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Abstract. 12 

While it is now widely accepted that microorganisms provide essential functions in restoration 13 

ecology, the nature of relationships between microbial community assembly and ecosystem 14 

recovery remain unclear. There has been a longstanding challenge to decipher whether 15 

microorganisms facilitate or simply follow ecosystem recovery, and evidence for each is mixed 16 

at best. We propose that understanding microbial community assembly processes during 17 

ecosystem restoration is critical to optimizing management strategies. We examine how the 18 

connection between environment, community structure, and function is fundamentally 19 

underpinned by the processes governing community assembly of these microbial communities. 20 

We review important factors to consider in evaluating microbial community structure in the 21 

context of ecosystem recovery as revealed in studies of microbial succession: 1) variation in 22 

community assembly processes, 2) measurable microbial community attributes, and 3) linkages 23 

to ecosystem function. We seek to empower restoration ecology with microbial assembly and 24 

successional understandings that can generate actionable insights and vital contexts for 25 

ecosystem restoration efforts.  26 

 27 
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Introduction. 30 

 Restoration of degraded ecosystems is essential to maintaining global biodiversity and 31 

ecosystem services [1-4]. Yet despite large economic investments [5], restored ecosystems are 32 

often strikingly different in species composition and edaphic factors than their more pristine 33 

counterparts [6-10]. While restoration efforts have long focused on aboveground communities 34 

[11-13], there is increasing interest in the role of belowground systems, including their 35 

interactions with aboveground processes, as restoration tools. A central challenge in this new line 36 

of inquiry, as succinctly stated by Harris [14], is whether microorganisms follow or facilitate 37 

restoration. That is, do microorganisms simply reflect broader ecosystem succession or can they 38 

drive the restoration of degraded ecosystems?  39 

Much evidence has been gathered to support both sides of this argument [6, 15-24]. For 40 

instance, restored habitats may promote microbial pollutant degradation [25, 26] and increased 41 

diversity and function of soil microbiota [20, 27, 28]; conversely mycorrhizal fungi are widely 42 

considered as facilitators of plant establishment [6, 23, 24]. In reality, each side of the equation 43 

likely plays a role in ecosystem restoration, with the relative balance dependent on ecosystem 44 

and species characteristics. Indeed, Van der Bij et al. [24] suggest the simultaneous application 45 

of belowground and aboveground biomass as an optimal restoration strategy. Understanding the 46 

coupled changes of below- and aboveground ecosystems during ecosystem restoration may be 47 

key to improving its efficacy. Whether microorganisms follow or facilitate restoration, 48 

application of concepts in microbial community assembly and succession can better attainment 49 

of desired restoration outcomes. 50 

The study of ecological succession has long provided testable theory to understand 51 

factors that control changes in community structure and ecosystem function over time. More 52 
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recently, the application and examination of such theory to microbial communities has built 53 

insights into when and how microbial community structure changes through ecosystem recovery. 54 

Increasingly, ecologists seek to understand how and why these changes will mediate impacts on 55 

ecosystem function, and related theory can thus inform belowground dimensions of restoration 56 

efforts. In particular, microbial community assembly processes have been noted as an important 57 

driver of microbial community structure and function during natural and managed secondary 58 

succession. 59 

Here we seek to empower restoration ecologists with microbial assembly and 60 

successional understandings that can generate actionable insights and vital contexts for 61 

ecosystem restoration efforts. To that end, we examine how the connection between 62 

environment, community structure, and function is fundamentally underpinned by the processes 63 

governing community assembly of microbial communities. We review important factors to 64 

consider in evaluating microbial community structure in the context of ecosystem recovery as 65 

revealed in studies of microbial succession: 1) variation in community assembly processes, 2) 66 

measurable microbial community attributes, and 3) linkages to ecosystem function. Ultimately, 67 

we provide guidance on how assembly processes may help unify variable results of empirical 68 

studies assessing biodiversity-ecosystem function and environment-ecosystem function 69 

relationships to reveal opportunities for guiding microbial mediated biogeochemistry in 70 

restoration.   71 

 72 

Successional Trends in Community Assembly. 73 

 There is much debate surrounding the roles of microbial community succession and 74 

assembly in ecosystem restoration. Some insist upon unpredictable patterns in microbial 75 
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communities through secondary succession and restoration [29-32]; more recently others 76 

highlight demonstrable patterns along these trajectories [21, 33, 34]. Underpinning these patterns 77 

are community assembly processes. Existing understandings from microbial succession on when 78 

and how community assembly is driven by more deterministic or stochastic processes, in turn 79 

informs strategies of when and how microbial communities may be influenced for restoration 80 

purposes. 81 

 Microbial community assembly is determined through the balance of deterministic and 82 

stochastic processes, each of which can operate across distinct spatial, temporal, and genetic 83 

variables [35-39]. Determinism is largely governed by the interplay of homogeneous vs. variable 84 

selective pressures; while stochasticity results from a combination of dispersal, drift, and 85 

dispersal limitation [37]. At the highest level, selection results from environmental conditions, or 86 

changes in those conditions through successional trajectories. Key factors influencing the 87 

selective pressures imposed on various microbial clades include temperature [40], moisture [41], 88 

salinity [42, 43], pH [44, 45], vegetation type [46-49], and resource availability [50-53]. 89 

Homogeneous selection through space or time results in specialized communities with low 90 

diversity, while variable selection can result in high diversity through niche-based processes [37, 91 

38]. Similarly, variation in body size and dispersal traits (e.g., sporulation, flagella) can influence 92 

dispersal and dispersal limitation in taxon-specific ways [35, 36, 54-58]. In turn, the ratio of 93 

immigration/emigration influences community biodiversity. Differences in assembly between 94 

bacteria and fungi [59], heterotrophs and autotrophs [36], specialists and generalists [54], and 95 

abundant and rare taxa [60-63] influence community composition. 96 

 While there are multiple possible trajectories of assembly processes through succession 97 

[33], we present commonly observed patterns, as well as trajectories that may be beneficial for 98 
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restoration efforts in Figure 1 and Box 1. We note that while we generally discuss assembly at 99 

the community-level, variation in assembly can also be assessed across microbial clades as 100 

discussed above [36, 60, 64-66]. Generally, there is an early period of stochasticity during 101 

secondary succession and restoration that is succeeded by increasing determinism [33, 67], 102 

although Dini-Andreote et al. [33] note that secondary succession may begin under a 103 

deterministic environment depending on disturbance type. Other factors that can influence 104 

assembly trajectories include priority effects whereby initial colonizers set successional 105 

trajectories despite similar environments [68-70] and life history strategies, with fast growing r-106 

strategists having an advantage in early succession [71]. 107 

In the case of secondary succession, the type and strength of disturbance can impact the 108 

initial degree of stochasticity. Strong disturbances lead to a “blank slate” environment that can be 109 

easily colonized via immigration. Extreme disturbances can also result in low resource 110 

availability, limit microbial biomass, and limit the survival of sensitive species [21, 72]. In 111 

contrast, resilient community members remain after weaker disturbances, supporting competition 112 

and niche differentiation. As environmental stress declines through restoration, these attributes 113 

tend to recover, increasing selective pressures and opening new ecological niches [72-75]. 114 

 115 

Linkages between Microbial Assembly and Ecosystem Function. 116 

 The connections between successional trajectories in species composition and ecosystem 117 

functions are essential to promoting the long-term success of restoration efforts. Vital to this line 118 

of inquiry is understanding how communities that assemble through time evoke changes in 119 

community diversity, species and trait abundances, and interactions between community 120 

members that ultimately impact gene expression. 121 
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 The biodiversity-ecosystem function (BEF) is a central tenet of ecosystem ecology and is 122 

increasingly recognized as an important fundamental of microbial systems [76-81]. BEF research 123 

posits that biodiversity supports enhanced rates of ecosystem functions through ecological 124 

mechanisms such as niche or resource use complementarity, mass or sampling effects in which 125 

more diverse communities include members with a trait of interest, and functional redundancy or 126 

insurance in which organisms or communities contain multiple copies of a trait of interest [82-127 

84]; all of which may point to a role for rare species in supporting ecosystem functions [85, 86]. 128 

Yet, the nature of the BEF relationships can vary with assembly processes, ecosystem attributes, 129 

and the amount of redundancy in a community [rev. in 82]. In some cases, increases in diversity 130 

may even decrease ecosystem function; for example, through the dilution of traits of interest 131 

from immigration [54]. 132 

 Community assembly therefore provides a framework for understanding the nuances of 133 

the BEF relationship. Determinism and stochasticity both denote ecological processes acting on 134 

organisms, or traits contained therein, that impact both their activities and overall community 135 

composition. For instance, selection can optimize microbial metabolism through species sorting 136 

[87, 88]. Communities with a history of consistent selection may be particularly well-adapted 137 

and contain efficient pathways for catalyzing biogeochemical processes and cell maintenance 138 

[54]. Alternatively, selection may exclude taxa that metabolize more scarce resources, resulting 139 

in decreased community metabolism [82, 89, 90]; and Graham et al. [35] have suggested that 140 

multiple competing selective pressures can optimize community function. Various stochastic 141 

processes can also alternatively increase or decrease ecosystem functions. Under high dispersal 142 

rates, communities may be more likely to contain species with more traits that are beneficial to a 143 

function of interest [91, 92] and allow for more niche complementarity [93]. This may be 144 
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particularly important in early succession [33, 67]. Conversely, dispersal may add maladapted 145 

organisms to a community (i.e., mass effect or source-sink dynamics [94, 95]) resulting in 146 

decreased function, an effect that may vary with niche breadth [54]. Dispersal limitation can also 147 

inhibit the ability of organisms to reach their optional environment or decrease the diversity of 148 

immigrating organisms, lowering community function [54, 77, 96]. In total, it maybe be that a 149 

combination of diverse assembly processes acting on a varied suite of traits optimizes 150 

community functions [54]. 151 

 Underlying the relationship between microbial diversity, community composition, and 152 

ecosystem function is the coupling of response and effect traits (Figure 2). Response traits 153 

determine species composition through interactions with the environment (e.g, spore formation, 154 

life history), while effect traits correspond to the functional roles of taxa (e.g., biogeochemical 155 

cycling, [97, 98]). The strength of the relationship between response and effect traits determines 156 

the impact of changes in community assembly on ecosystem functions. In turn, this is contingent 157 

on phylogenetic conservation of traits, or ecological coherence in which physiological diversity 158 

aligns with phylogenetic diversity [21, 99-101]. When determinism reigns, the coupling between 159 

effect and response traits varies depending on whether the environment selects for clades of 160 

organisms with optimal functional traits or acts on response traits that are unrelated to the 161 

ecosystem process of interest [82, 102-105]. When stochasticity reigns, community composition 162 

will largely depend on effect traits that facilitate or impede dispersal (e.g., spore formation), and 163 

thus response traits that dictate function may be decoupled from the environment. When a single 164 

response trait is dominant, community composition may be more easily manipulated by 165 

restorations efforts. For example, Knelman et al. [53] showed that nutrient addition to a nutrient 166 

limited glacial environment could dramatically advance succession. 167 
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Key Microbial Indicators for Assessing Assembly and Succession. 168 

 Because microorganisms respond quickly to changes in the environment, microbial 169 

communities are used in restoration ecology to assess the status of an ecosystem relative to a 170 

reference condition or to enhance ecosystem recovery through inoculations [14, 21, 106]. The 171 

return of soil microbial properties such as diversity and nutrient cycling are often considered to 172 

be indicative of restoration success [107]. More details on common metrics used to describe 173 

microbial communities, their relationships to community assembly and ecosystem function, and 174 

their implementation in restoration ecology are provided in Table 1. We provide a brief 175 

discussion of each below. 176 

Diversity metrics are perhaps the most longstanding descriptors for microbial community 177 

composition. Indeed, many have pointed to microbial community diversity as a major driver of 178 

ecosystem health and soil fertility. Alpha- (within community), beta- (across local communities), 179 

and gamma- (across regional communities) diversity each serve as easy-to-measure assessments 180 

of ecosystem trajectories. At a finer level of resolution, trait-based approaches provide 181 

information on changes in response traits (e.g., changes in life history strategies) and effect traits 182 

(e.g., changes in carbon and nutrient cycling) through restoration [102, 104, 105]. For instance, 183 

fungal:bacterial ratios, ribosomal gene copy numbers, or shifts in bacterial and fungal 184 

composition are often leveraged to infer changes in r- vs. k- selection [14, 22, 71, 108-110]. 185 

Many studies also pair these metrics with changes in corresponding effect traits, particularly 186 

those related to biogeochemical cycles. Common observations include a shift from nitrogen 187 

cycling to C cycling as secondary succession proceeds [34, 65, 111, 112], greater C storage [113, 188 

114] and aggregation [115, 116], and lower water stress [115, 116]. Finally, microbial 189 

community assembly is increasingly being studied by restoration ecologists. Most rely on neutral 190 
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or null modeling approaches to infer the strengths of determinism (e.g., variable and 191 

homogenous selection via βNTI as proposed by Stegen et al. [37]) and stochasticity (e.g. RCbray 192 

[37]). 193 

 194 

Applications in Restoration Ecology. 195 

 The multitude of drivers and organismal interactions are a major challenge to evaluating 196 

and enhancing successes in restoration ecology. Given the large economic cost of restoration, it 197 

is vital that we garner a better understanding surrounding the trajectories and timeframes of 198 

restoration efforts. Without active intervention, ecosystem recoveries can occur exceedingly 199 

slowly [117, 118]. Belowground microbial communities present an opportunity to dramatically 200 

enhance and assess restoration outcomes [6, 108, 119]. For instance, there are many examples of 201 

restoration efforts focused solely on aboveground ecosystems that are unable to recreate 202 

reference conditions [7-9, 120-122], and microbial communities may be particularly important to 203 

facilitating the establishment of late successional species [6, 24, 123, 124]. 204 

 Plant-microbial interactions are central to understanding the roles microorganisms play in 205 

restoration, particularly given the strong attention to management of vegetation. With some 206 

notable exceptions (e.g., mycorrhizal associations), it remains unclear how plants and the soil 207 

microbiome interact to drive ecosystem assembly and succession [14, 24], yet vegetation is an 208 

important factor in compositional and functional changes in microbial communities [6, 71, 125]. 209 

Plants have direct mutualistic and antagonistic relationships with soil microorganisms [126, 127] 210 

as well as indirect impacts through the transfer of phosynthate to decomposers and nutrient 211 

cyclers [128, 129]. Invasive species in particular have been noted to changed soil microbial 212 

community structure and function [130-132]. Conversely, inoculation with various microbes or 213 
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whole soils has been shown to have bottom-up effects on plant establishment during restoration 214 

[24, 127, 133]. 215 

 Given this context, there are interesting ways in which soil microbial communities may 216 

aid in restoration (Table 2). First, microorganisms may serve as an early indicator of recovery 217 

[14, 21]. With the relative affordability of amplicon sequencing, microbial community 218 

composition could provide value as part of rapid ecosystem function assessments [134]. A 219 

deeper understanding of microbial communities within the context of the ecological theory 220 

presented may also serve to help leverage microbes create “shortcuts” for restoration [14]. 221 

Targeted inoculations with microbiota have proven to override priority effects and aid in plant 222 

re-establishment under some circumstances [24, 64, 73, 135]. Inoculations that allow for faster 223 

plant re-establishment may inevitably provide shortcuts in which ecosystems bypass successional 224 

stages in route to a recovered state [14]. These strategies may provide the most value when 225 

coupled with habitat manipulations that support microbiota of interest [127, 133]. 226 

The discussion here is intended to provide an overview of the importance of microbial 227 

community structure and how it relates to changes that occur during ecosystem recovery. While 228 

it is clear that microorganisms provide essential functions in restoration ecology, new 229 

implementations of microbial ecology during restoration may help bolster management 230 

successes. For instance, management of belowground systems could be directed towards 231 

improving gamma diversity so as to maximize the sampling effect during early succession, 232 

towards facilitating niche diversity, or towards creating selective environments that maximize 233 

response-effect trait linkages. The vast potential of microorganisms for the benefit of ecosystem 234 

restoration remains largely untapped, and a greater understanding of the ecological context in 235 

which these organisms reside provides an avenue for more fully realizing their power. 236 
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Figures and Tables. 598 

 599 

Figure 1. Example changes in community assembly through restoration. Placing management strategies in the context of community assembly 600 

can help to optimize restoration outcomes. The balance of assembly processes is denoted on the vertical axis, with the gray line denoting an equal 601 

balance of determinism and stochasticity. Scenario 1 (blue) represents a tightly regulated, low diversity system for targeted (but limited) functions, 602 

for example contaminant remediation. In scenario 2 (red), early colonizers in a deterministic set the stage for succession. Selection wanes as the 603 

ecosystem recovers and a more stochastic late-stage ecosystem supports diverse and multifunctional microorganisms. Scenario 3 hosts an initial 604 

community with a mix of diversity that progresses into a specialized community under increasing determinism. Likewise, scenario 4 begins with a 605 

similar community under high stochasticity but ends with an even balance of determinism and selection. Such a trajectory may optimize the balance 606 

between specialists and generalists for high rates of ecosystem functioning. Finally, scenario 5 represents the influence of priority effects in which 607 

early colonizers hold an advantage through succession. This may require targeted inoculations to change microbial communities. 608 
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 610 

 611 

 612 

Figure 2. Relationships between environmental change, microbial traits, community composition, and ecosystem function. Changes in the 613 

environment impact the interplay between response and effect traits, which in turn influence microbial community composition. In turn, the 614 

environment and microbiome collectively determine ecosystem functions. 615 
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Box 1. Assembly-driven Considerations for Restoration Ecology. 617 

 618 

  619 

Factors Influencing The Balance of Assembly Processes During Restoration

•Severity and Duration of Initial Disturbance

•Successional Stage
•Natural vs. Artificial Disturbance

•Strength of Environmental Pressures

Considerations for Restoration under Deterministic Microbial Assembly

•Environmental controls (pH, temperature, salinity, resource availability)
•Functional redundancy

•Niche Complementarity

•Response-effect trait linkages for traits of interest

Considerations for Restoration under Stochastic Microbial Assembly

•Metacommunity Composition

•Niche Breadth

•Priority and Mass/Sampling Effects
•Dispersal rate and/or limitations
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Table 1. Common metrics of microbial community composition, relations to assembly processes and ecosystem function, and implications for 620 

restoration. 621 

  622 

Genomics-enabled Variables Common Metrics Assembly Process Implications
Ecosystem Function 

Implications
Restoration Implications

 Alpha Diversity Shannon, Simpson, Chao1, Species Richness

•   Elevated stochasticity 

(homogenizing dispersal) can lead 

to increased alpha diversity 

•   The strength of selection 

(determinism) also influences alpha 

diversity, with strong selection in 

one direction generally leading to 

low alpha diversity

•   High alpha diversity can lead 

to multifunctionality and/or low 

rates of a specific function 

through a dilution effect

•   Low alpha diversity may 

indicate specialized function or 

low rate of biogeochemical 

cycling

•   Indicator of ecosystem health 

and multifunctionality

Beta and Gamma Diversity
Alpha Diversity Metrics plus Ordination 

Groupings, β-Dispersion

•   Elevated stochasticity or 

determinism can lead to increased 

(dispersal limitation; variable 

selection) or decreased 

(homogenizing dispersal; 

homogeneous selection) beta- and 

gamma-diversity

•   High beta and/or gamma 

diversity may bolster local 

biogeochemical functions 

through rescue effects

•   Comparative metrics can 

indicate changes in function 

across time or space

•   Can be used to assess microbial 

trajectories through time and/or 

similarities to natural or restored 

ecosystems 

•   Potential for enhancement of 

restoration through rescue effect

Community Composition
Species/trait (Relative) Abundances, 

Differential Expression and Gene Abundance

•   Homogenizing dispersal or 

homogeneous selection can lead to 

more even species/trait 

distributions across communities

•   Can be used as an assesment 

of genetic potential for a 

biogeochemical process of 

interest

•   Can be used as early indicators 

of restorative success

•   Can be manipulated to support 

restoration outcomes

Effect traits
(Relative) Abundance of Specific Genes or 

Taxa related to Biogeochemical Processes

•   The balance of assembly 

processes interacts with 

environmental conditions and 

response traits to determine the 

relative abundance of determine 

distributions of effect traits

•   Under optimal environmental 

conditions, effect traits have a 

direct impact on function

•   Impact mediated by 

environment

•   Can denote the trajectory of 

functional recovery through 

successional stages

•   Can be manipulated to support 

restoration outcomes

Stochasticity vs. Determinism Neutral and Null Models, βNTI, RCbray
•   Direct measurements indicating 

the balance of assembly processes

•   The balance of assembly 

processes can reveal the nature 

of expected biodiversity-

ecosystem function relationships

•   Can denote successional stage 

and trajectories in composition and 

function

•   Can be manipulated to support 

restoration outcomes

Response traits 

Gene ratios, 16S rRNA gene copy number, 

Bacterial:fungal ratio; Resource Acquisition 

Traits; Resource Use Traits; Stress Tolerance 

Traits; Life History Traits

•   Invoke and/or interact with 

effect traits that impact 

biogeochemical function

•   Can denote successional stage 

and trajectory of community 

composition

•   Can be manipulated to support 

restoration outcomes

•   The balance of assembly 

processes interacts with 

environmental conditions to 

determine the relative abundance of 

determine distributions of response 

traits 
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Table 2. Examples of community assembly and management interventions.  623 

  624 

Balance of Assembly Processes Example Management Intervention Reference

Deterministic Assembly; Strong 

response-effect trait linkage

Altering soil environment (homogeneous 

or variable selection )

Addition of a single nutrient drives 

poorly developed soil bacterial 

communities to resemble late succession 

community state (Knelman et. al, 2014)

Stochastic Assembly; 

Dispersal/Immigration limitation
Altering microbial immigration rates

Increases in immigration (soil addition) 

improves abundance of key microbes 

and removal of estrogens in wastewater 

treatment (Pholchan et al., 2013)

Stochastic x Deterministic Assembly: 

Priority Effects

Manipulating microbial colonization 

order

Inoculation order of phyllosphere with 

bacterial community members results in 

distinct end communities (Carlström et 

al. 2019)

Stochastic x Deterministic Assembly: 

Plant Microbe Interactions

Controlling presence/absence of specific 

microbes

Availability of ectomycorrhizal fungi 

(dispersal limitation) hinders success of 

exotic Pinaceae

(Nuñez et al. 2009)
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