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Abstract 23 

Ecological forecasting is critical in understanding of ecological responses to climate change 24 

and is increasingly used in climate mitigation plans. The forecasts from correlative models 25 

can be challenged by novel environmental conditions and predictor collinearity that are 26 

common during model extrapolation. However, there is still a lack of comprehensive 27 

knowledge about how these factors interactively affect forecasting. We conducted modeling 28 

experiments to mimic a wide range of extrapolation scenarios commonly seen under climate 29 

change. We modeled three functional relationships using general linear model (GLM) and 30 

Random Forests algorithm (RF). We assessed how predictor novelty, training collinearity, 31 

collinearity shift, and model complexity interactively influenced model predictions. We found 32 

that predictor novelty and collinearity shift were two major factors for inflated errors. The 33 

prediction errors were doubled with moderate predictor novelty (predictors increased by 0.4) 34 

or considerable collinearity shift (correlation coefficient r changed > 0.9). Interestingly, we 35 

also found negative interactions between predictor novelty and collinearity shift. Model 36 

predictions became more erroneous as model complexity increased. Calibrating models 37 

using variables correlated with |r| < 0.7 has been a rule-of-thumb; building upon that, our 38 

study further recommends a threshold of < 0.4 increased predictor novelty and/or < 0.9 39 

collinearity shift for forecasting models to avoid a substantial loss of model performance. 40 

GLM is a safer option than RF during forecasting because it is more tolerant to predictor 41 

novelty and collinearity shift when true predictors are known. One will be cautious with 42 

forecasting beyond our identified threshold regardless of modeling algorithm.  43 
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Introduction 44 

Under future climate change, ecologists inevitably have to forecast species range shifts, 45 
invasion of non-native species, potential of vector-borne diseases, colonization and 46 
extinction risks, and many other ecological responses to altered ecological stressors. 47 
Correlative ecological models are widely used in forecasting ecological responses to various 48 
global environmental drivers such as climate change, anthropogenic land use and land cover 49 
change, and habitat fragmentation over time and space. Population models can be used for 50 
assessing the dynamics of biological populations by modeling population growth or decline 51 
(1, 2), planning and evaluating management actions by providing different conservation 52 
scenarios (3), and understanding how demographic rates contribute to population dynamics 53 
(4,5). Ecological niche models or species distribution models that relate ecological 54 
responses to environments have been widely used in forecasting range shifts and changes 55 
in species composition (6-8), species invasion (9-12), and risk of extinction (13-16). 56 
Moreover, ecological niche models have incorporated the Quaternary fossil record to 57 
forecast (or hindcast) species distributions and biodiversity over evolutionary time scales 58 
(17-19). Among those extensive studies, more models were found for explanation and 59 
prediction in the same time period and geographic region as those of calibration data rather 60 
than for projecting models in the past or future and/or in different regions (20). 61 

However, ecological forecasting based on correlative models is always associated with 62 
varying errors and uncertainties (21-25). Projecting ecological models involves model 63 
interpolation and extrapolation (26, 27). Interpolation is referred as to predicting the 64 
response within the ranges of the environmental conditions used to calibrate a model while 65 
extrapolation is projecting a model to the conditions exceeding the ranges of its calibration 66 
conditions (21, 28-30). In most of cases, predicting ecological responses is not necessarily 67 
limited to either interpolation or extrapolation since one can be intrinsically accompanied by 68 
the other (31, 32), for example, predicting future species distributions, ecological patterns, or 69 
biodiversity in new geographic areas under climate change (6, 20, 33-36), raising the 70 
concerns about the reliability of model projections (37). Thus, it is of great significance to 71 
identify which factors potentially affect the model projections onto new environments and 72 
quantify the magnitude of these effects. 73 

The ecological forecasting to future or new geographic regions under climate change is 74 
mainly induced by climate novelty. The climate is not changing evenly across space (38), 75 
neither over time. In the eastern United States, the last century has witnessed increased 76 
mean annual temperatures in the Midwest and Northeast while the Southeast had areas with 77 
not only increased but decreased temperature (8). In the meanwhile, climate shifts of more 78 
than 100 km across the Northeast and Upper Midwest in terms of spatial velocity have been 79 
observed (39). Most of this region experienced growing season temperatures during the 80 
1971 to 2000 period that were cooler than those during the 1911 to 1940 period (40). As 81 
climates continue to shift across time and space, exceeding the ranges of those experienced 82 
in the past, no-analog climates are likely to exist in many regions across the globe (41, 42). 83 
Given the future climate novelty, the ecological forecasting relying on correlative models is 84 
prone to increased prediction errors and more uncertainties (6, 23, 28, 30, 42, 43). 85 

The other major factor that contributes to forecasting error is collinearity. Collinearity usually 86 
refers to the linear relationship among predictor variables in a statistical model (22). 87 
Collinearity shift exists when a model is calibrated on data from one region or time, and 88 
predicted to another region or time with different structure of collinearity among predictors. 89 
The former could influence parameter estimation in correlative models while the latter may 90 
affect the accuracy of model prediction. Model interpolation may be reliable as long as the 91 
collinearity between variables remains constant (44), but models would become more 92 
erroneous when predicting to the changed collinearity structures that are different from 93 
calibration data (22, 43). Consequently, increased errors may emerge for ecological 94 
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forecasting dependent on correlative models because the collinearity among the climatic 95 
predictor variables may change under future climate change. When the change in collinearity 96 
structure from calibration to testing data set (i.e. collinearity shift and hereafter) was small, 97 
the degradation of model performance was not pronounced (22). Nonetheless, the model 98 
performance moderately decreased as the collinearity slightly became less and further 99 
exerted a considerable loss when collinearity shifted to very small degrees (22). Unlike the 100 
negative impact induced by collinearity shifting to lower degrees on model performance, 101 
Feng et al. (43) also found that significantly higher collinearity shifts (i.e. collinearity shifting 102 
to higher degrees) led to decreased performance when models were projected to new 103 
geographic regions that were different from calibration areas. Thus, the relationship between 104 
collinearity shift and model performance needs more investigation. 105 

Apart from predictor novelty and collinearity shift, some other factors have been suggested 106 
to have an influence on model performance, such as training collinearity, model complexity, 107 
and modeling algorithms. As for training collinearity, high training collinearity leads to poor 108 
prediction accuracy mainly by affecting parameter estimation for traditional regression 109 
models based on ordinary least squares, for example, the general linear model (GLM). 110 
However, it might not be the case for machine learning algorithms that do not rely on 111 
parametric approaches, for example, Random Forests (RF) can reduce the influence of 112 
collinearity among predictors by randomly sampling part of the whole data set and randomly 113 
selecting a subset of predictors at each node when building each regression or classification 114 
tree during model fitting process (45). Dorman et al. (22) demonstrated that machine 115 
learning methods such as RF, Boosted Regression Trees (46), and Multivariate Adaptive 116 
Regression Splines (47) worked reasonably well under moderate collinearity. Feng et al. (43) 117 
also found no correlation between model performance and training collinearity for another 118 
machine learning algorithm, Maximum Entropy algorithm (48) due to regularization during its 119 
model fitting process (48, 49). In spite of their tolerance to training collinearity, machine 120 
learning algorithms generally have limited predictive ability in model extrapolation (50, 51). 121 
Therefore, whether the training collinearity influences model performance may depend on 122 
modeling algorithms (22). Even though some strategies, for example integrating penalized 123 
parametric regression, for example Lasso, into Random Forests algorithm to allow for 124 
effective prediction outside the range of the calibration data, the effect of those strategies on 125 
model predictions remains quantitatively unknown under the conditions with changed 126 
predictor novelty and collinearity shift. Regarding model complexity, simpler models may be 127 
easier to be generalized and they work better than more sophisticated models when being 128 
projected to different times or new regions. Taking regression models as an example, as 129 
long as the parameter estimation has been affected by high training collinearity, larger 130 
prediction errors can be made from more sophisticated models rather than simpler models 131 
because the former has more parameters to estimate. Despite the potential influence of all 132 
the factors discussed above, there is still a lack of knowledge regarding how model 133 
complexity, training collinearity, collinearity shift, predictor novelty, and modeling algorithm 134 
affect predictive performance (i.e. prediction accuracy) of ecological model forecasting. 135 
Thus, there is a need to assess their relative importance to model prediction. Many studies 136 
focus mainly on how predictor novelty influences model performance in model extrapolation 137 
(23, 28, 51). One of the most recent evidence has illustrated the weak correlation between 138 
predictor novelty and collinearity by investigating the role of predictor novelty, collinearity 139 
shift, and training collinearity when projecting models to new regions (43). By comparing the 140 
explained variation of model performance, Watling et al. (52) found that modeling algorithm 141 
was more important than collinearity among predictor variables. More interestingly, for 142 
models with severe training collinearity, the influence of collinearity shift has been proved 143 
greater than that of training collinearity in decreasing model performance (22), suggesting 144 
that the influence of collinearity shift may be associated with the magnitude of training 145 
collinearity. Overall, these evidence motivated our interest in conducting a comprehensive 146 
assessment to disentangle the relative roles of each of the five factors including model 147 
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complexity, training collinearity, collinearity shift, predictor novelty, and modeling algorithms 148 
in affecting predictive abilities of ecological forecasting models. 149 

Here, we designed a modeling experiment that mimics model extrapolation scenarios that 150 
are common during ecological forecasting under climate change. We assessed model 151 
prediction errors using simulated 3 levels of training collinearity, 19 levels of collinearity shift, 152 
7 levels of predictor novelty, 3 levels of model complexity, and 2 different modeling 153 
algorithms. We evaluated the robustness of ecological forecasting models to changed 154 
environmental conditions induced by climate change and quantified how much change in 155 
training collinearity and novelty the correlative models could tolerate for reliably projecting 156 
ecological responses to future climate change. Specifically, we ask (1) how much magnitude 157 
of changes in model performance could be induced by collinearity shift and increased 158 
predictor novelty? (2) Would the influences of collinearity shift and predictor novelty be 159 
dependent on model complexity, training collinearity, and modeling algorithms? (3) Would 160 
there be any interactions between the influences of collinearity shift and predictor novelty?  161 
By quantifying the prediction errors under different combinations of collinearity shift and 162 
predictor novelty scenarios, we aim to derive the rules of thumb for making reliable forecasts 163 
to different time and space with increased predictor novelty and changed correlations among 164 
predictors. Our comprehensive assessment will provide important insights into projecting 165 
correlative models to different times or new regions accompanied by collinearity shift and 166 
predictor novelty by quantifying how much prediction errors will increase under different 167 
simulated scenarios of collinearity shift and predictor novelty.  168 

Results 169 

Collinearity shift. We analyzed the Root Mean Squared Error (RMSE) of GLM and RF 170 
models for model predictions along four gradients including model complexity, training 171 
collinearity, collinearity shift, and predictor novelty.  172 

The RMSE of GLM models increased when the correlation between X1 and X2 decreased or 173 
when the sign of correlation changed (e.g. from positive to negative). The RMSE of GLM 174 
models with high training collinearity were higher than those with medium and low training 175 
collinearity when collinearity shift occurred. Moreover, the RMSE increased and became 176 
much more variable along the gradients of model complexity from Linear to Product, training 177 
collinearity from Low to High, and collinearity shift with the correlation changed from -0.9 to 178 
0.9) (Fig. 1A). Thus, collinearity shift negatively influenced prediction accuracy when the 179 
collinearity shifted to positive lower degrees or negative higher degrees. For GLM models 180 
with medium and high training collinearity, larger errors were found when predictors became 181 
more correlated. 182 

Likewise, we detected the trends of increased RMSE for RF models along the gradients of 183 
model complexity from Linear to Product, training collinearity from Low to High, and 184 
collinearity shift with the correlation changed from -0.9 to 0.9) (SI Appendix, Fig. S2). When 185 
the training collinearity was high, RMSE was found to be more variable and larger compared 186 
to those of medium and low training collinearity (SI Appendix, Fig. S2). In contrast, for the 187 
most complex model, the RMSE of GLM and RF models had different responses to the 188 
collinearity shifted to positive higher degrees. The former did not change while the latter 189 
became larger and more variable after the correlation became higher than that in training 190 
data. Overall, RF models had relatively higher RMSE than GLM models across the gradients 191 
of model complexity, training collinearity, and collinearity shift given that the underlying 192 
relationship between response variable and predictor variables is multivariate linear 193 
relationship (Fig. 3 and SI Appendix, Fig. S2; see also Recommendations in the Discussion).  194 

Predictor Novelty. Higher degrees of predictor novelty led to more variability and larger 195 
magnitude of RMSE, and this pattern was consistent across the gradients of model 196 
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complexity, training collinearity, and collinearity shift for both GLM and RF models (Fig.1B 197 
and SI Appendix, Fig. S2; see also Recommendations in the Discussion). Again, RF models 198 
had relatively higher RMSE induced by the change in predictor novelty than GLM models for 199 
all gradients of interest. Therefore, predictor novelty affects prediction accuracy negatively 200 
under all testing scenarios for both GLM and RF models.  201 

Variance partitioning. To quantify the contribution of training collinearity, collinearity shift, 202 
predictor novelty, and the interactions between collinearity shift and predictor novelty to 203 
RMSE, we ran ANOVAs to obtain the Type III Sum of Squares and then we calculated the 204 
partial R-squared for each factor that may have an influence on model performance 205 
measured by prediction accuracy (Fig. 2). Regardless of the modeling algorithms, the partial 206 
R-squares of predictor novelty increased as more gradients of novelty were considered in 207 
variation partitioning and predictor novelty had the higher partial R-squares than any other 208 
factors when the larger gradients of predictor novelty were considered in variation 209 
partitioning. For GLM models, when only accounting for two levels of predictor novelty 210 
including 0 and 0.2 in variation partitioning, training collinearity had the highest partial R-211 
squared, followed by that of collinearity shift. In contrast, for RF models, predictor novelty 212 
consistently had the highest partial R-squares regardless of model complexity and the levels 213 
of novelty considered in variation partitioning. Collinearity shift had higher partial R-squares 214 
than training collinearity for the models with quadratic and product terms while collinearity 215 
shift had lower partial R-squares than training collinearity for the models with only multiple 216 
linear terms. 217 

Interaction between collinearity shift and predictor novelty. We further assessed 218 
whether the effect of collinearity shift on prediction accuracy was dependent on predictor 219 
novelty for GLM and RF models by comparing the single effect between two gradients of 220 
collinearity shift along the gradient of predictor novelty. As Fig. 3 shows, there was a 221 
consistent negative interaction between collinearity shift and predictor novelty across the 222 
gradients of training collinearity when the degree of predictor novelty was less than 0.4 for 223 
RF models, suggesting that predictor novelty reduced the influence of collinearity shift on 224 
prediction errors. The similar trend was also found for GLM models under high and medium 225 
training collinearity. When the degree of predictor novelty was higher than 0.4, the negative 226 
interaction between collinearity shift and predictor novelty no longer existed for RF models 227 
mainly because RF models predicted the response variable as the same value as long as 228 
the values of predictors exceed their ranges in training data so that the prediction errors 229 
were mainly driven by the values of response variable. 230 

Discussion 231 

Under future climate change, reliable forecasts of different ecological responses such as 232 
species range shifts, invasion of non-native species, potential of vector-borne diseases, 233 
colonization and extinction risks to different changed ecological stressors is crucial to climate 234 
mitigation plans. We designed a simulated experiment to mimic the ecological forecasting 235 
under climate change, and investigated the effect of model complexity, training collinearity, 236 
collinearity shift, predictor novelty, and modeling algorithm on model predictive performance 237 
in a combined framework. Both collinearity shift and predictor novelty resulted in degradation 238 
of predictive performance of models in our simulation, suggesting that collinearity shift and 239 
predictor novelty would increase the risk of projecting ecological responses to climate 240 
change. When the testing became more novel than training data, predictor novelty caused 241 
higher prediction errors than collinearity shift. Interestingly, the interaction between 242 
collinearity shift and predictor novelty was negative because the effect of predictor novelty 243 
reduced the effect of collinearity shift on model predictions. Our results still highlights that 244 
GLM is robust to low and moderate collinearity and predictor novelty when the largest 245 
correlation between predictors was less than the rule-of-thumb |r| < 0.7 and the predictor 246 
novelty was less than 0.6. Machine learning models like RF were no more tolerant of 247 
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collinearity shift than statistical models like GLM. The correlative models calibrated with low 248 
and medium training collinearity are more robust to collinearity shift and predictor novelty. 249 
Therefore, we encourage the choice of ecological forecasting models to avoid high 250 
collinearity (e.g. |r| < 0.7) and with parsimonious statistical association if the models have to 251 
be projected to the conditions with changed collinearity structure and predictor novelty. 252 
However, when the predictor novelty exceeds 1.5 times as large as the ranges of predictors 253 
in training data, the ecological forecasts based on correlative models will become unreliable 254 
(e.g. RMSE is 3-fold as much as that of no shift; Fig. 4) with large variation in model 255 
predictions regardless of the change in collinearity structure.  256 

Extrapolation becomes problematic when ecological models are projected beyond the 257 
geographic or environmental range of the training data (22), leading to increased prediction 258 
errors especially for correlative models (57). This issue is mainly attributed to the change in 259 
the collinearity structure (22), collinearity shift, and predictor novelty (43) that are assumed to 260 
have negative influence on model predictions. Dormann et al. (22) also found the varying 261 
responses of prediction errors to different levels of training collinearity and modeling 262 
algorithms. Therefore, our study delved more into the investigation on the roles of different 263 
factors including model complexity, training collinearity, collinearity shift, predictor novelty, 264 
and modeling algorithms in affecting predictive performance of correlative models. 265 
Compared to the previous comprehensive investigation on collinearity only considering 266 
positive correlation among predictors (22, 58), we extended the gradient of collinearity shift 267 
by introducing the testing scenarios with the correlation of predictors shifting from high 268 
positive (r = 0.9) to high negative (r = -0.9), allowing us to identify not only the influence of 269 
collinearity shift on prediction errors but also how the magnitude of collinearity shift and the 270 
change in the signs of correlation between predictors affected prediction errors. In addition, 271 
we separated the changes in predictor novelty from those in collinearity to assess their 272 
effects on prediction errors, respectively. By simulating over one hundred testing scenarios 273 
across the gradients of collinearity shift and predictor novelty, we illustrated whether the 274 
interaction between these two factors existed under different degrees of training collinearity 275 
and model complexity, to our knowledge, which is the first one testing their interaction in 276 
simulation study. 277 

Predicting species distributions or ecological communities using correlative models in new 278 
geographic regions or changed climatic conditions have encountered more errors (23, 30, 279 
33, 35, 51). Similarly, we found the increased prediction errors of models along the gradients 280 
of collinearity shift and increased predictor novelty because the statistical relationship 281 
captured by the models may not apply well to new conditions. This pattern was more 282 
pronounced when the correlation of predictors shifted from positive to negative and the 283 
ranges of predictors became much higher than those of training data, respectively. More 284 
complex the models were and higher training collinearity the predictors had, the more 285 
degraded the predictive performance became. Moreover, our results show that the influence 286 
of predictor novelty was much greater than that of collinearity shift. This may be because 287 
predictor novelty results in more data points beyond the ranges of training data. The pattern 288 
of higher prediction errors due to increased predictor novelty rather than collinearity shift was 289 
more pronounced for predictions derived from RF models, suggesting that RF models might 290 
be more prone to errors when extrapolating ecological responses to new environmental 291 
conditions. RF models could be over-fitted on training data (22), or the predictive ability of 292 
RF models may be limited in linear extrapolation (50). Last but not the least, there was a 293 
negative interaction between collinearity shift and predictor novelty, suggesting that the 294 
influence of collinearity shift on prediction errors was reduced by increased predictor novelty. 295 

Collinearity shift on model prediction. The negative influence of collinearity shift on 296 
prediction errors varied among low, medium, and high training collinearity among predictors. 297 
The highest prediction errors with the most variation induced by collinearity shift were found 298 
for the models with the most complexity and high training collinearity. However, collinearity 299 
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shift did not considerably increase the prediction errors for the less complex models with less 300 
training collinearity (Fig.1A). Training collinearity is likely to result in imprecise parameter 301 
estimates even if they are unbiased (58) because of the inflated standard errors of model 302 
parameters (22). When the correlation among predictors were high, the estimates became 303 
less precise and scattered more widely (58), which may lead to higher and more variant 304 
prediction errors in the face of collinearity shift. In contrast, low correlations among 305 
predictors had little effect on parameter estimates (58, 59). Therefore, the correlative models 306 
with high training collinearity with |r| > 0.7 would be problematic when forecasting ecological 307 
responses under collinearity shift, which commonly occurs during model forecasts across 308 
space and time (54). 309 

More interestingly, the prediction errors were dependent on the magnitude of collinearity shift 310 
and the change in the signs of correlation among predictors. The more the collinearity 311 
shifted, the higher the prediction errors became. This pattern is evident that, for example, in 312 
our results, the prediction error substantially increased when the correlation between 313 
predictors shifted from r = 0.9 to r = -0.9 (Fig.1A). Likewise, Dormann et al (22) found that 314 
the prediction errors consistently inflated when the collinearity shifted from high to almost 315 
zero regardless of modeling algorithms and the complexity of functional relationships, 316 
supporting our findings. In the context of changes in collinearity structure including of 317 
magnitude and sign of correlations, the correct parameter estimates might be not likely to be 318 
identified, thus the substantial changes in collinearity structure would lead to a detrimental 319 
effect on prediction accuracy (22). Accordingly, two highly correlated variables may not 320 
necessarily encounter more correlation shift than a pair of less correlated variables because 321 
the magnitude of collinearity shift depends not only the training collinearity but also the 322 
collinearity in the test data set (43). However, for the same magnitude of collinearity shift or 323 
shifting to the same collinearity structure, we expect higher prediction errors for the models 324 
with high training collinearity rather than low one. Further, the prediction errors would 325 
become increasingly larger if the sign of correlations among predictors change (i.e., positive 326 
correlations shifting to negative correlations, or vice versa). 327 

Predictor novelty on model prediction. Similarly, we found that predictor novelty 328 
negatively affected predictive performance regardless of modeling algorithms and higher 329 
degrees of predictor novelty resulted in larger prediction errors than lower degrees of 330 
predictor novelty, illustrating that the increase in prediction errors depends on the magnitude 331 
of predictor novelty. The negative effect of novelty on model performance has been 332 
illustrated by previous studies modeling the relationship between species distributions or 333 
assemblages to the changing environments (23, 30, 51).  334 

The impact of collinearity shift was even worse than that of training collinearity (22). This is 335 
well supported by our findings that the partial R-squares of collinearity shift was larger than 336 
that of training collinearity (Fig. 2). This might only apply to the testing scenarios where not 337 
much predictor novelty could be found because the prediction errors induced by predictor 338 
novelty were much greater than those by training collinearity and collinearity shift. We also 339 
found a negative interaction between the influence of predictor novelty and collinearity shift, 340 
suggesting that the increased predictor novelty could reduce the effect of collinearity shift on 341 
prediction errors and eventually masked its effect. Regardless of modeling algorithms, we 342 
found consistent larger influence caused by increased predictor novelty on prediction errors 343 
than that attributed to training collinearity and collinearity shift. Therefore, in the context of 344 
climate change, ecological forecasting based on correlative models would become more 345 
error-prone to increases in climate novelty rather than the changed correlation among 346 
climatic variables. 347 

Implications for future studies. Ecological forecasting will be accompanied by much 348 
uncertainty because non-analog conditions are common under future climate (42), which 349 
forces ecologists to extrapolate correlative models for predicting ecological patterns, such as 350 
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projecting responses of species distributions climate, species invasions to novel 351 
environment, and disease emergence in new areas. Some of the collinearity shift and 352 
predictor novelty we simulated could possibly emerge under non-analog climate change. By 353 
the end of 2090 CE, the range of future climate novelty is around 0.5 climatic distance 354 
across North America (23), which would lead up to more than 3-fold prediction errors 355 
inferred from our simulation (Fig. 1 and SI Appendix, Fig. S2). To mediate the negative 356 
impact of collinearity shift and predictor novelty on the reliability of ecological forecasting, 357 
one may consider not extrapolating further than 1/10 of the predictor range as a rule-of-358 
thumb (60). However, this rule may not offer practical and straightforward guidelines for 359 
spatial planners and resources managers (61). Identifying the locations and time periods 360 
where model extrapolation with departures from reference conditions will occur before 361 
applying correlative models to ecological forecasting may make one aware of spatial and 362 
temporal limits in model prediction (62), or identifying where models are extrapolating 363 
outside of the training data by calculating the novelty (63). Another solution is to quantify 364 
‘forecast horizon’ in terms of spatial, temporal, phylogenetic, and environmental dimensions 365 
by defining a measure of prediction quality and a threshold for acceptable forecast 366 
proficiency (64). Using mechanism models rather than correlative models for forecasting 367 
future ecological responses is also encouraged whenever possible (23). 368 

Concluding remarks. To obtain reliable predictions < 2-fold change of RMSE, we derive the 369 
following recommendations for forecasting ecological models under climate change and 370 
many other altered ecological stressors inducing different degrees of increased predictor 371 
novelty and changed collinearity structure. 372 

1) GLM models will be preferred rather than RF models for forecasting the models to novel 373 
conditions and varied collinearity structures, if the true set of predictors and the type of each 374 
relationship is known. For example, the net primary productivity (NPP) is only linearly 375 
associated with temperature, precipitation, and squared precipitation. When forecasting NPP 376 
under future climate, one may calibrate a GLM model because RF model may overfit on 377 
training data and is less tolerant to model extrapolation. 378 

2) RF models will be only safe for reliable forecasts under very restricted conditions. Even 379 
with the true predictors correctly specified, RF models cannot make reliable forecasts when 380 
novelty is > 0.2 (Fig. 4 and SI Appendix, Fig. S2). However, when novelty is < 0.2 and 381 
collinearity shift <  0.9, RF models can make acceptable predictions.  382 

3) Under low or medium (i.e. |r| < 0.7) training collinearity, we encourage the use of GLM 383 
models rather than RF models for model forecasting,  because GLM models can stand more 384 
predictor novelty and collinearity shift. The prediction errors of GLM models are < 2-fold 385 
within 0.6 of predictor novelty across all gradients of correlation change. In contrast, RF 386 
models will only produce the forecasts with < 2-fold errors when the predictor novelty does 387 
not go beyond 0.3 with collinearity shift.   388 

4) One should be cautious with forecasting regardless of modeling algorithms (GLM and RF) 389 
when training collinearity is high (|r| ≥ 0.7), because most commonly used correlative models 390 
will yield degraded predictions under change in collinearity structure (22). Moreover, higher 391 
degrees of predictor novelty are expected to make model predictions more erroneous, for 392 
example, leading to > 5-fold change in RMSE (Fig. 1 and 4 and SI Appendix, Fig. S2). In 393 
order to produce reliable forecasts with < 2-fold errors, GLM models are only allowed for < 394 
0.4 predictor novelty with collinearity shift (Fig. 4 and SI Appendix, Fig. S2). However, RF 395 
models will be more restricted to the scenarios with < 0.2 predictor novelty and < 0.9 396 
changed r. 397 

Overall, our study agrees with the rule-of-thumb of using variables correlated with |r| < 0.7, 398 
and provide a forward step by recommending a threshold of < 0.4 increased predictor 399 
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novelty (increment > 0.4 of predictor range) and/or < 0.9 collinearity shift (correlation 400 
coefficient r changed < 0.9) for forecasting models to avoid substantially distorted model 401 
performance. Within the thresholds, while both GLM and RF models have acceptable 402 
predictions, our recommendation is to use GLM models rather than RF models for model 403 
forecasting. Because GLM models are more tolerant to predictor novelty and collinearity shift 404 
during model extrapolation given that the true set of predictors and their relationship with the 405 
response variable is known while RF models may fail in extrapolation ((50) Zhang, Nettleton, 406 
& Zhu 2017). Otherwise, making predictions with > 0.4 increased predictor novelty 407 
(increment > 0.4 of predictor range) or > 0.9 collinearity shift (correlation coefficient r 408 
changed > 0.9 will always be risky regardless of modeling algorithms. 409 

Materials and Methods 410 

We conducted simulations to investigate how each factor including degree of training 411 
collinearity, collinearity shift and predictor novelty affected predictive performance measured 412 
by prediction accuracy in different prediction scenarios. Further, we also investigated if their 413 
influences were associated with modeling contexts such as model complexity and modeling 414 
algorithms. To do so, we first simulated ecological responses using three different functional 415 
relationships associated with linear terms, linear and quadratic terms, and linear, quadratic, 416 
and product terms, respectively. We fitted models using GLM and RF algorithms for the data 417 
sets under 3 levels of training collinearity and calculated the prediction errors when 418 
predicting the true responses under different collinearity shift and predictor novelty 419 
scenarios. Using a variance partitioning approach, we ran an analysis of variance (ANOVA) 420 
to assess the relationship between model performance and four different factors including 421 
degree of training collinearity, collinearity shift, predictor novelty, and the interaction between 422 
collinearity shift and predictor novelty. Last but not the least, based on the simulation results, 423 
we derived the rules of thumb for making reliable forecasts to different time and space with 424 
increased predictor novelty and changed correlations among predictors. We described more 425 
details of our simulation in the following sections. 426 

Modeling complexity. To conduct our simulation experiment, we created each training and 427 
testing data set that included 1,000 data points from a data-generating model given by 428 

Y = f (X) + ϵ, (1) 429 

where Y is a continuous variable and X is a p-dimensional vector of predictors. The number 430 
of dimensions is 3 for fln, 4 for fquad and 6 for fprdct (see equations below). The independent 431 
random errors ϵ follow N (0, 0.52). We considered three different functional relationships to 432 
represent different model complexities: 433 

1. fln (Linear): f (X) = 25 + 2X1  + 1.5X2 - 3X3 , i.e. multiple linear terms 434 

2. fquad (Quadratic): f (X) = 25 + 2X1 -2X1
2  + 1.5X2 - 3X3 , i.e. multiple linear terms plus a 435 

quadratic term 436 

3. fprdct (Product): f (X) = 25 + 2X1 -2X1
2  + 1.5X2 - 3X3 + 1.5X1X2  , i.e. multiple linear, 437 

quadratic and a product term of two different predictors, where all predictor variables X1, X2, 438 
and X3 follow multivariate normal distribution with zero mean and variance equal to one that 439 
allowed for manipulating correlations among all predictor variables. To note, we specified the 440 
three functional relationships with the coefficients at the same scale between 1.5 to 3 to 441 
make sure the effects of the three predictor variables on the response variable were at 442 
similar magnitude. 443 

Training collinearity. To evaluate the influence of training collinearity on model 444 
performance, we introduced three levels of training collinearity by drawing values of the 445 
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three predictors from multivariate normal distributions with different variance-covariance 446 
matrices. We defined the high training collinearity based on the widely used Pearson 447 
correlation coefficient threshold r = |0.7| (22, 53) as the pairwise Pearson correlation 448 
coefficients among the three predictors r = 0.9, 0.8, and 0.7, respectively. The medium 449 
training collinearity was set as the pairwise correlation coefficients being equal to 0.6, 0.5, 450 
and 0.4. We used a more restrictive threshold |r| = 0.4 (22) to define the low training 451 
collinearity with r = 0.3, 0.2, 0.1 for the three predictors. 452 

Collinearity shift and predictor novelty. We produced the gradients of collinearity shift to 453 
mimic changes in collinearity structure when ecological forecasting models were projected 454 
over different time and space (also see Fig. 1 of Dorman et al. (22) and APPENDIX I of 455 
Jiménez-Valverde et al. (54)). To simply illustrate the influence of collinearity shift on 456 
predictive performance, we assumed that collinearity shift was mainly induced by the 457 
changes in the correlation between X1 and X2 throughout the simulations so that we set their 458 
pairwise Peason correlation coefficient r ranging from -0.9 to 0.9 with 0.1 increment 459 
simulating the gradient of collinearity shift in the testing data sets. As a result, collinearity 460 
shift was denoted by the relative difference between these 19 levels of correlation coefficient 461 
r in testing data and r of training data (SI Appendix, Fig. S1). The scenario in which r was the 462 
same as that of training data was deemed as no collinearity shift. 463 

Practically, the values of X1 and X3 were held constant while the values of X2 were 464 
resampled from N (0, 12) in each testing data set to satisfy the given correlation coefficient 465 
between X1 and X2. We expected that larger magnitude of collinearity shift induced greater 466 
prediction errors for models. To account for the effect of predictor novelty on model 467 
performance, we simultaneously increased the values of one predictor by 0.2, 0.4, 0.6, 2, 4, 468 
6 multiplied by its original range in the training data set, resulting in a gradient of 7 levels in 469 
total for predictor novelty with the original ranges being considered as no change. The 470 
multiples of increased range was used to denote the level of novelty, for example, 0.4 471 
novelty means that the values of one predictor increased by 0.4 timed by its original range. 472 
Since we attempted to provide insights into ecological forecasting under climate change, we 473 
chose such gradient of predictor novelty to mimic climatic novelty faced in the real world; for 474 
example the climatic distance in North America with the maximum value around 0.6 (23), 475 
and the Euclidean distance of dissimilarities between 20th- and 21st- century climates 476 
across the globe with the maximum value around 6 (25). We assumed that higher predictor 477 
novelty led to higher prediction errors. 478 

Modeling algorithms. For each level of model complexity and training collinearity, we fitted 479 
statistical models using general linear model (GLM) and Random Forests (RF; 45, 55) 480 
algorithm to predict their true responses. We chose these two modeling algorithms in order 481 
to compare the difference between a statistical method and a machine learning approach in 482 
dealing with training collinearity, collinearity shift, and predictor novelty. Both GLM and RF 483 
were useful in ecology for dealing with moderate collinearity (22). The parameter estimation 484 
may be biased by training collinearity for GLM models while RF models can tolerate 485 
correlations among predictors (45). Therefore, under severe training collinearity, machine 486 
learning approaches, for example, RF outperformed GLM-like methods yielding lower-error 487 
models (22). Nonetheless, GLM models may outperform RF models in linear extrapolation 488 
because tree-based models like RF models cannot make accurate predictions when 489 
predictor values are beyond their bounds in training data (50). Thus, we hypothesized that 490 
the predictive abilities of GLM models and RF models would not be considerably influenced 491 
by collinearity shift when training collinearity was low, but they would be affected by medium 492 
to high training collinearity and high levels of predictor novelty. 493 

Data simulation and analysis. We implemented a full combination of every experimental 494 
dimensions: 3 levels of model complexity (fln, fquad, and fprdct), 3 levels of training collinearity 495 
(high, medium, low), 19 levels of collinearity shift, 7 levels of predictor novelty (0, 0.2, 0.4, 496 
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0.6, 2, 4, 6), and 2 modeling algorithms (GLM and RF). This led to a total of 2,394 different 497 
experimental setups. We produced the training data sets for 3 levels of model complexity fln, 498 
fquad, and fprdct by 3 levels of predictor novelty low, medium, and high training collinearity 499 
using 1000 simulated data points to train general linear models (GLM) and Random Forests 500 
(RF; 45, 55) models. To note, RF algorithm can intrinsically consider the interactions among 501 
predictors due to its tree-based characteristic so that it is not necessary to specify the 502 
quadratic and product terms in model statement, but we retained the same quadratic and 503 
product terms in RF models as those in GLM models when training the models for fquad, and 504 
fprdct allowing for a fair comparison. We then predicted the true response variable (Y ) on 505 
2,394 testing data sets using these two models, each representing a unique combination of 506 
levels of the three factors (3 levels of training collinearity x 19 levels of collinearity shift x 7 507 
levels of predictor novelty x 3 model complexity x 2 modeling algorithms). Then the 508 
prediction errors were calculated across all testing data sets with the 509 

formula 𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 (RMSE) =  √
∑(𝑌− 𝑌 ̂)2

𝑛
, 𝑛 = 1000. These were repeated 510 

1000 times with random seeds to ensure robust prediction of response variable under each 511 
testing scenario. 512 

Variance partitioning. Using a variance partitioning approach, we ran an analysis of 513 
variance (ANOVA) to assess the relationship between model performance and four different 514 
factors including degree of training collinearity, collinearity shift, predictor novelty, and the 515 
interaction between collinearity shift and predictor novelty. The ANOVA was performed at 516 
each level of model complexity and modeling algorithms to test whether these relationships 517 
were dependent on model complexity and modeling algorithm. All analyses were done in R 518 
4.1.2 (56). 519 
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Figures 692 

 693 

Fig. 1. Root Mean Square Errors (RMSE) derived from the prediction using GLM models 694 
across all simulations along the gradient of correlation between X1 and X2 (A) and predictor 695 
novelty (B) grouped by the three different levels of training collinearity (High, Medium, and 696 
Low) and model complexity (Product, Quadratic, and Linear). The collinearity shift was 697 
denoted by the correlation between X1 and X2 in the testing data sets ranging from -0.9 to 698 
0.9. The vertical dashed lines in each panel indicate the correlation between X1 and X2 in the 699 
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training data sets. The y-axis was log-transformed. The predictor novelty was represented by 700 
the magnitude of increased ranges of X2 in the testing data sets. The y-axis was log-701 
transformed in each panel.  702 
  703 
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 732 

Fig. 2. Partial R-squares of each of four different factors including collinearity shift, training 733 
collinearity, predictor novelty, and interaction between predictor novelty and collinearity shift 734 
conditional on the rest of other three factors derived from Type-III Sum of Squares for GLM 735 
models (A) and RF models (B) with three different levels of complexity (Linear, Quadratic, 736 
and Product). A higher partial R-square suggests greater importance of a factor to Root 737 
Mean Square Errors. X-values depict the highest degree of predictor novelty used in 738 
variation partitioning through ANOVAs. That is, 0.2 on x-axis integrated 0 and 0.2 predictor 739 
novelty in ANOVA while 6 included all levels of predictor novelty from 0 to 6. 740 
  741 
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 742 

Fig. 3. Root Mean Square Errors (RMSE) derived from the predictions using GLM models 743 
(A) and RF models (B) fitting Product functional relationship across High, Medium, and Low 744 
training collinearity. The RMSE were compared along the four gradients of predictor novelty 745 
(x-axis) between two degrees of collinearity shift with the correlation between X1 and X2 746 
shifted from 0.9 (red) to -0.9 (blue). The decreased difference in RMSE between two 747 
degrees of collinearity shift along the gradients of predictor novelty indicates negative 748 
interaction between predictor novelty and collinearity shift, suggesting that predictor novelty 749 
reduces the influence of collinearity shift on prediction accuracy. 750 
  751 
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 752 

Fig. 4. Fold change of Root Mean Square Errors (RMSE) in the scenarios with increased 753 
predictor novelty and collinearity shift relative to the scenario with no change for GLM and 754 
RF models fitting Product functional relationship. Shading color indicates the fold change of 755 
RMSE under different test scenarios compared to that without any predictor novelty and 756 
collinearity shift. More intense colors denote higher prediction errors. The gradient of 757 
collinearity shift is denoted by the correlation between X1 and X2 along the x-axis. The 758 
location of the blue cross refers to the scenario with no predictor novelty and collinearity shift 759 
(i.e. correlation between X1 and X2 remained the same as that of the training data). 760 

  761 
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Supplementary Materials 762 

 763 

Fig. S1. Illustration of collinearity shift denoted by the Pearson correlation coefficient r 764 
between X1 and X2 in the training and testing data. The coefficient r between X1 and X2 in the 765 
training data set is 0.3. Blue dots represent the testing data with collinearity shifted by 0.3 766 
and 0.6 while red dots depict those with collinearity shifted by -0.9 and -1.2). 767 

  768 
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 769 

Fig. S2. Root Mean Square Errors (RMSE) derived from the prediction using RF models 770 
across all simulations along the gradient of correlation between X1 and X2 (A) and predictor 771 
novelty (B) grouped by the three different levels of training collinearity (High, Medium, and 772 
Low) and model complexity (Product, Quadratic, and Linear). The collinearity shift was 773 
represented by the correlation between X1 and X2 in the testing data sets ranging from -0.9 774 
to 0.9. The vertical dashed lines in each panel indicate the correlation between X1 and X2 in 775 
the training data sets. The y-axis was log-transformed. The predictor novelty was 776 
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represented by the magnitude of increased ranges of X2 in the testing data sets. The y-axis 777 
was log-transformed in each panel.  778 
  779 
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