Our simulations also show that the estimation496

of the mode depends on the underlying algorithm for mode estimation. Unfortunately,497

the method of mode estimation is rarely justified or even stated in empirical papers. The498

mode also requires larger posterior distributions to be reliably estimated and will show499

greater variation between models/chains (Kruschke, 2015). Given this hidden ambiguity500

in the estimation of the mode, we would therefore cautiously recommend the presentation501

of the posterior median, or both median and mean, as a measure of central tenancy for502

variance components. This recommendation is based upon the median being generally503

less biased than the mean when power is low. Presenting both allows the discrepancy to504

be seen, showing that the distribution is near to zero and not symmetric, further stressing505

the uncertainty in these measures.506

Upward biases in variance components have been seen before when power is low, but507

the dependence on the choice of the central tendency metric has not been highlighted.508

For example, Fay et al. (2022) note overestimation of variance components in Bernoulli509

models, with this overestimation decreasing in size as sample size and effect size increase.510

Fay et al. (2022) use the posterior mean as a summary statistic, and (as we show in511

Supplementary Figure S10) this bias will decrease (although not disappear completely)512

through the use of a posterior median. This is not just a bias in Bernoulli models, or in513

fact MCMC models (Figure S1), but a general property of variance components estimated514

with low power.515

It is often argued that rather than presenting summary statistics, we should present516
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and interpret the whole posterior distribution, which are frequently presented using den-517

sity plots. Again, the underlying parameters of the kernel density estimation are usually518

not presented alongside the density plots, meaning the amount of smoothing is not doc-519

umented. A large degree of smoothing can hide asymmetry and/or bi-modality, and so520

change inferences. We therefore suggest the use of histograms over density plots in the521

presentation of posterior distributions, because although they are subject to the same522

smoothing problems, the degree of smoothing is explicit in the histogram, but hidden in523

the density plot. Alternatively, other plots that explicitly show the raw posterior samples524

(e.g. beeswarm plots) could be used (e.g. Figures 4 and 5).525

Null distributions526

The null distribution approaches outlined here are relatively easy to use, and allow quan-527

tification of confidence that a variance estimate is the result of a biological process rather528

than a consequence of the choice of priors and data structure. Importantly, the p-values529

based upon null distributions are not dependent upon what measure of central tendency530

is used. Such inferential statistics comparing the observed estimates with the null distri-531

butions can provide quantitative measures that can be reported alongside the observed532

estimates and uncertainty, and provides a useful tool for assessing the probability that533

variance components are non-zero and thereby supplement visual inspections of posterior534

distributions, or comparison of posterior mode, median and mean. Furthermore, they535

can serve as an objective and easy-to-communicate assessment of the biological relevance536

of an estimated variance component to the general public and policy makers, or for the537

statistical support of non-zero values for derived statistics like heritability, repeatability538

or evolvability. Common criticisms of p-values include that they are often misinterpreted539

or used for NHST. We would therefore recommend readers thinking of using the null540

distribution approach to acquaint themselves with the literature on these topics (some541

useful examples include Wasserstein & Lazar, 2016; Amrhein et al., 2017; McShane et al.,542
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2019; Amrhein et al., 2019). Importantly, p-values cannot demonstrate absence of effect,543

just confidence in difference from the null hypothesis (here no among-group variance).544

We believe generating null distributions will help empiricists understand these concepts,545

as they can be used to give a visual representation of what a p-value signifies.546

As we illustrate in our examples of random slopes, there are different ways of per-547

muting datasets, which become more varied as the complexity of the data structure and548

model increase. Our example on random slope analysis demonstrated that these differ-549

ences can lead to qualitatively similar results, although whether they always or usually550

do so would require a much broader set of simulations than we report here. Interestingly,551

permuting individual identity created null distributions with noticeably larger values of552

random slope variance. We believe this is due to the existence of random slopes in the553

simulated and real data set generating heterogeneous residuals (i.e. variance in response554

changed with the environmental predictor) that were confounded with random slope vari-555

ation in the analyses of the null data sets (similar effects are also shown in Ramakers556

et al., 2020). The other permutation methods break up the relationship between the557

predictor and response, and so the average estimate for the null distributions was lower.558

This illustrates how comparing the results of the different methods of null distributions559

generation may provide insights that may be used to inform the statistical inferences560

from estimated variance components.561

In some instances, generating a null distribution using permutations may not be562

possible. For example, in event-history models of survival (where individuals have an563

entry for each time point where they are observed, in a sequence of 0’s for time points564

they survive and a 1 for the time point after which they die). In this case, permuting the565

individual identifiers would fundamentally alter the data structure, meaning that some566

individuals had multiple deaths. This could be made to work in the context of an animal567

model, where the observed 0’s and 1’s could be interchanged between individuals, so that568

the same between individual structure was maintained, but the link with the pedigree569
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was broken. This serves to demonstrate that some care needs to be taken when assessing570

the suitability of permutations and how they impact the data structure on a case-by-571

case basis. Overall, we are not advocating a specific recipe for permutations here - it is572

likely context and question dependent. We instead advocate a simulation approach at573

the planning stage, using simulations to check in advance that the permutation design574

gives desired properties with your likely data structure.575

Generating null distributions through simulation avoids many of the issues with the576

permutation approach, although it does not account so well for the particularities of each577

data set. Simulation has the advantage that it allows the structure of the data to be578

fully retained, a more fine-scale alternation of the variances in question, and it makes579

no additional assumptions than those already being made by the statistical model itself.580

Reassuringly, in our random slope example, the null distributions generated using the581

simulation method were similar to the other methods. We therefore cautiously recom-582

mend the use of this simulation method, as it is the most flexible for complex models.583

These null distribution approaches are, however, computationally intensive and ap-584

plying them can take a long time depending upon the model complexity, the amount585

of data and the available computational resources. MCMC methods are often used for586

highly complex problems (e.g. double hierarchical GLMs; Cleasby et al., 2015), where587

running a large number of permutations may not be an option. The number of permuta-588

tions/simulations that are run affects the precision with which a p-value can be calculated589

and the minimum p-value that can be calculated - a null distribution of 100 can have a590

minimum p-value of 0.01 and vary by intervals of 0.01. This is why we would recommend591

a higher number of samples in the null distributions than we used here. However, we592

were able to produce meaningful results with 100 simulations, and even a few permuta-593

tions/simulations would give some idea (although much less reliably) of how incompatible594

the observed variance was with the range expected under the null hypothesis.595
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Alternative approaches596

A p-value is defined as the probability that an estimate equal to or more extreme than597

the observed estimate would occur under the null hypothesis (i.e. if the true among-598

group variance is zero). It relies upon the distribution of p-values being uniform when599

the null hypothesis is true, a property that is expected to be invariant to sample size (as600

we show in Figure 4). P-values therefore provide support for the alternative hypothesis,601

but they do not provide support for the null hypothesis. The ROPE value and Bayes602

factors aim to assess actual support for the null hypothesis, and therefore depend upon603

sample size. Below we outline the potential issues that empiricists may encounter when604

trying to employ these methods.605

The ROPE introduces another source of subjectivity into the analysis, because it606

involves an arbitrary threshold that needs to be defined. This is not trivial in the case607

of variance components, as small variances can have large knock-on effects. For example,608

McFarlane et al. (2015) find that maternal genetic effects account for 2% of variation609

in fitness, but this small amount predicts a 56% increase in mean lifetime reproductive610

success in less than 10 generations, which is highly biologically meaningful. Bonnet et al.611

(2022) address this by using simulations to demonstrate the biological relevance of the612

thresholds they use (0.01 and 0.001, for the variances not ICC). There is also discussion613

about whether the overlap of the whole posterior or the 95% credible interval should614

be used with ROPE (Makowski et al., 2019a; Schwaferts & Augustin, 2020). As with615

NHST, 95% is also an arbitrary cutoff, and so the ROPE would represent the overlap616

of two arbitrary thresholds. ROPE is often discussed in a context where a cost-benefit617

analysis can be used to work out the minimum effect size that warrants the use of a618

particular intervention, for example of medical interventions (Kruschke, 2018). Typically619

this is not relevant for research in ecology and evolution as, in many cases, it is of interest620

whether variance in a particular component exists, and if so its magnitude. We think621

there is clear application for using ROPE in fields like conservation, where interaction622
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with stakeholders requires thresholds over which decisions need to be made, but for many623

empiricists, ROPE requires more subjective decisions to be made and justified.624

Bayes factors can be used to test the ’significance’ of parameters in Bayesian mixed-625

effect models. However, the calculation of Bayes factors that allow inferences to be626

made about variance components is not straightforward. They require large posterior627

distributions for stable estimation and are sensitive to both prior and model specification628

(Gelman et al., 2013; Navarro, 2019; Schad et al., 2022) and there is some ambiguity in629

which models should be compared and what questions they answer (van Doorn et al.,630

2021). Bayes factors are also not implementable in all programs, including commonly631

used programs in ecology and evolution (e.g. MCMCglmm). Our approach provides632

an alternative to this method, which is easily implemented and allows straightforward633

interpretation with reference to the probability that the estimate obtained is inconsistent634

with the data structure and model specification alone.635

Power analysis and possible alternatives636

Power analysis is controversial as it relies on NHST. NHST is controversial because its637

misuse has been attributed to scientific misconduct and the replication crisis (Wasserstein638

& Lazar, 2016; Amrhein et al., 2017; McShane et al., 2019; Amrhein et al., 2019), issues639

which relate to the use of p-values after data collection and analysis. Power analysis, how-640

ever, serves a clear purpose in aiding experimental design, and is conducted pre-analysis,641

and so is perhaps not subject to the same criticisms. Suggested alternatives, such as Type642

M and Type S error, also rely upon calculation of p-values and definition of an arbitrary643

alpha value, and are both a simple function of power (Gelman & Carlin, 2014). Type S644

error (proportion of significant estimates that have the opposite sign) is not relevant for645

variance components. Type M (absolute relative bias of significant estimates) gives some646

additional information but, unlike power, it is affected by the measure of central tendency647

that is chosen (Figure S11). Power can also be seen as a description of the distribution648
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of p-values expected for a given effect size and data structure. Other descriptions of this649

distribution (e.g. the mean) would be simple functions of the power, but the common650

use of this metric makes it more widely understood. An alternative to power would be to651

design studies around a desired level of precision in estimates. Although this works for652

unbounded parameters, precision is difficult to interpret for variance components, and653

SE will decrease as true value gets closer to zero, not because precision increases, but654

because it is limited by zero (see Figure S4). We would therefore suggest that power still655

provides a suitable metric for designing studies to estimate variance components.656

We show two methods of power analysis based upon null distributions. The first (full)657

involves generating p-values for each simulated dataset by generating a null distribution658

for that dataset. This method is highly computationally intensive as it involves running659

a certain number of simulations multiplied by the number of permutations/simulations660

models, which could realistically be one million models per parameter. Our alternative661

method (reduced) is to generate a single null distribution for each data structure, and662

generate p-values by comparing the parameter estimates from the simulated datasets to663

this single null distribution. This method gives similar results to the full approach and664

is massively less computationally intensive (requiring running 2000 models rather than665

a million for each set of parameters). The disadvantage is that the false positive rate666

cannot be calculated.667

Even if power is not the intended use (or there is an objection to arbitrary alpha668

values), these simulations can serve an extremely useful purpose before studies are con-669

ducted. First, these simulations allow a empiricist to consider the distribution of p-values670

expected under a given effect size and design (note that power is essentially a descriptions671

of the shape of this distribution). Second, the null distribution of point estimates can672

be considered - this enables the distribution of effect sizes that can occur under the null673

hypothesis to be visualised. Even if an empiricist does not want to calculate a p-value,674

creating a null distribution is still a powerful way of seeing the distribution of estimates675
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that would be generated with no among-group variance, and would serve to encourage676

caution in how results that lie within that distribution are interpreted.677

Recommendations678

1. Using the posterior median as a measure of central tendency for posterior distri-679

butions of variance components from MCMC-based models. Our results show that680

the median is the least biased estimate, but will overestimate variances when power681

is low. Reporting multiple measures of central tendency allows any asymmetry in682

the posterior to be made obvious.683

2. Reporting of smoothing values in kernel estimation. Kernel density estimation is684

commonly used for estimating the posterior mode and creating density plots. The685

parameters used in this estimation are seldom reported, but can have a large impact686

on interpretation. We advise the reporting of parameters in the kernel density687

estimation, or the use of more explicit methods of plotting posterior distributions,688

such as histograms.689

3. Using null distributions for inference. Null distributions provide a way of putting the690

observed parameter estimates into a context expected under an explicitly defined691

null hypothesis (i.e. no among-group variance). Null distributions can be created in692

multiple ways, but they are most easily controlled when generated using simulations.693

As with many aspects of statistical analysis, there are many decisions relating to694

generating null distributions that may have an affect on the results. Therefore,695

these methods should be defined pre-analysis, in order to reduce researcher degrees696

of freedom.697

4. Using a null distribution to estimate power. As well as aiding post-hoc inference,698

null distributions can be used for power analysis. We provide details of a method699

for doing so that does not present a large computational burden.700
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Held, L. & Sabanés Bové, D. (2020) Likelihood and Bayesian Inference, volume 10.803

Springer.804

Henderson, C.R. (1988) Theoretical basis and computational methods for a number ofd-805

ifferent animal models. Journal of Dairy Science, 71, 1–16.806

Houle, D. (1992) Comparing evolvability and variability of quantitative traits. Genetics,807

130, 195–204. https://dx.doi.org/citeulike-article-id:10041224.808

Kay, M. (2022) ggdist: Visualizations of Distributions and Uncertainty. R package version809

3.2.0.810

Kruschke, J. (2015) Doing Bayesian Data Analysis. Acadmiec Press/Elsevier, second811

edition.812

Kruschke, J. (2018) Rejecting or Accepting Parameter Values in Bayesian Estima-813

tion. Advances in Methods and Practices in Psychological Science, 1, 270–280.814

https://dx.doi.org/10.1177/2515245918771304.815

Kruuk, L.E.B. (2004) Estimating genetic parameters in natural populations using the816

“animal model”. Philosophical Transactions of the Royal Society of London B, 359,817

873–890. https://dx.doi.org/10.1098/rstb.2003.1437.818

Lakens, D., Scheel, A.M. & Isager, P.M. (2018) Equivalence Testing for Psychological819

Research: A Tutorial. Advances in Methods and Practices in Psychological Science, 1,820

259–269. https://dx.doi.org/10.1177/2515245918770963.821

33



Lehmann, E.L. & Romano, J.P. (2005) Testing Statistical Hypotheses. Springer Texts in822

Statistics. Springer, New York, 3rd ed edition.823

Lemoine, N.P. (2019) Moving beyond noninformative priors: Why and how to824

choose weakly informative priors in Bayesian analyses. Oikos, 128, 912–928.825

https://dx.doi.org/10.1111/oik.05985.826

Makowski, D., Ben-Shachar, M.S., Chen, S.H.A. & Lüdecke, D. (2019a) Indices of Effect827
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Figure 1: Posterior distributions of variance estimates for two different scenarios (a and b) and their
respective null distributions (c and d) generated using permutations. Example a) shows a symmetric
posterior distribution far away from zero with close agreement between the posterior mean (red lines)
and mode (blue line), whilst b) shows an asymmetric posterior distribution close to zero, with clear
divergence between the posterior mean and mode. c) and d) show null distributions of posterior means
generated through permuting the datasets, and corresponding p-values, of a) and b), respectively. The
values given in a) and b) correspond to mean (mode) [CRIs]. Both datasets were simulated with among-
group variances of 0.2, but with differing sample sizes; a) with 80 groups and 4 observations per group;
b) with 40 groups and 2 observations per group.

37



0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

adjust=1

Posterior samples

D
en

si
ty

0.198

a)

breaks=10

Posterior samples

F
re

qu
en

cy

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
10

0
20

0
30

0
40

0
50

0
60

0

e)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5
3.

0
3.

5

adjust=0.5

Posterior samples

D
en

si
ty

0.195

b)

breaks=20

Posterior samples

F
re

qu
en

cy

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
50

10
0

15
0

20
0

25
0

30
0

f)

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
1

2
3

adjust=0.2

Posterior samples

D
en

si
ty

0.145

c)

breaks=50

Posterior samples

F
re

qu
en

cy

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
20

40
60

80
10

0
14

0

g)

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
1

2
3

4

adjust=0.1

Posterior samples

D
en

si
ty

0.001

d)

breaks=100

Posterior samples

F
re

qu
en

cy

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
20

40
60

80

h)

Figure 2: The effect of bandwidth choice on the estimation of the posterior mode. Top row shows kernel
densities of the same posterior distribution, estimated with different bandwidth scalings, from 1 in a)
to 0.1 in d). Red lines shows the posterior modes estimated from that scaling. Bottom row shows the
equivalent histograms for comparison.
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Figure 3: Bias (a), relative bias (b) and absolute relative bias (c) of posterior mean, median and mode
of variance components from simulations varying in among group variance (ICC - 0, 0.1, 0.2, and 0.4)
and sample size within (2 or 4) and among (20, 40, 80) groups. Two posterior modes were estimated:
mode-1 and mode-0.1 with more and less smoothing, respectively (see text for more details).
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Figure 4: Distribution of p-values estimated using the posterior median and null distributions generated
through simulations for datasets varying in among-group variance (ICC - 0, 0.1, 0.2, and 0.4) and sample
size among (20, 40, 80) groups. Example a) shows a within group sample size of 2, and b) a within group
sample size of 4.
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Figure 5: Sampling distributions of parameter estimates (a) and p-values (b) from GLMMs using different
measures of central tendency. Two posterior modes were estimated: mode-1 and mode-0.1 with more and
less smoothing, respectively (see text for more details). In a) red lines show simulated values, and blue
points and error bars show mean and standard error of the sampling distributions. The p-values were
generated using null distributions generated through simulation.
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distribution (power). For each within-group sample size of a) 2 and b) 4, we show results for four among-
group variances (0, 0.1 ,0.2 and 0.4) and three among-group sample sizes (20, 40 and 80). Power was
calculated using posterior medians.
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Supplementary Materials898

Supplementary Methods899

Simulations based on Fay et al. (2022)900

We simulated datasets based on Fay et al. (2022), but ran simplified models (univariate901

instead of bivariate), as the purpose was simply to demonstrate the effect of different902

measures of central tendency on the bias in these models. We simulated data with the903

same parameters of one set of simulation in Fay et al. (2022) - fast life history and904

low heterogeneity. We simulated the probability of survival as 0.5 and probability of905

reproduction as 0.7, standard deviations on the latent scale of 0.2 for both survival and906

reproduction and a correlation of 0.6 between the two. We simulated 100 datasets from907

sample sizes of 250, 500, 1000, 2000, 4000 individuals. For each simulated dataset we ran908

a binomial GLMM, with random effects of individual identity using Stan with the rstan909

package (version 2.21.3 Stan Development Team, 2022a). We specified weakly informative910

priors on the among-group standard deviations (half-Cauchy distribution with scale 2),911

and ran one chain for each model with 7500 iterations and a warm-up period of 2000912

iterations. We then estimated the posterior mean, median and 2 modes as in the main913

text.914
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Supplementary Figures915
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Figure S1: Bias of Frequentist estimates alongside posterior mean, median and mode of variance com-
ponents, from simulations varying in among-group variance (ICC - 0, 0.1, 0.2, and 0.4) and sample
size within (2 or 4) and among (20, 40, 80) groups. Two posterior modes were estimated; mode-1 and
mode-0.1 with more and less smoothing, respectively (see text for more details).
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Figure S2: Impact of prior choice on measures of central tendency. ’C’ represents half Cauchy priors,
’U’ uniform priors, and ’Improper’ uninformative improper prior. Red lines shows simulated values, and
orange points shows means of different point estimates from across simulations, and blue points show the
mean of the REML estimates across simulations.
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Figure S3: Sampling distributions of posterior mean, median and mode from simulations varying in among-group variance (ICC - 0, 0.1, 0.2, and 0.4) and
sample size within (2 or 4) and among (20, 40, 80) groups. Red lines show the simulated value and orange points the mean of the sampling distributions.
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Figure S5: Comparison of p-values generated with different measures of central tendency using both
simulations and permutations. 49
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Figure S6: Comparison of p-values generated using permutation and simulation methods across all mea-
sures of central tendency.
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Figure S7: Comparison of p-values generated with different measures of central tendency from GLMMs
using null distributions generated by simulation.
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Figure S8: Comparison of p-values from GLMMs generated using permutation and simulation methods
across all measures of central tendency.
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Figure S9: Comparison of power among different measures of central tendency
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Figure S10: Mean posterior mean, median and mode of variance components from simulations based
upon Fay et al. (2022).
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Figure S11: Type M error and power from posterior mean, median and mode calculated using null
distribution generated through simulation. Colours represent simulated ICCs, red - 0.1, green - 0.2, and
blue - 0.4.
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